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Abstract. In this paper, we undertake the first study of statistical multiplexing from the
perspective of approximation algorithms. The basic issue underlying statistical multiplexing is the
following: in high-speed networks, individual connections (i.e., communication sessions) are very
bursty, with transmission rates that vary greatly over time. As such, the problem of packing multiple
connections together on a link becomes more subtle than in the case when each connection is assumed
to have a fixed demand.

We consider one of the most commonly studied models in this domain: that of two communicating
nodes connected by a set of parallel edges, where the rate of each connection between them is a
random variable. We consider three related problems: (1) stochastic load balancing, (2) stochastic
bin-packing, and (3) stochastic knapsack. In the first problem the number of links is given and we
want to minimize the expected value of the maximum load. In the other two problems the link
capacity and an allowed overflow probability p are given, and the objective is to assign connections
to links, so that the probability that the load of a link exceeds the link capacity is at most p. In bin-
packing we need to assign each connection to a link using as few links as possible. In the knapsack
problem each connection has a value, and we have only one link. The problem is to accept as many
connections as possible.

For the stochastic load balancing problem we give an O(1)-approximation algorithm for arbitrary
random variables. For the other two problems we have algorithms restricted to on-off sources (the
most common special case studied in the statistical multiplexing literature), with a somewhat weaker
range of performance guarantees.

A standard approach that has emerged for dealing with probabilistic resource requirements is the
notion of effective bandwidth—this is a means of associating a fixed demand with a bursty connection
that “represents” its distribution as closely as possible. Our approximation algorithms make use of
the standard definition of effective bandwidth and also a new one that we introduce; the performance
guarantees are based on new results showing that a combination of these measures can be used to
provide bounds on the optimal solution.
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1. Introduction.

Motivation and previous work. The issues of admission control and rout-
ing in high-speed networks have inspired recent analytical work on network routing
and bandwidth allocation problems in several communities (e.g., [10, 1, 5]). One
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line of work has been directed towards the development of approximation algorithms
and competitive on-line algorithms for admission control and virtual circuit routing
problems (see the survey by Plotkin [16]). The network model in this line of work
represents the links of the network as edges of fixed capacity and connections as pairs
of vertices with a fixed bandwidth demand between them. The algorithms and their
analysis are motivated by this network flow perspective.

In fact, however, traffic in high-speed networks based on asynchronous transfer
mode (ATM) and related technologies tends to be extremely bursty. The transmission
rate of a single connection can vary greatly over time; there can be infrequent periods
of very high peak rate, while the average rate is much lower.

One can try to avoid this issue by assigning each connection a demand equal to
its maximum possible rate. The use of such a conservative approximation will ensure
that edge capacities are never violated. But much of the strength of ATM comes
from the advantage of statistical multiplexing—the packing of uncorrelated, bursty
connections on the same link. In particular, suppose one is willing to tolerate a low
rate of packet loss due to occasional violations of the link capacity. As the “peak”
states of different connections coincide only very rarely, one can pack many more
connections than is possible via the above worst-case approach and still maintain a
very low rate of packet loss due to overflow.

Queueing theorists recently have devoted a great deal of study to the analysis
of statistical multiplexing (see the book edited by Kelly, Zachary, and Zeidins [13]).
Typically, this work models a single connection either as a discrete random variable X,
with Pr[X = s] indicating the fraction of the time that the connection transmits at rate
s, or as a finite-state Markov chain with a fixed transmission rate for each state. (A
much-discussed case is when X is an on-off source. In our context, such a connection is
equivalent to a weighted Bernoulli trial.) This line of work has concentrated primarily
on the case of point-to-point transmission across a set of parallel links; this allows
one to study the packing and load balancing issues that arise without the added
complication of path selection in a large network.

One of the main concepts that has emerged from this work has been the develop-
ment of a notion of effective bandwidth for bursty connections. This is based on the
following natural idea. Suppose one is willing to tolerate a rate p of overflow on each
link. One first assigns a number βp(X) to each connection (i.e., random variable)
X, indicating the “effective” amount of bandwidth required by this connection. One
then uses a standard packing or load balancing algorithm to assign connections to
links, using the single number βp(X) as the demand of the connection X. This notion
of effective bandwidth is indeed what underlies the modeling of routing problems as
network flow questions.

Consensus has more or less been reached (see Kelly [12]) on a specific formula for
βp, first studied by Hui [10]: a scaled logarithm of the moments-generating function
of X. One of its attractions is that packing according to βp(X) always provides
a relatively conservative estimate in the following sense: If the sum of the effective
bandwidths of a set of independent connections does not exceed the link capacity, then
the probability that the sum of their transmission rates exceeds twice the capacity at
any instant is at most p.

Problems studied in this paper. In this paper, we undertake the first study of
the issues inherent in statistical multiplexing from the perspective of approximation
algorithms. We are motivated primarily by the following fact: the queueing theo-
retical work discussed above does not attempt to prove that its methods, based on
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effective bandwidth, provide solutions that are near-optimal on all (or even on typi-
cal) instances. Indeed, researchers have recognized that claims about the power of the
effective bandwidth approach depend critically on a number of fundamental assump-
tions about the nature of the underlying traffic (e.g., de Veciana and Walrand [18]).
Thus an analysis of statistical multiplexing problems in the framework of approxima-
tion algorithms can provide tools for understanding the performance guarantees that
can be attained in this domain.

We mentioned above that the model studied in this area concentrates primarily
on the case of two communicating nodes connected by a set of parallel edges. Thus,
the problem of assigning bursty connections to edges is equivalent to that of assigning
(bursty) items to bins. As a result, we have a direct connection between the standard
questions addressed in statistical multiplexing and stochastic versions of some of the
classical resource allocation problems in combinatorial optimization. We design and
analyze approximation algorithms for the following fundamental problems:

Stochastic load balancing. An item is a discrete random variable. We are
given items X1, . . . , Xn. We want to assign each item to one of the bins 1, . . . ,m so as
to minimize the expected maximum weight in any bin. That is, we want to minimize

E



max
i

∑

Xj∈Bi

Xj



 ,

where Bi is the set of items assigned to bin i.

Stochastic bin-packing. We are given items as above, and we define the over-
flow probability of a subset of these items to be the probability that their sum exceeds
1. We are also given a number p ≥ 0. We want to determine the minimum number of
bins (of capacity 1) that we need in order to pack all the items, so that the overflow
probability of the items in each bin is at most p.

Stochastic knapsack. We are given p ≥ 0 and a set of items X1, . . . , Xn, with
item Xi having a value vi. We want to find a subset of the items of maximum value,
subject to the constraint that its overflow probability is at most p.

Thus, the above problems provide us with a very concrete setting in which to
try assessing the power of various approaches to the statistical multiplexing of bursty
connections. These problems are also the natural stochastic analogues of some of the
central problems in the area of approximation algorithms; and hence we feel that their
approximability is of basic interest.

Of course, each of these problems is NP-hard, since the versions in which each
item Xi is deterministic (i.e., takes a single value with probability 1) correspond to
the minimum makespan, bin-packing, and knapsack problems, respectively. However,
the stochastic versions introduce considerable additional complications. For example,
we show that even given a set of items, determining its overflow probability is #P -
complete (see section 2).

Moreover, we also show that simple approaches such as (i) applying Hui’s def-
inition of effective bandwidth [10] to the items, and then (ii) running a standard
algorithm for the case of deterministic weights (e.g., Graham’s lowest-fit makespan
algorithm or first-fit for bin packing) can lead to results that are very far from opti-
mal. Indeed, we show in section 2 that in a certain precise sense there is no “direct”
use of effective bandwidth that can provide approximation results as strong as those
we obtain.
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1.1. Our results. This paper provides the first approximation algorithms for
these load balancing and packing problems with stochastic items. Our algorithms
make use of effective bandwidth, and their analysis is based on new results showing,
roughly, that it is possible to define a notion of effective bandwidth that can be used
to obtain bounds on the value of the optimum.

However, the relationships between the effective bandwidth and the optimum are
quite subtle. In particular, while Hui’s definition is a useful ingredient in our algorithm
for the case of load balancing, we show in the cases of bin-packing and knapsack that
it is necessary to use a definition of effective bandwidth that is different from the
standard one. Our new effective bandwidth function β′ has a number of additional
properties that make its analysis particularly tractable. In particular, it was through
β′ that we were able to establish our basic relations between the function β and the
value of the optimum for the case of load balancing.

Load balancing. Perhaps our strongest result is for the load balancing prob-
lem: we provide a constant-factor approximation algorithm for the optimum load for
arbitrary random variables. With a somewhat larger constant, we can modify our
algorithm to work in an on-line setting, in which items arrive in sequence and must
be assigned to bins immediately.

Let us give some indication of the techniques underlying this algorithm. First, we
mentioned above that the standard effective bandwidth βp comes with an upper bound
guarantee: if the sum of the effective bandwidths of a set of items is bounded by 1,
then the probability that the total load of these items exceeds 2 is at most p. (This
fact is due originally to Hui [10] and has been extended and generalized by Kelly [11],
Elwalid and Mitra [4], and others.)

Our proof of the constant approximation ratio uses a new lower bound guarantee
for effective bandwidth. Suppose we have a set of random variables X1, . . . , Xn, so
that each Xi is a weighted Bernoulli trial taking on the values 0 and 2−i for an integer
0 ≤ i ≤ log log p−1. We show that there is an absolute constant C ≤ 7 so that if the
sum of the effective bandwidths of the Xi is at least C, then the probability that their
sum exceeds 1 is at least p.

A number of issues must be resolved in order to use these bounds in the design
and analysis of our algorithm. First, the upper bound guarantee holds only under
some restricting assumptions on the item sizes, which are not necessarily valid for our
input. Therefore, we have to handle exceptional items separately. Second, our lower
bound concerns overflow probabilities, whereas our objective function is the expected
maximum load in any bin. Finally, we have to use this lower bound in the setting
of arbitrary random variables, despite the fact that the concrete result itself applies
only to a restricted type of random variable.

