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Allocating Classes for Soft-Then-Hard Subpixel

Mapping Algorithms in Units of Class
Qunming Wang, Wenzhong Shi, and Liguo Wang

Abstract—There is a type of algorithm for subpixel mapping
(SPM), namely, the soft-then-hard SPM (STHSPM) algorithm that
first estimates soft attribute values for land cover classes at the
subpixel scale level and then allocates classes (i.e., hard attribute
values) for subpixels according to the soft attribute values. This
paper presents a novel class allocation approach for STHSPM
algorithms, which allocates classes in units of class (UOC). First, a
visiting order for all classes is predetermined, and the number of
subpixels belonging to each class is calculated using coarse fraction
data. Then, according to the visiting order, the subpixels belonging
to the being visited class are determined by comparing the soft
attribute values of this class, and the remaining subpixels are used
for the allocation of the next class. The process is terminated
when each subpixel is allocated to a class. UOC was tested on
three remote sensing images with five STHSPM algorithms: back-
propagation neural network, Hopfield neural network, sub-
pixel/pixel spatial attraction model, kriging, and indicator
cokriging. UOC was also compared with three existing allocation
methods, i.e., linear optimization technique (LOT), sequential as-
signment in units of subpixel (UOS), and a method that assigns
subpixels with highest soft attribute values first (HAVF). Results
show that for all STHSPM algorithms, UOC is able to produce
higher SPM accuracy than UOS and HAVF; compared with LOT,
UOC is able to achieve at least comparable accuracy but needs
much less computing time. Hence, UOC provides an effective and
real-time class allocation method for STHSPM algorithms.

Index Terms—Class allocation, image classification, subpixel
mapping (SPM), subpixel sharpening, superresolution mapping.

I. INTRODUCTION

LAND cover is a critical variable that impacts on many

parts of the human and physical environments [1]. Land

cover information in remote sensing images is usually extracted

by land cover classification. Due to the widely existed mixed

pixels, some techniques have been developed to extract in-

formation that is smaller than a pixel, including endmember
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Fig. 1. Two types of SPM algorithms, where “constraints from class frac-
tions” means the class fractions are used to determine the number of