Bin-packing and knapsack. In the case of the bin-packing and knapsack prob-
lems we consider primarily on-off sources. In our context, such a connection is equiv-
alent to a weighted Bernoulli trial. Our emphasis on on-off sources is in keeping with
the focus of much of the literature (see, e.g., the book [13]). With somewhat weaker
performance guarantees, we can also handle the more general case of high-low sources:
connections whose rates are always one of two positive values.

For the bin-packing problem with on-off items we give an algorithm that finds

a solution with at most O(
√

log p−1

log log p−1 )B∗ + O(log p−1) bins, where B∗ is the mini-

mum possible number of bins. For the knapsack problem we provide an O(log p−1)-
approximation algorithm. We also provide constant-factor approximation algorithms
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for both problems, in which case one is allowed to relax either the size of the bin or the
overflow probability by an arbitrary constant ε > 0. Our algorithm for bin-packing
can be modified to work in an on-line setting, in which items arrive in sequence and
must be assigned to bins immediately.

Our algorithms are based on a notion of effective bandwidth, but not the standard
one in the literature. In particular, the guarantee provided by the standard definition
is not strong enough for the bin-packing and knapsack problems: it says that if the
sum of the effective bandwidths of a set of items is bounded by 1, then the probability
that the total load of these items exceeds 2 is at most p. While such a guarantee is
strong enough for the load balancing problem—a load of 2 is within a constant factor
of a load of 1—it is inadequate for the bin-packing and knapsack problems, which fix
hard limits on the size of each bin. Stronger guarantees without exceeding the link
capacity were provided by Hui [10], Kelly [11], and Elwalid and Mitra [4] using large
overflow buffers. We provide such stronger guarantees without resorting to overflow
buffers. In particular, for items of large peak rate (the most difficult case for the
standard definition β), we make use of our new effective bandwidth β′ to provide the
desired performance guarantee.

1.2. Connections with stochastic scheduling. Although we have so far ex-
pressed things in the context of bursty traffic in a network, our result on load balancing
also resolves a natural problem in the area of stochastic scheduling.

There is a large literature on scheduling with stochastic requirements; the recent
book on scheduling theory by Pinedo [15] gives an overview of the important results
known in this area. In a stochastic scheduling problem, the job processing times are
represented by random variables; typical assumptions are that these processing times
are independent and identically distributed, and that the distribution is Poisson or
exponential. For some of these cases, algorithms have been developed that guarantee
an asymptotically optimal schedule with high probability (e.g., Weiss [19, 20]).

We can naturally view our load balancing problem as a scheduling problem on m
identical machines (the bins), with a set of n stochastic jobs (the items). Since the
problem contains the NP-hard deterministic version as a special case, we cannot expect
to find an optimal solution. What our load balancing result provides is a constant
approximation for the minimum makespan problem on m identical machines, when
the processing time of each job can have an arbitrary distribution.

One distinction that arises in these scheduling problems is the following: must all
the jobs be loaded onto their assigned machines immediately, or can we perform an
assignment adaptively, learning the processing times of earlier jobs as they finish? Our
model, since it is motivated by a circuit-routing application, takes the first approach.
This is also the approach taken by, e.g., Lehtonen [14], who considers the special
case of exponentially distributed processing times; that work left the case of general
distributions—which we handle here—as an open problem.

2. Preliminary results and examples. For much of the paper, we will be
discussing random variables that are Bernoulli trials. We say that a random variable
X is a Bernoulli trial of type (q, s) if X takes the value s with probability q and the
value 0 with probability 1 − q.

The load balancing, bin-packing, and knapsack problems are all NP-complete even
when all items are deterministic (i.e., they assume a single value with probability 1).
As mentioned above, the introduction of stochastic items leads to new sources of
intractability.
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Theorem 2.1. Given Bernoulli trials X1, . . . , Xn, where Xi is of type (qi, si), it
is #P -complete to compute Pr[

∑
i Xi > 1].

Proof. Membership in #P is easy to verify. We prove #P -hardness by a reduction
from the problem of counting the number of feasible solutions to a knapsack problem.
That is, given numbers y1, . . . , yn and a bound B, we want to know how many subsets
of {y1, . . . , yn} add up to at most B. We make two modifications to this problem which
do not affect its tractability:

(i) We assume that B = 1.
(ii) We consider the complementary problem of counting the number of subsets

of {y1, . . . , yn} that sum to more than B.
Thus, given y1, . . . , yn, we create Bernoulli trials X1, . . . , Xn such that Xi is of type
( 1
2 , yi). Let p = Pr[

∑
i Xi > 1]. The theorem follows from the fact that the number

of subsets of {y1, . . . , yn} that sum to more than 1 is equal to p · 2n.
The use of effective bandwidth is a major component in the design of our ap-

proximation algorithms. We now give some examples to show that no “direct” use
of effective bandwidth will suffice in order to obtain the approximation guarantees
presented in later sections. These examples also provide intuition for some of the
issues that arise in dealing with stochastic items.

First we consider the load balancing problem. A natural approximation method
one might consider here is Graham’s lowest-fit algorithm applied to the expected
values of the items. However, this fails to achieve a constant-factor approximation.
This is a consequence of the following much more general fact. Let γ be any function
from random variables to the nonnegative real numbers. If X1, . . . , Xn are random
variables, and φ is an assignment of them to m bins, we say that φ is γ-optimal if it
minimizes the maximum sum of the γ-values of the items in any one bin.

Theorem 2.2. For every function γ as above, there exist X1, . . . , Xn and a
γ-optimal assignment φ of X1, . . . , Xn to m bins such that the load of φ is
Ω(logm/ log logm) times the optimum load.

Proof. For an arbitrary function γ, we consider just two kinds of distributions:
a Bernoulli trial of type (m− 1

2 , 1) and a Bernoulli trial of type (1, 1). (This latter
distribution is simply a deterministic item of weight 1.) By rescaling, assume that γ
takes the value 1 on Bernoulli trials of type (1, 1) and the value am− 1

2 on Bernoulli
trials of type (m− 1

2 , 1). We consider two cases.
Case 1. a ≤ ε logm

log logm for some sufficiently small constant ε. In this case, we

consider the following γ-optimal assignment: one item of type (1, 1) in each of the
m−

√
m bins, and

√
m/a items of type (m− 1

2 , 1) in each of the remaining
√
m bins.

With high probability, at least ε logm
log logm of the latter type of item will be on in the

same bin, and hence the load of this assignment is Ω(logm/ log logm). By placing at
most one item of each type in every bin, one can obtain a load of 2 for this problem.

Case 2. a > ε logm
log logm . In this case, consider the following γ-optimal assignment

φ: C
√
m logm items of type (m− 1

2 , 1) in each of m − 1 bins, for a sufficiently large
constant C, and aC logm items of type (1, 1) in the mth bin. Thus, the load of φ
is at least aC logm. However, with high probability, the maximum load in the first
m−1 bins will be Θ(logm), and hence the assignment that evenly balances the items
of both types has load O((1+ a

m ) logm). This is better by a factor of Ω( am
a+m ).

We now discuss a similar phenomenon in the case of bin-packing. Let us say that
a packing of items into bins is incompressible if merging any two of its bins results in
an infeasible packing. For the problem of packing deterministic items, a basic fact is
that any incompressible packing is within a factor of 2 of optimal. In contrast, we can
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show the existence of a set of stochastic items that can be packed in only two bins,
but for which there is an incompressible packing using Ω(p−

1
2 ) bins.

Theorem 2.3. Consider a bin-packing problem with overflow probability p. There
exist sets of weighted Bernoulli trials S1 and S2 with the following properties.

(i) |S1| = |S2| = Ω(p−
1
2 ).

(ii) All the items of S1 can be packed in a single bin.
(iii) All the items of S2 can be packed in a single bin.
(iv) One cannot pack one item from S1 and two from S2 together in one bin.
Thus there is a packing of S1 ∪ S2 in two bins, but the packing that uses Ω(p−

1
2 )

and places one item from each set in each bin is incompressible.
Proof. Let p be the given overflow probability, q a real number slightly greater

than p, and ε a small constant. One can verify that the above properties hold for
the following two sets of weighted Bernoulli trials: S1 consists of εp−

1
2 items of type

(q, 1 −√
p); S2 consists of εp−

1
2 items of type (1,

√
p).

Corollary 2.4. No algorithm which simply looks at a single “effective band-
width” number for each item can provide an approximation ratio better than Ω(p−

1
2 ).

Proof. Note the behavior of any effective bandwidth function γ in the example of
the above theorem. If X ∈ S1 and Y ∈ S2, then we have just argued that there exists
a set of items whose effective bandwidths add up to γ(X) + 2γ(Y ) and which cannot
be packed into one bin. But the entire set of items can be packed into two bins; and
its total effective bandwidth is εp−

1
2 [γ(X) + γ(Y )]. This example also shows that the

first-fit heuristic applied to a given item ordering can use a number of bins that is
Ω(p−

1
2 ) times optimal.

The effective bandwidth we use. As discussed in the introduction, we will
use both the standard definition of effective bandwidth βp and a new modified effective
bandwidth β′

p that turns out to be necessary in the case of bin-packing and is also
used in proving our lower bounds on optimality for the load balancing problem. For
a random variable X, one defines [10, 12]

βp(X) =
log E[p−X ]

log p−1
.(2.1)

For a Bernoulli trial X of type (q, s), we define its modified effective bandwidth by

β′
p(X) = min{s, sqp−s}.(2.2)

For a set of random variables R, we will use the notation βp(R) =
∑

X∈R βp(X) and
β′

p(R) =
∑

X∈R β′
p(X).

We first give an inequality relating our modified effective bandwidth to the stan-
dard one. The proof follows from elementary calculus.

Proposition 2.5. For a Bernoulli trial X, βp(X) ≤ β′
p(X).

Proof. First, we establish the following claim.
(A)For a ≥ 1, define f(x) = ax − 1 and g(x) = xax ln a. Then f(x) ≤ g(x) for all
x ∈ [0, 1].

We prove (A) by noting that

lim
x→0

f(x)

g(x)
= 1,

and f ′(x) ≤ g′(x) for all x ∈ [0, 1].
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Now if X is of type (q, s), then we have

βp(X) =
log (qp−s + (1 − q))

log p−1
=

log (1 + q(p−s − 1))

log p−1
.

To prove the proposition, it is sufficient to show that βp(X) ≤ s and βp(X) ≤ sqp−s.
The first of these statements follows by taking logarithms base p−1 of the inequality
qp−s + (1 − q) ≤ p−s. To show the second, note that by Taylor’s inequality

βp(X) ≤ q(p−s − 1)

log p−1
,

and by fact (A)

q(p−s − 1)

log p−1
≤ qsp−s.

3. Stochastic load balancing. Let X1, X2, . . . , Xn be mutually independent
random variables taking nonnegative real values. We shall refer to them as items.
Let φ : {1, . . . , n} → {1, . . . ,m} be a function assigning each item Xi to one of m
bins. We define the load of the assignment φ, denoted L(φ), to be the expected
maximum load on any bin; that is, L(φ) = E[maxi

∑
j∈φ−1(i) Xj ]. We are interested

in designing approximation algorithms for the problem of minimizing L(φ) over all
possible assignments φ. Note that the maximum of the expectations would be easy
to approximate by simply load balancing the expectations.

3.1. The algorithm for on-off items. In this subsection we present an O(1)-
approximation algorithm for the case of weighted Bernoulli trials; we then extend this
to handle arbitrary distributions in the following subsection. For a Bernoulli trial of
type (q, s), we can further assume that s is a power of 2—by reducing all item sizes
to the nearest power of 2 we lose only a factor of 2 in the approximation ratio.

Our load balancing algorithm is on-line. It proceeds through iterations; in each
iteration it maintains a current estimate of the optimum load, which will always be
correct to within a constant factor. An iteration can end in one of two ways: the
input can come to an end, or the iteration can fail. In the latter case, the estimate of
the optimum is doubled, and a new iteration begins.

For ease of notation, the algorithm rescales all modified sizes that it sees so that
the estimate in the current iteration is always equal to 1. An item Xi of type (qi, si)
is said to be exceptional if si > 1, and normal otherwise. Throughout the algorithm,
we define p = m−1 (recall that m is the number of bins) and C to be an absolute
constant. (C = 18 is sufficient.) One iteration proceeds as follows; suppose that item
Xi has just been presented.

(1) For each bin j, let Bj denote the set of all nonexceptional items from this
iteration that have been assigned to j.

(2) If Xi is normal, then we assign it to the bin j with the smallest value of
βp(Bj). If this would cause βp(Bj) to exceed C, then the iteration fails.

(3) Suppose Xi is exceptional. If the total expected size of all exceptional items
seen in this iteration (including Xi) exceeds 1, then the iteration fails. Oth-
erwise, Xi is assigned to an arbitrary bin.

To prove that this algorithm provides a constant-factor approximation, we show that
(i) if an iteration does not fail, then the load of the resulting assignment is within
a constant factor of the estimate for that iteration; and (ii) if iteration fails, then
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the load of any assignment must be at least a constant times the estimate for that
iteration. We start with (ii).

Lower bounding the optimal solution. First we prove a lower bound on the
optimal solution to the load balancing problem. This lower bound is the main new
technical contribution of this part, and will be used also in analyzing the bin-packing
and knapsack algorithm in the next two sections. In this subsection we state and prove
the lower bound for the special case of weighted Bernoulli trials. (In section 3.2 we
show how the general case follows from the special case.) Assume that X1, X2, . . . , Xn

are independent Bernoulli trials such that Xi is of type (qi, si). We will sometimes
say that “item Xi is on” to refer to the event that Xi = si.

We use the following basic claim repeatedly.
Claim 3.1. Let E1, . . . , Ek be independent events, with Pr[Ei] = qi. Let E ′ be

the event that at least one of these events occurs. Let q ≤ 1 be a number such that∑
i qi ≥ q. Then Pr[E ′] ≥ 1

2q.
Proof. Let q̄ = 1

k

∑
i qi.

Pr[E ′] = 1 −
∏

i

(1 − qi) ≥ 1 − (1 − q̄)(
1
q̄

∑
i
qi)

≥ 1 − e−
∑

i
qi ≥ 1 − e−q ≥ q − 1

2
q2 ≥ 1

2
q.

Our key technical lower bound is in the following lemma. Here p ∈ [0, 1] is a
target probability (in this section we use p = m−1).

Lemma 3.2. Let X1, . . . , Xn be Bernoulli trials of types (q1, s1), . . . , (qn, sn),
respectively, such that log−1 p−1 ≤ si ≤ 1 for each i, and each si is an inverse power
of 2. If

∑
i β

′
p(Xi) ≥ 7, then Pr[

∑
i Xi ≥ 1] ≥ p.

Proof. Our goal is to modify the given set of Bernoulli trials so as to obtain a
new problem in which (i) the probability of the sum exceeding 1 is no greater than
originally and (ii) the probability of the sum exceeding 1 is at least p.

If there is any Xi for which β′
p(Xi) = si, we lower qi until qi = psi . This preserves

the assumption that
∑

i β
′
p(Xi) ≥ 7.

Let s be an inverse power of two, and consider the set W (s) of items Xi for which

si = s. We partition W (s) into sets W (s)
1 , . . . ,W (s)

rs such that for all j = 1, 2, . . . , rs−1,
2ps ≤

∑
i|Xi∈W (s)

j
qi ≤ 3ps and

∑
i|Xi∈W (s)

rs
qi < 2ps. This can be done because qi ≤ ps

for all Xi ∈ W (s). We define a set V (s) of Bernoulli trials Y (s)
1 , . . . , Y (s)

rs−1, each of

type (ps, s). Intuitively, each Y (s)
j approximates well the behavior of

∑
Xi∈W (s)

j
Xi.

In particular, we show that the former is stochastically dominated by the latter. We
will prove the following:

(A) Pr[
∑

s

∑
j Y

(s)
j ≥ 1] ≤ Pr[

∑
i Xi ≥ 1];

(B) β′
p(∪sV (s)) ≥ 1;

(C) Pr[
∑

s

∑
j Y

(s)
j ≥ 1] ≥ p.

The claim clearly follows from (A) and (C).

To prove (A), we show that Pr[
∑

Xi∈W (s)
j

Xi ≥ s] ≥ ps = Pr[Y (s)
j ≥ s]. The

expression on the left-hand side is simply the probability that any of the items in

W (s)
j is on; by Claim 3.1, the fact that

∑
i|Xi∈W (s)

j
qi ≥ 2ps, and the fact that ps ≤ 1

2 ,

this probability is at least ps, and (A) follows.
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To prove (B), notice that β′
p(W

(s)
rs ) ≤ 2pssp−s = 2s, and for 1 ≤ j < rs,

β′
p(W

(s)
j ) ≤ 3pssp−s = 3s. On the other hand, β′

p(Y
(s)
j ) = pssp−s = s. Thus

β′
p(V

(s)) ≥ 1
3 (β′

p(W
(s)) − 2s). Hence

β′
p(∪sV

(s)) =
∑

s

β′
p(V

(s)) ≥
∑

s

β′
p(W

(s)) − 2s

3

=
1

3

∑

s

β′
p(W

(s)) − 2

3

∑

s

s ≥ 1,

where the last inequality follows from the fact that
∑

s β
′
p(W

(s)) ≥ 7, and
∑

s s ≤ 2
because s only takes on the values of inverse powers of 2.

To prove (C), recall that for all j, s, β′
p(Y

(s)
j ) = pssp−s = s. Now, let V denote

a subset of ∪sV (s) consisting of items whose sizes sum to 1. That such a set exists
follows from (B) and the fact that all sizes are inverse powers of 2. Let {Y ′

1 , . . . , Y
′
# }

denote the items in V , and let s′1, . . . , s
′
# denote their sizes, respectively. Note that

the probability that Y ′
i is on is equal to ps

′
i .

The probability of the event
∑

s

∑
j Y

(s)
j ≥ 1 is at least as large as the probability

that all items in V are on. But this latter probability is equal to
∏#

i=1 p
s′i = p.

The lower bound for exceptional items follows by an argument using Claim 3.1.
Lemma 3.3. Let X1, . . . , Xn be such that L ≤ s1 ≤ · · · ≤ sn and

∑
i qisi ≥ L.

Then for all φ, we have L(φ) ≥ 1
2L.

Proof. Without loss of generality, we may assume
∑

i qisi = L. Let q′i =
∑

j≥i qj .
Let Ei denote the event that at least one item among {Xj}j≥i is on, and let q′′i = Pr[Ei].
Note that because

∑
i qisi = L and si ≥ L for all i, we have

∑
i qi ≤ 1 and hence

q′i ≤ 1 for all i. Thus, by Claim 3.1, q′′i ≥ 1
2q

′
i. Write s0 = 0 and q′n+1 = 0.

Observe that
∑

i qisi =
∑

i q
′
i(si − si−1), because each si is counted with a mul-

tiplier of qi on the right-hand side.
Since Pr[Xi is on and not Ei+1] = q′′i − q′′i+1, we have

E[max{X1, . . . , Xn}] ≥
∑

i

si(q
′′
i − q′′i+1) =

∑

i

q′′i (si − si−1).

Thus for any assignment φ we have

L(φ) ≥ E[max{X1, . . . , Xn}] ≥
∑

i

q′′i (si − si−1)

≥ 1

2

∑

i

q′i(si − si−1) =
1

2

∑

i

qisi =
1

2
L.

Our main lower bound for the load balancing problem is the following lemma.
Lemma 3.4. Suppose that for all i, si is an inverse nonnegative integral power

of 2 (so si ≤ 1). Further suppose that
∑

i β
′
m−1(Xi) ≥ 17m. Then, for all φ,

L(φ) = Ω(1).
Proof. Let φ be an arbitrary assignment of the items to bins. Let B1, . . . , Bm

denote the sets of items assigned to bins 1, . . . ,m, respectively. Apply the following
construction: as long as some set B′

i contains a subsetS with β′
m−1(S) ≥ 8, we
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put aside a minimal subset S with this property. Note that β′
m−1(S) ≤ 9 as the

bandwidth of a single item of size at most 1 never exceeds 1. When we can no longer
find such a subset, then the set of remaining items R has β′

m−1(R) ≤ 8m. Thus, this
construction produces at least m subsets, such that each is assigned to a single bin
by φ. We denote the first m of these subsets by W1, . . . ,Wm.

Call a Bernoulli trial X of type (q, s) small if s < 1/ log p−1. Using the fact that
small items have p−s ≤ 2, we can see that the effective bandwidth β′

p(X) of a small
item is at most twice its expectation E[X] = qs. Call a set Wi dense if the set of small
items Si ⊆ Wi has β′

m−1(Si) ≥ 1. If there exists a dense set Wi, then the expected
size of Wi is at least 1

2 . Since L(φ) is at least as large as the expected size of Wi,
L(φ) ≥ 1

2 and the lemma follows.
Thus, we consider the case in which no Wi is dense. Let W ′

i ⊆ Wi denote the
set of items in Wi which are not small. Since Wi is not dense, β′

m−1(W ′
i ) ≥ 7. By

Lemma 3.2, the probability that size of W ′
i exceeds 1 is at least m−1. Hence the

probability that some W ′
i exceeds 1 is at least 1 − (1 − m−1)m ≥ 1 − e−1. Since

L(φ) ≥ E[max{W ′
1, . . . ,W

′
m}], the lemma follows.

Recall that the algorithm maintains a current estimate. The iteration fails if
the total effective bandwidth of the small and normal items in a bin would exceed a
constant C (we use C = 18) or if the total expected size of all exceptional items seen
in this iteration exceeds 1.

Theorem 3.5. Let W denote the set of items presented to the algorithm in
an iteration that fails. For any assignment φ of W to a set of m bins we have
L(φ) = Ω(1), where 1 is the estimate for the iteration.

Proof. Let φ be an arbitrary assignment of items in W to bins. An iteration can
fail in one of two ways: either because the expected total size of exceptional items
exceeds 1, or because the assignment of the new item to any bin j would cause βp(Bj)
to exceed C.

In the first case, Lemma 3.3 implies that L(φ) ≥ 1
2 . Concerning the second case,

consider the moment at which the iteration fails. We have
∑

j βp(Bj) ≥ m(C − 1)
(because the new item’s size, and therefore its effective bandwidth, cannot exceed 1).
Recalling that C ≥ 18, Lemma 3.4 asserts that L(φ) = Ω(1).

Upper bounding the solution obtained. The following proposition is essen-
tially due to Hui [10], who stated it with a = 2 and b = 1. We give a short proof for
the sake of completeness.

Proposition 3.6 (see [10]). Let X1, . . . , Xn be independent random variables,
and X =

∑
i Xi. Let a > b. If

∑
i βp(Xi) ≤ b, then Pr[X ≥ a] ≤ pa−b.

Proof. First, if
∑

i βp(Xi) ≤ b, then
∑

i log E[p−Xi ] ≤ log p−b and hence
∏

i
E[p−Xi ] ≤ p−b.

Thus we have Pr[X ≥ a] = Pr[p−X ≥ p−a] ≤ paE[p−X ] = pa
∏

i E[p−Xi ] ≤ pa−b,
where the first inequality follows from Markov’s inequality, the equation from the
independence of the Xi, and the last inequality from inequality above.

Lemma 3.7. Consider the assignment produced by any iteration of the algorithm.
The load of this assignment is O(1). (Recall that sizes are scaled so that 1 is the
estimate for that iteration.)

Proof. The expected size of the sum of exceptional items placed in this iteration
is at most 1, so they only add at most 1 to the expected maximum load.

Let Sj =
∑

Xi∈Bj
Xi. Let x ≥ 0. As βp(Bj) ≤ C, Pr[Sj > x + C] ≤ m−x by

Proposition 3.6. Let S∗ = max{S1, . . . , Sm}. We havePr[S∗ ≥ y] ≤
∑

j Pr[Sj ≥ y].
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Hence

E[S∗] =

∫ ∞

0
Pr[S∗ ≥ x]dx ≤ C + 1 +

∫ ∞

C+1
Pr[S∗ ≥ x]dx

= C + 1 +

∫ ∞

1
Pr[S∗ ≥ x + C]dx

≤ C + 1 +

∫ ∞

1
m ·m−xdx

= C + 1 + m
1

m lnm
= C + O(1),

from which the lemma follows.
Since the estimates increase geometrically, a consequence of Lemma 3.7 is the

following theorem.
Theorem 3.8. Let φA be the assignment produced by the algorithm. Then

L(φA) = O(1), where item sizes are scaled so that 1 is the estimate for the final
iteration.

Combining Theorems 3.8 and 3.5, we get our main result.
Theorem 3.9. The algorithm provides a constant-factor approximation to the

minimum load.

3.2. Extension to arbitrary distributions. We may assume that the only
values taken on by our random variables are powers of 2. If not, other values are
rounded down to a power of 2. As in the previous section, this increases our ap-
proximation guarantee by a factor of 2 at most. Call a random variable that only
takes values that are powers of 2 geometric. By the following claim we can reduce the
problem for geometric items to the problem for Bernoulli trial items, which we have
already solved.

Lemma 3.10. Let X be a geometric random variable. Then there exists a set
of independent Bernoulli trials Y1, . . . , Yk, with Y =

∑
i Yi, such that Pr[X = s] =

Pr[s ≤ Y < 2s].
Proof. Suppose that X takes the value si with probability qi for i = 1, . . . , k.

Suppose that s1 > s2 > · · · > sk. We define Yi to be of type (q′i, si), where

q′i =
qi

(1 − q1 − · · ·− qi−1)
.

Notice that the events X = si, i = 1, . . . , k, are mutually exclusive, and therefore q′i
is simply Pr[X = si | X ≤ si]. The set {q′i} is the solution to

q1 = q′1,

q2 = (1 − q′1)q
′
2,

q3 = (1 − q′1)(1 − q′2)q
′
3,

...
...

...

qk =

(
k−1∏

i=1

(1 − q′i)

)
q′k,

and hence

Pr[max
j

Yj = si] = q′i

i−1∏

j=1

(1 − q′j) = qi = Pr[X = si].



BANDWIDTH FOR BURSTY CONNECTIONS 203

As si >
∑

j>i sj , the claim follows.
The algorithm is essentially the same as before. It uses the standard definition

of effective bandwidth (Equation (2.1)), which applies to any distribution. The only
change arises from the fact that we must define what we mean by “exceptional” in
this case. Each item Xi is now divided into an exceptional part Xi · 1{Xi>1} and a
nonexceptional part Xi · 1{Xi≤1}. When the expected total value of all exceptional
parts exceeds 1, the iteration fails; before this, exceptional parts are (necessarily) just
packed together with their nonexceptional parts.

Theorem 3.11. The algorithm provides a constant-factor approximation to the
minimum load.

Proof. Recall that in the case of Bernoulli trials exceptional items could be packed
in any bin. The upper bound argument follows as before, using Proposition 3.6 for
the nonexceptional parts of the items.

The lower bound argument requires the approximation of each item by a sum of
Bernoulli trials using Lemma 3.10. We replace each item Xi of a geometric random
variable by the corresponding independent Bernoulli trials and apply the lower bound
of the previous subsection to the resulting set of Bernoulli trials.

4. Bin packing with stochastic on-off items. In this section we consider the
bin packing problem with independent weighted Bernoulli trials, which we will refer
to as “items.” In addition we are given an allowed probability of overflow p. The
problem is to pack the items into as few bins of size 1 each as possible, so that in each
bin the probability that the total size of the items in the bin exceeds 1 is at most p.
We assume throughout that p ≤ 1

8 ; this is consistent with routing applications, where
p is much smaller than this [4].

We develop approximation algorithms parameterized by a number ε, 0 < ε < 1
2 .

Our results show that a solution whose value is within a factor of O(ε−1) to optimal
can be obtained if we relax either the bin size or the overflow probability. That is, we
compare the performance of our algorithm to the optimum for a slightly smaller bin
size or overflow probability. Using these results we then give an approximation algo-
rithm without relaxing either the bin size or the overflow probability. Our algorithms
will be on-line, as before.

The basic outline of the method is as follows. As in the load balancing algo-
rithm, we will classify items according to their sizes. For the case with relaxed sizes
and/or probabilities, an item will be small if si ≤ 1/ log2 p

−1, large if si ≥ 1
2ε for the

parameter ε, and normal otherwise. We pack using the expectation for small items,
using the effective bandwidth βp(X) for normal items, and we develop techniques for
packing large items based on our version of the effective bandwidth β′

p(X). It can in
fact be shown that the standard definition of effective bandwidth is not adequate for
obtaining a strong enough approximation ratio.

For a large item of type (qi, si), we effectively discretize its size, and work with
its effective size s̄i; this is the reciprocal of the minimum number of copies of weight
si that will overflow a bin of size 1: s̄−1

i = min{j : jsi > 1}. Notice that s̄i < si for
all i.

An algorithm with relaxed bin size and probability. We start by describing
a simpler version of the algorithm in which we relax both the bin size and the overflow
probability. Each bin will contain items only of the same type (small, normal, or
large). Each item is assigned a weight, according to which it is packed. Bins of each
type can be packed according to any on-line bin-packing heuristic, applied to the
weights; to be concrete, we will assume that the first-fit heuristic is being used.
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Small items are given a weight equal to their expectation. A bin with small items
will be packed so that its total weight does not exceed 1

6 . Each normal item X is
assigned a weight of βp(X). A bin of normal items will be packed so that its total
weight does not exceed ε.

The set of large items can have at most )2ε−1* different effective sizes. They are
classified into groups by the following two criteria.

(i) Each bin will only contain items of the same effective size.
(ii) We say that a large item Xi of type (qi, si) and effective size s̄ has large

probability if qi ≥ ps̄ and normal probability otherwise. No bin will contain
items of both large and normal probabilities.

We pack large probability items in bins so that fewer than 1
s̄ are in any bin. We pack

normal probability items so that the sum of the probabilities of items in a bin does
not exceed ps̄/s̄e where e ≈ 2.7.. is the base of the natural logarithm. We now argue
that the algorithm yields a feasible packing in bins of size 1 + ε.

First we consider large items. If a bin contains items of effective size s̄ = 1
k , then

it will overflow if and only if at least k items are on. This implies that bins with large
probability items do not overflow even if all items are on. Large items with normal
probability are handled by the following lemma, which involves an analysis of our
modified effective bandwidth.

Lemma 4.1. Let X1, . . . , Xn be independent Bernoulli trials of types {(qi, si)},
and assume that the effective size s̄i = s̄ and qi ≤ ps̄ for all i. Let X =

∑
i Xi, and

assume that
∑

i qi ≤ ps̄/s̄e. Then Pr[X ≥ 1] ≤ p.
Proof. We get overflow in a bin if and only if at least k items are on, where k = 1

s̄ .
Let I denote the set of all items. For a set of items S ⊆ I of size k, the probability
that all items in S are on is

∏
i∈S qi. Thus the probability of overflow is at most

∑

S⊆I,|S|=k

∏

i∈S

qi.(4.1)

We claim that this formula is maximized for a given sum of probabilities
∑

i qi if
all probabilities qi are all the same. To see this, suppose that we have two items
Xi, Xj with different probabilities, and consider modified items with probabilities
q′i = q′j = 1

2 (qi + qj). We now observe that the sum of probabilities has remained the
same, but the probability of overflow is larger: the terms of (4.1) that contain 0 or 1
of the values qi, qj contribute in total the same as before, and terms containing both
are each increased.

Assume now that all items have the same probability q. The sum of the proba-
bilities of items is at most ps̄/s̄e; hence, the number of these items is at most ps̄/s̄qe.
Now the probability that k items are on is bounded by

(
ps̄/qs̄e

1/s̄

)
q

1
s̄ ≤

(
ps̄

q

) 1
s̄

q
1
s̄ = p;

the inequality follows from the estimate
(n
k

)
≤ ( enk )k.

The feasibility for small items follows easily from Chernoff bounds.
Lemma 4.2. If X1, . . . , Xk be independent Bernoulli trials of types (q1, s1), . . . ,

(qk, sk), such that si ≤ 1
log2 p−1 , and

∑
i E[Xi] ≤ 1

6 , then Pr[
∑

i Xi ≥ 1] < p.
Proof. We use Chernoff bounds to bound the probability that the sum exceeds 1.

With µ = 1
6 log p−1, we have Pr[

∑
i Xi > 1] < (e5/6/6)6µ < 2−6µ = p.

For the normal items, we apply Proposition 3.6 with a = 1 + ε and b = ε.
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We state this special case here for easy reference.
Lemma 4.3. Let X1, . . . , Xn be independent random variables, and X =

∑
i Xi.

Let ε > 0. If
∑

i βp(Xi) ≤ ε, then Pr[X ≥ 1 + ε] ≤ p.
Theorem 4.4. The on-line algorithm finds a packing of items in bins with the

property that for each bin, the probability that the total size of the items in that bin
exceeds 1 + ε is at most p.

Note that large and small items are also feasible with bin size 1; it is only the
normal items that require the relaxed bin size.

To prove the approximation ratio, we need to lower-bound the optimum. For
small items, Chernoff bounds are sufficient; for normal items and large items of a
given effective size we make use of a more careful analogue of Lemma 3.2.

Lemmas 4.7 and 4.8 will show that on large items of a given effective size the
number of bins used by our algorithm is at most a constant factor away from the
minimum possible. Since there are only )2ε−1* different large effective sizes, this
implies a bound of O(ε−1) on large items. Lemma 4.6 shows that normal items with
large total effective size (more than 5(1 + 2ε)) have overflow probability more than
p1+3ε. This will imply that the number of bins used for normal items is at most an
O(ε−1) factor away from optimal. Finally, small items are again handled directly with
Chernoff bounds.

Lemma 4.5. Let p < 1
2 and X1, . . . , Xk be independent Bernoulli trials of types

(q1, s1), . . ., (qk, sk), such that si ≤ log2 p
−1. If

∑
i E[Xi] ≥ 4, then Pr[

∑
i Xi > 1] >

p.
Proof. We use Chernoff bounds to bound the probability that the sum exceeds 1.

With µ = 4 log p−1, we have

Pr

[
∑

i

Xi ≤ 1

]
≤ e−

1
2 ( 3

4 )
2
µ < p,

and hence Pr[
∑

i Xi > 1] > 1 − p ≥ p.
Next we consider normal items. In the load-balancing algorithm we proved a

lower bound for effective bandwidth in Lemma 3.2; here we require a stronger version
of this lemma. For later use we state the lemma with a parameter δ. Here we will use
it with δ = 1.

Lemma 4.6. Let X1, . . . , Xk be independent Bernoulli trials of types (q1, s1), . . . ,
(qk, sk), such that si ≥ 1

log2 p−1 , and
∑

i βp(Xi) ≥ (3δ + 2)(1 + 2ε); then

Pr

[
∑

i

Xi > δ

]
> pδ(1+2ε)+ε.

Proof. Recall that βp(X) ≤ β′
p(X) for all Bernoulli trials; hence we have that∑

i β
′
p(Xi) ≥ (3δ + 2)(1 + 2ε). Further, we will round up the size of each Bernoulli

trial Xi to an integer power of 1 + ε. Let X ′
i denote the resulting rounded item, and

let (qi, s′i) denote its type. Rounding up cannot decrease the effective bandwidth, so
we have that

∑
i β

′
p(X

′
i) ≥ (3δ + 2)(1 + 2ε).

Next we prove an analogue of Lemma 3.2 for the rounded items. We claim that
with probability more than pδ(1+2ε)+ε, the total size of the rounded items exceeds
δ(1 + ε). Notice that this implies that the total size of the original items exceeds
δ with probability more than pδ(1+2ε)+ε. The proof is analogous to the proof of
Lemma 3.2.
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We may assume without loss of generality that qi ≤ psi for all i. Now we have
that

∑

i

qisip
−si ≥ (3δ + 2)(1 + 2ε).(4.2)

We define the sets of items W (s) for each size s; partition W (s) into sets W (s)
1 , . . . ,W (s)

rs

such that 2ps ≤
∑

Xi∈W (s)
j

qi < 3ps for j = 1, . . . , rs − 1; and define the set V (s) of

Bernoulli trials Y (s)
1 , . . . , Y (s)

rs−1, each of type (ps, s), as in the proof of Lemma 3.2.

Next we want to argue that (i) the probability of the sum
∑

j,s Y
(s)
j exceeding

δ(1 + ε) is no greater than the probability of
∑

i X
′
i exceeding δ(1 + ε), and (ii) the

probability of the sum
∑

j,s Y
(s)
j exceeding δ(1 + ε) is at least pδ(1+2ε)+ε.

To argue part (i) we show as before, using Claim 3.1, that Pr[
∑

X′
i∈W (s)

j
X ′

i ≥

s] ≥ ps = Pr[Y (s)
j ≥ s]. The fact that ps ≤ 1/2 follows from the assumption that

si ≥ 1/ log2 p
−1 for all i.

To show part (ii) we claim, using the notation from the proof of Lemma 3.2, that
β′

p(∪sV (s)) > δ(1 + ε). To prove this, we note that as before we have β′
p(V

(s)) >
β′

p(W (s))−2s

3 . Hence

β′
p(∪sV

(s)) =
∑

s

β′
p(V

(s)) >
∑

s

β′
p(W

(s)) − 2s

3
=

1

3

(
∑

s

β′
p(W

(s)) − 2
∑

s

s

)

=
1

3

(
∑

s

β′
p(W

(s)) − 2(1 + ε)

)
≥ δ(1 + 2ε),

since
∑

s β
′
p(W

(s)) ≥ (3δ + 2)(1 + 2ε) by (4.2), and
∑

s s ≤ (1 + ε) since s only takes
on values that are integer powers of (1 + ε) and at most ε.

We complete the proof of the lemma by showing Pr[
∑

s

∑
j Y

(s)
j > δ(1 + ε)] ≥

pδ(1+2ε)+ε. Note that for all j, s, β′
p(Y

(s)
j ) = pssp−s = s. Now, let V denote a subset

of ∪sV (s) consisting of items whose sizes sum to a number in (δ(1+2ε), δ(1+2ε)+ε);
such a set can be chosen as we have shown above that the sum of all sizes in ∪sV (s)

is at least δ(1 + 2ε), and all sizes are at most ε. Let {Y ′
1 , . . . , Y

′
# } denote the items

in V , with s′1, . . . , s
′
# denoting their sizes. Note that the probability that Y ′

i is on is
equal to ps

′
i .

The probability of the event

∑

s

∑

j

Y (s)
j ≥ δ(1 + 2ε) > δ(1 + ε)

is at least as large as the probability that all items in V are on. But this latter
probability is equal to

#∏

i=1

ps
′
i = p

∑!

i=1
s′i > pδ(1+2ε)+ε.

Next we consider a group of large items of effective size s. The packing created
by the algorithm is clearly optimal for items of large probability.
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Lemma 4.7. If 1
s large probability items of effective size s are in the same bin,

then the probability of overflow is more than p.
Proof. Let X1, . . . , Xs denote 1

s large probability items of effective size s. Note
that if all 1

s items are on, then the total size exceeds the bin size 1. The probability
of item i is qi > ps for all i. The probability that all s items are on is therefore at
least

∏
i qi > (ps)

1
s = p.

Finally, consider large items of a given effective size and normal probability.
Lemma 4.8. Let X1, . . . , Xk be independent Bernoulli trials of effective size s

and probability q1, . . . , qk, such that s ≥ 1
log2 p−1 ; qi ≤ ps for all i, and

∑
i qi ≥ 3ps/s.

Then Pr[
∑

i Xi > 1] > p.
Proof. We need to argue that the probability that at least 1

s of the items are on
exceeds p. We partition the set of items into sets W1, . . . ,Wr+1 such that

2ps <
∑

Xi∈Wj

qi ≤ 3ps

for j = 1, . . . , r, and r ≥ 1
s . This is possible as

∑
i qi ≥ 3ps/s and qi ≤ ps for each i.

By the assumption that ps ≤ 1
2 , Claim 3.1 implies that in any set Wj for j =

1, . . . , r the probability that at least one of the items is on the set is more than ps.
Now the probability that at least one item is on in each of the first 1

s groups is more

than (ps)
1
s = p. This implies the lemma.

Now we are ready to prove the general bound.
Theorem 4.9. For a parameter ε ≥ 1

log2 p−1 , the above on-line algorithm finds
a packing of items in bins of size 1 + ε such that the number of bins used is at most
O(ε−1) times the minimum possible number of bins in any packing with bin size 1 and
overflow probability at most p1+3ε.

Proof. We show that the number of bins used by our algorithm for small, normal,
and large items is within O(ε−1) of optimal.

First, suppose we use B bins for small items. Each bin is packed up to an expected
value of at least 1

6 −
1

log p−1 since packing an extra small item in the bin would exceed

the expected value of 1
6 . It follows that the total expected value of all small items is

at least B(log p−1−6)
6 log p−1 . Hence, if fewer than B(log p−1−6)

24 log p−1 bins are used, some bin will
overflow with probability exceeding p, by Lemma 4.5.

Next, suppose we use B bins for normal items. Each bin is packed up to a βp-
value of at least 1

2ε since adding a new normal item to a bin would exceed the total
βp value of ε, and each normal item has βp value at most 1

2ε. Therefore, the total
βp-value of normal items is at least 1

2εB. Hence, if fewer than εB
10(1+2ε) bins of size 1

are used for normal items, then Lemma 4.6 implies that some bin will overflow with
probability exceeding p.

Finally, we consider large items of a given effective size. We show that we are
within a constant factor of optimal on this set of items, where the constant does not
depend on ε; thus, since there are only )2ε−1* different effective sizes, our packing of
large items will be within O(ε−1) of optimal. First, Lemma 4.7 implies that for each
effective size, the number of bins used for large items of large probability is optimal.
Now suppose that we use B bins for large items of normal probability and a given
effective size s. Then the total probability of this set of items is at least Bps/2se.
Therefore, if fewer than B/6e bins were used for this set of items, the items in at
least one bin would have total probability more than 3ps/s, and by Lemma 4.8 the
probability of overflow would exceed p.
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Algorithms with either relaxed bin size or probability. In fact, we can
obtain the same approximation ratios (up to a constant factor) by only relaxing either
the bin size or the overflow probability, but not both. Since the relaxed guarantees
were only needed for normal items, the idea is to slightly “inflate” or “deflate” the
size of the normal items that we present to the above algorithm and argue that we
still do not lose too much in comparison to the optimum.

Theorem 4.10. There is a constant c such that for any parameter ε ≥ c
log p−1 the

following holds. There is an on-line polynomial time algorithm that finds a packing of
items in bins of size 1 with overflow probability p, such that the number of bins used
is at most O(ε−1) times the minimum number of bins in any packing with bin sizes 1
and overflow probability at most p1+ε.

Proof. As just noted, the analysis for large and small items follows as before. The
trouble with applying the previous analysis for normal items, of course, is that the
packing created by the algorithm above might overflow bins of size exactly 1.

Here, we continue to use the effective bandwidth to pack normal items; however,
for each normal item of type (qi, si), we present the algorithm with an inflated item
of type (qi, si(1 + ε)). We also set the threshold for large items at 1

2ε(1 + ε), so that
inflated items remain normal. Lemma 4.3 implies that the probability that the total
sizes of the inflated items exceeds 1+ε is at most p; hence, the probability that the total
size of the original items exceed 1 is at most p. For the lower bound on the optimum,
we apply Lemma 4.6 to the inflated items, with δ = 1+ ε to conclude that if the total
effective bandwidth of the inflated items is sufficiently large then the probability that
these items overflow a bin of size 1 + ε is at least p(1+ε)(1+2ε)+ε ≥ p1+5ε. Finally,
we observe that a set of inflated items overflows a bin of size 1 + ε if and only if the
original items overflow a bin of size 1.

To get the bound claimed in the theorem, we must run the above algorithm with
a parameter ε′ = 1

5ε.
Theorem 4.11. For a parameter ε ≥ 1

log2 p−1 , there is a polynomial time algo-
rithm that finds a packing of items in bins of size 1+ε with overflow probability p such
that the number of bins used is at most O(ε−1) times the minimum possible number
of bins in any packing with bin sizes 1 and overflow probability at most p.

Proof. We use an algorithm similar to that of Theorem 4.10, except that now we
decrease the size of each normal item by a factor of 1 − ε. Lemma 4.3 implies that
the decreased sized items do not overflow a bin of size 1 + ε, and hence the original
items do not overflow a bin of size 1+ε

1−ε ≤ 1 + 4ε.
To obtain the lower bound, we want to prove that if the total effective bandwidth

of the decreased sized items is sufficiently large, then the probability that the total
size of these items exceeds 1 − ε is at least p. This will imply that the total size of
the original items is at least 1 with probability at least p. The proof follows from
Lemma 4.6 applied to the decreased item sizes and δ = 1−ε

1+ε .
To get the bound claimed in the theorem, we must run the above algorithm with

a parameter ε′ = 1
2ε.

An algorithm without relaxing bin size or probability. In this section we
use the results above to obtain an approximation algorithm without relaxing either
the bin size or the capacity. In fact, our algorithm will simply be the on-line algorithm
from the previous section, with ε = 1

log2 p−1 . Thus, there will be no items classified
as normal—only small and large. One can give a weak analysis of this algorithm
as follows: since the relaxed probabilities and sizes were only required for normal
items, this algorithm produces a packing that is with O(ε−1) = O(log p−1) times the
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optimum with bin size 1 and overflow probability p.
Our goal in this section is to give a more involved analysis of the same algorithm,

showing that its performance is actually much better than this: it produces a packing

with O(
√

log p−1

log log p−1 )B∗ + O(log p−1) bins, where B∗ is the optimum number of bins

required (with size 1 and overflow probability p).
The main step of the analysis is the following extension of Lemma 3.2.

Lemma 4.12. Let ε = 1
6

√
log log p−1

log p−1 . If X1, . . . , Xk are independent Bernoulli

trials of types (q1, s1), . . . , (qk, sk), ε ≥ si ≥ 1
log2 p−1 , and

∑
i β

′
p(Xi) ≥ 7ε−1, then

Pr[
∑

i Xi > 1] > p.
The proof relies heavily on our modified effective bandwidth, with a grouping

scheme as in the proof of Lemma 3.2. However, we cannot afford to analyze the
groups in each effective size separately; thus we require a combinatorial argument
which analyzes the antichain of minimal collections of groups that would cause the
bin to overflow.

Before proving this lemma, we require a simple combinatorial fact. Let S be a
set of size n, let k ≤ & ≤ n, and let Fk# denote the collection of all subsets of S whose
size is at least k and at most &. We say that I ⊆ Fk# is an antichain if no set in I
contains any other set, and a maximal antichain if it is maximal with this property.

Claim 4.13. Assume k ≤ & ≤ n
2 . Then the number of elements in a maximal

antichain I ⊂ Fk# is at least
(n
k

)
/
(#
k

)
.

Proof. Consider a maximal antichain A. Each k-element set S must be contained
in one of the sets T of the maximal antichain A. An antichain element T can contain
up to

(#
k

)
k-element subsets, and there are altogether

(n
k

)
k-element sets. This implies

the claim.
Proof of Lemma 4.12. The proof starts out analogous to the proof of Lemma 4.6.

We round item sizes up to a power of (1 + ε) and assume without loss of generality
that all items have normal probability, i.e., qi ≤ psi . Then we have that

∑
i qisip

−si ≥
7ε−1.

We partition the set of items into sets W (s)
j for each size s such that 2ps ≤∑

Xi∈W j
(s)

qi ≤ 3ps for j = 1, . . . , rs; and define the set V (s) of Bernoulli trials

Y (s)
1 , . . . , Y (s)

rs−1, each of type (ps, s), as in the proof of Lemma 3.2. As before we have

that β′
p(V

(s)) ≥ β′
p(W (s))−2s

3 . Further
∑

s s ≤ 1+ ε, hence we get that β′
p(∪sV (s)) ≥

2ε−1. Note also that β′
p(∪sV (s)) ≤ 1

2β
′
p(∪sW (s)) ≤ 7

2ε
−1.

Next we form groups G1, . . . , Gk from the items in ∪sV (s) so that in each group
Gj for j = 1, . . . , k the sum of the sizes is in the range [ε, 2ε) and k ≥ 7

2ε
−2. This is

possible as each item has size at most ε, so we can form groups of the right size, and the
number of groups that can be formed is at least ε−2, since β′

p(∪sV (s)) ≥ 7
2ε

−1, and

the effective bandwidth of each item in ∪sV (s) is equal to its size by definition (since
pssp−s = s). Moreover, the number of groups formed is at most ε−1 · β′

p(∪sV (s)) ≤
7
2ε

−2.
A subset I ⊆ {1, . . . , k} is called critical if it is minimal subset to the property

that the total size of the items in ∪j∈IGi exceeds 1. We note the following facts:

• The number of groups in a critical set is at least 1+ ε−1

2 and at most 1+ ε−1.
• The probability that all items are on in the groups of a critical set is at

least p1+2ε. This follows from the facts that the total size of items in the
groups of a critical set is at most 1 + 2ε, and each item in ∪jGj of size s has
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probability ps.

• The number of critical sets is at least 1
2 ( ε

−1

2 )−
ε−1

2 . To see this consider the
set of critical sets. The critical sets form a maximal antichain. We want to
use Claim 4.13 for this antichain. From the first fact we see that the claim
should be applied to 1+ ε−1

2 ≤ 1+ε−1 ≤ k
2 . We have that k ≥ ε−2; therefore,

the number of critical sets is at least
(

ε−2

1 + ε−1

2

)/ (
1 + ε−1

1 + ε−1

2

)
.

To get the claimed bound above, we bound
(1+ε−1

1+ ε−1
2

)
≤ 21+ε−1

, and
( ε−2

1+ ε−1
2

)
≥

(2ε−1)
ε−1

2 .
We say that a group is on if all elements of the group are on, and the group is off

if at least one element in the group is not on. The probability that a group is on is
at least pε and at most p2ε. Consider a critical set I. The probability that all groups
not in I are off is at least

(1 − pε)k = (1 − pε)
7
2 ε

−2

≥ e
−

7
2
ε−2

p−ε .

By the choice of ε we have that

ε−2 = 36 · log p−1

log log p−1

and p−ε = eΘ(
√

log p−1 log log p−1), and so 7
2ε

−2 ≤ p−ε and the probability that all
groups not in I are off is at least e−1.

Now, the probability of overflow is at least the sum, over all critical sets I, of the
probability that the groups which are on are precisely those in I. Thus, by the above
bounds, we have all

Pr

[
∑

i

Xi ≥ 1

]
≥ 1

2

(
ε−1

2

)− ε−1

2

p1+2ε 1

e
.

Finally, since p ≥ (18ε2)(ε
−2/18), it is straightforward to see that

1

2

(
ε−1

2

)− ε−1

2

p2ε 1

e
> 1.

This lemma allows us to give a stronger analysis of our algorithm: although
the algorithm only recognizes small and large items, our analysis further partitions
the large items depending on whether their sizes are smaller or larger than ε =
1
6

√
log log p−1

log p−1 . For large items with sizes below ε, we apply Lemma 4.12.

Theorem 4.14. The above algorithm finds a packing of items in bins of size 1

with overflow probability p such that the number of bins used is at most O(
√

log p−1

log log p−1 )

B∗ + O(log p−1), where B∗ is the minimum possible number of bins.
Proof. Although the algorithm only recognizes small and large items, our analysis

makes use of three types of items. Let ε = 1
6

√
log log p−1

log p−1 , and say that an item of type
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(q, s) is large if s ≥ 1
2ε

−1, small if s ≤ log p−1, and normal otherwise. By earlier
arguments, the algorithm is within a constant factor of optimal on small items and
within an O(ε−1) factor on large items. The problem is that the algorithm treats
normal items as though they were large and packs them according to β′

p applied to
their effective sizes. Since there are Θ(log p−1) different effective sizes of normal items,
our analysis cannot consider each effective size separately. Thus, we use Lemma 4.12.

As before, we distinguish (normal) items as having large or normal probability.
By giving up a factor of 2, we can still afford to analyze bins with items of normal
probability separately from those with items of large probability. We say that a bin
with large probability items of effective size s is filled if there are 1

s − 1 items in the
bin. For each effective size there is at most one bin of large probability items that
is not filled. For a bin with normal probability items we say that the bin is filled if
the total probability of the items in the bin is at least ps/2se (half of the maximum
possible). Again, for each effective size there is at most one bin of normal probability
items that is not filled. So the number of nonfilled bins of normal items is O(log p−1).

Next we consider filled bins. We claim that the total β′
p-value in a filled bin is

at least 1
2e . To show this, we first recall that the effective size is smaller than the real

size, and that effective bandwidth is monotone in the size. This implies that a large
probability item X of effective size s has effective bandwidth β′

p(X) ≥ s. Therefore,
the effective bandwidth of a bin filled with large probability items of effective size s is
at least s( 1

s −1) = 1−s. A small probability item X of probability q and effective size
s has effective bandwidth at least β′

p(X) ≥ sqp−s, and so the effective bandwidth of

a bin filled with normal probability items of effective size s is at least ps

2esp
−ss = 1

2e .
If our algorithm produces B filled bins, then the total effective bandwidth over

all items in filled bins is at least B
2e . Lemma 4.12 implies that any packing of these

items with fewer than εB
14e bins would result in at least one bin with too high an

overflow probability. Thus the number of bins used for normal sized items is at most
O(ε−1)B∗ + O(log p−1), and we are finished.

It is natural to ask whether this analysis can be further tightened to show that
the same algorithm is in fact producing a packing with O(B∗) + O(log p−1) bins. In
fact this is not possible; this is contained in the following theorem.

Theorem 4.15. There exist instances in which B∗ is arbitrarily large, and the
above algorithm uses more than B∗ · Ω(log log log log p−1) bins.

Proof. Let b be an arbitrarily large constant, let k = ln ln p−1

ln ln ln p−1 , and let J be the

set of all prime numbers less than or equal to k. For r ∈ J and 1 ≤ i ≤ b, let Xi
r be

a Bernoulli trial of type (p1/r, 1/r).
First, we claim that the set of items Si = {Xi

r : r ∈ J} can be packed in a
single bin. To prove this, consider any set S′ ⊂ S whose sizes sum to a number
strictly greater than 1; call such a set large. Since the sizes of the items in S′ have
denominators that are pairwise relatively prime, the sum of these sizes must be at
least 1 + 1/k!. Thus we have

Pr[S overflows] ≤
∑

large S′⊂S

Pr[S′ is on] ≤ 2kp1+1/k! ≤ p,

with the last inequality following from the fact that

k <
1

k!
ln p−1.

Thus, the set of all items can be packed in b bins.
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Now consider the packing produced by our algorithm. Of the items of size r, it
will pack at most r in each bin. Thus, the total number of bins it produces will be at
least

∑

r∈J

b

r
= Θ(b log log k) = Θ(b log log log log p−1).

The form of the final bound suggests that it is possible that our analysis could be
tightened further, albeit not to provide a constant ratio.

5. The knapsack problem. Finally, we consider the knapsack problem. First
we consider a simple version of the knapsack problem with items X1, X2, . . . , Xn

that are independent Bernoulli trials. Each item has a value vi, and we are given a
knapsack size, say 1, and an allowed probability of overflow p. The problem is to find
a set of items of maximum value such that the probability that the total size of the
set exceeds 1 is at most p.

The lower bounds and techniques developed in the previous section yield similar
results for the knapsack problem. We distinguish items by their sizes (small, normal,
and large), we group large items by their effective size, and we distinguish large and
small probability items just as in the previous section. The solution we construct for
the knapsack problem only contains one type of item (either small, normal, or large
with a given effective bandwidth). We will look for a near-optimal solution in each of
these groups and select the best alternative. Thus, we can show the following.

Theorem 5.1. Let X1, . . . , Xn be independent Bernoulli trials.
• There is a polynomial time algorithm that finds a solution to the knapsack

problem with items X1, . . . , Xn of value at least an O(log p−1) fraction of the
optimum.

• For any ε > 0, there is a polynomial time algorithm that finds a solution to
the knapsack problem, using knapsack size 1 + ε and overflow probability p,
of value at least an O(ε−1) fraction of the maximum possible with a knapsack
of size 1 and overflow probability p.

• For any ε > 0, there is a polynomial time algorithm that finds a solution to
the knapsack problem, using knapsack size 1 and overflow probability p, of
value at least an O(ε−1) fraction of the maximum possible with a knapsack of
size 1 and overflow probability p1+ε.

Proof. For small items we use a knapsack approximation algorithm to find a set
of items of approximately maximum value with at most a total of 1

2 expected value.
For normal items we use a knapsack approximation algorithm to find a set of items

of approximately maximum value with at most a total of ε total effective bandwidth.
As in the previous section, we need to increase or decrease the item sizes by a factor
of (1 + ε) before computing the effective bandwidth depending on the type of result
desired.

We group large items according to their effective size. For large items of effective
size s we either (i) take the (at most) 1−s

s items of largest value; or (ii) use a knapsack
approximation algorithm on the large items of normal probability to find a set of
approximately maximum value with a total probability of at most ps

es .
To prove the lower bound we note that the optimal value of a deterministic

knapsack problem grows only linearly with the knapsack size, as long as new items
of larger size are not considered. Our approximation algorithm is simply the greedy
algorithm, which either (i) takes the single most valuable item, or (ii) orders the items
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in decreasing order of value divided by weight (i.e., expectation, effective bandwidth,
or probability) and greedily fills the knapsack in this order.

Fact 5.2. Consider a deterministic knapsack problem where the knapsack has
size 1, and all items have size at most 1.

• The value of the solution obtained by the above greedy method is at least a 1
2

of the optimal.
• For any c > 1, the value of the optimal solution with knapsacks of size 1 is

at least a fraction of 1
2c of the optimal value with knapsack size c.

For small items Lemma 4.2 implies that the resulting knapsack solution is feasible,
and Lemmas 5.2 and 4.2 imply that its value is within a constant factor of the optimal
packing of small items.

For normal items we use Lemma 4.3 to show either that (1) the packing obtained
is feasible with a knapsack of size 1 + ε or (2) if we increased sizes before computing
the effective bandwidth, then it is feasible with a knapsack of size 1. Lemmas 5.2
and 4.6 imply that the packing obtained is within an O(ε−1) factor of any packing of
normal items with either (1) a knapsack of size 1 and overflow probability at most p
or (2) a knapsack of size 1 and overflow probability at most p1+ε.

For large items of effective size s, Lemma 4.1 shows that the solution is feasible,
and Lemmas 4.7 and 4.8 and Fact 5.2 imply that the solution is within a constant
factor to any packing using items of effective size s.

In total we get an O(1) approximation algorithm for small items, and items of a
given effective size. There are O(ε−1) different effective sizes. For normal items, we
get an O(ε−1) approximation. The approximation ratio of the best solution among
these options is the sum of the approximation ratios of the special cases. Thus, the
theorem follows.

Extension to other distributions. Next we extend the solution to a distri-
bution that is somewhat more general than the on-off distribution we have been
considering so far. We assume that each item is parameterized by numbers lo, hi, and
q, where the item is of size hi with probability q and of size lo ≤ hi otherwise. This
kind of item is a simple model of a bursty communication, with lo being the normal
rate of transmission and hi being a burst that occurs with probability q.

Consider the optimal knapsack packing. Assume we used items X1, . . . , Xk in the
packing, and let g =

∑
i loi. The idea is that we guess the value of g in the optimal

solution, and for every guess we look for packings that are feasible and in which the
total of the lo values is at most g.

We define small items depending on the size si = hii − loi of the probabilistic
part, limiting the value si to be at most half of what it was for the size in the case of
Bernoulli trials. We pack small items using expectation, subject to the the fact that
the total expectation is at most 1

2 , and we use Lemmas 4.2 and 4.5 and Fact 5.2 to
see that the value of the packing is within a constant factor of the maximum possible
using small items.

We define normal items also using si = hii− loi and pack normal items using the
effective bandwidth. However, to compute the right effective bandwidth for normal
items we need to know 1− g, the amount of space left for the probabilistic part of the
items, since the effective bandwidth formula assumed that the bin size is 1, so we will
have to rescale the bin size to apply the formula. Notice, however, that it suffices to
know 1 − g roughly up to a factor of 1 + ε.

Notice that it is essentially no loss of generality to assume that g ≤ 1
2 . Among

items with lo values above 1
2 at most one can be in the knapsack, so we can either
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pack a single one of these items in the knapsack by itself or assume that we are not
using any of them. For items with lo ≤ 1

2 the restriction that g ≤ 1
2 will not change

the optimum value by more than a small constant factor. Therefore, we need only to
consider O(ε−1) different values for g to obtain an O(ε−1) approximate solution the
optimal value of a solution using normal items.

In the case of Bernoulli trials we used the greedy method to pack items in each
category into a knapsack using expectation, effective size, or the probability depending
on whether we considered items that are small, normal, or large. Here we cannot use
the greedy method to find a solution to the resulting deterministic problem, as we
have to consider an extra parameter, the sum of the lo values. We use the following
method instead.

A deterministic two-dimensional knapsack problem is defined by a set of items
X1, . . . , Xn, each with a value vi, size si, and weight wi. In addition, we are given a
knapsack size S and a weight limit W . The problem is to find a subset I of items of
maximum total value so that the total size

∑
i∈I si is at most S and the total weight∑

i∈I wi is at most W .
Lemma 5.3. A simple greedy algorithm yields a constant factor approximation for

the two-dimensional knapsack problem. Using dynamic programming we can obtain a
1 + δ-approximation for any fixed value δ > 0.

Proof. First notice that it is no loss of generality to assume that the size S and
the weight limit W are both 1.

Consider items that have both size and weight at most 1
2 . We claim that the

following greedy method provides an approximation: Find a greedy solution to max-
imizing using the sum si + wi as size, i.e., this greedy algorithm approximates the
maximum possible value subject to the limit that the total size plus the total weight
is at most 1. The optimal solution has size at most 1 and weight at most 1, so the
sum of the total size and weight is at most 2. Hence, by Fact 5.2, the value obtained
is at least 1

4 th of the optimal.
For items that have either size above 1

2 or weight above 1
2 at most 2 can fit in a

knapsack, so we can get the optimal solution by trying all pairs.
The better of the two solutions obtained has a value of at least 1

5 th of the
optimum.

Next we consider large items. The definition of effective size is also related to
1 − g: The effective size of an item of type (hi, lo, q) is defined as s̄, where 1

s̄ =
min{j : j(hi− lo) > 1 − g}, the number of copies the probabilistic part of this item
can fit in a knapsack of size 1 − g. Given an estimate for the value g, we group large
items according to their effective size and pack items of one effective size using the
two-dimensional knapsack problem above. As before, we separate items of identical
effective size, depending on whether they have large or normal probability. For large
probability items of effective size s, we need at most 1

s − 1 items of total lo value
at most g and maximum total value. For normal probability items one dimension
is the lo value, where the total lo value is limited to g, and the other dimension is
the probability, bounded by ps/se. In both cases we can use Lemma 5.3 to obtain a
knapsack solution.

Next we consider the issue of how many different estimates we have to consider
in order to get a near-optimal solution using large items. Depending on the value of
g the effective size of an item can change. Each item can have at most ε−1 different
effective sizes, and hence it creates at most ε−1 different “cut-off” values for g. Hence,
the grouping of large items changes for at most nε−1 discrete values of g, where n
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is the number of large items. This implies that it suffices to try O(nε−1) different g
values in order to get an approximately optimal solution.

The above discussion proves the following theorem.
Theorem 5.4. Let X1, . . . , Xn be independent trials of the type defined above.
• There is a polynomial time algorithm that finds a solution to the knapsack

problem with items X1, . . . , Xn of value at least an O(log p−1) fraction of the
optimum.

• For any ε > 0, there is a polynomial time algorithm that finds a solution to
this knapsack problem using a knapsack size 1 + ε and overflow probability at
most p of value at least an O(ε−1) fraction of the maximum possible with a
knapsack of size 1 and overflow probability p.

• For any ε > 0, there is a polynomial time algorithm that finds a solution to
this knapsack problem using a knapsack size 1 and overflow probability p of
value at least an O(ε−1) fraction of the maximum possible with a knapsack of
size 1 and overflow probability p1+ε.

Bin-packing with other distributions. Using the knapsack result and set-
cover we get a bin-packing algorithm for independent items of type (lo, hi, q). To get
a solution to the bin-packing problem we repeatedly take the maximum number of
items possible to include in a single bin. The result is an O(log n) extra factor in the
approximation ratio.

Corollary 5.5. Let X1, . . . , Xn be independent trials of the type defined above.
• There is a polynomial time algorithm that finds a solution to the bin-packing

problem with items X1, . . . , Xn using at most O(log p−1 log n) times the min-
imum possible number of bins.

• For any ε > 0, there is a polynomial time algorithm that finds a solution to
this bin-packing problem using bins of size 1 + ε and overflow probability at
most p with a number of bins that is at most O(ε−1 log n) times the minimum
possible with bins of size 1 and overflow probability p.

• For any ε > 0, there is a polynomial time algorithm that finds a solution to
this bin-packing problem using bins size 1 and overflow probability p with at
most O(ε−1 log n) times as many bins as the minimum possible with bins of
size 1 and overflow probability p1+ε.

6. Extensions to general networks. The model we have been considering—
two nodes communicating over a set of parallel links—is a common one in the study
of bursty traffic. However, it is interesting to consider the extent to which one can
carry over the results developed here to the problem of routing bursty connections in a
general network. The model for a general network follows directly from the discussion
in the introduction: we are given a graph G = (V,E) with capacities {ce} on the
edges, and source-sink pairs (si, ti) indicating connection requests in the network.
For each source-sink pair, we are given a random variable Xi corresponding to the
demand of that connection; a routing is a choice of a path Pi in G for each connection
(si, ti).

There are several options for how one might want to model the capacity constraints
for a problem of this type; we define two main possibilities here. Suppose we are given
an allowed overflow probability p.

(i) The link-based overflow constraint requires that for each edge e, we have
Pr[

∑
i:e∈Pi

Xi > ce] ≤ p.
(ii) The connection-based overflow constraint requires that for each connection
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(si, ti), we have

Pr

[
∃e ∈ Pi :

∑

i:e∈Pi

Xi > ce

]
≤ p.

One can argue that from the perspective of providing guaranteed quality of service
to users in a network, the connection-based overflow constraint is more natural. In
this section we use this model.

Now suppose we are in a “high-capacity” setting in which the capacity of ev-
ery edge exceeds the peak bandwidth rate of every connection Xi by a factor of
c log(p−1|E|) for an appropriate constant c. Let us define the value of a set of con-
nections to be the sum of their expectations; we consider the problem of accepting
a set of connections of maximum value. We run the on-line algorithm of Awerbuch,
Azar, and Plotkin [2], using E[Xi] as the demand for connection (si, ti) and 1

4ce as
the capacity of edge e. The analysis of [2] can then be used to show the following.

Lemma 6.1. For any constant γ there is a constant C such that, if k denotes the
total value of connections accepted by the algorithm, then in any routing of a set of
connections of value at least C(log |E|)k, there is some edge e carrying a total expected
value greater than γce.

Theorem 6.2. The set of connections accepted by the above algorithm satis-
fies the connection-based overflow constraints, and the total value of the connections
accepted is within an O(log |E|) factor of the off-line optimum on the graph G.

Proof. Without loss of generality, we may assume that the minimum edge capacity
in the network is 1. Recall our assumption that the peak rate of any connection X
is at most 1/(c log(p−1|E|)); thus, for each connection X, the effective bandwidth
βp|E|−1(X), with respect to probability p

|E| , is at most 2E[X]. Now Proposition 3.6
implies that our routing satisfies the link-based overflow constraint with probability
p
|E| and hence the connection-based overflow constraints with probability p.

To compare our performance to that of the optimum, we use Lemma 6.1 with
γ = 8. Further, we give up a constant factor in the approximation ratio and use
Lemma 3.10 to model each connection. Using the notation of the lemma we model a
connection X as a sum of of independent Bernoulli trials 1

2Y =
∑

i
1
2Yi whose peak

rates are inverse powers of two, such that Y ≤ X and E(Y ) ≤ 1
2E(X).

Lemma 4.5 shows that such a routing violates the link-based overflow constraint
on edge e, and hence any path through the edge e violates the connection-based
overflow constraint. It follows that our routing is within O(log |E|) of optimal.

We note that the analysis of [2] also allows us to provide performance guarantees
in terms of more general notions of “value.”
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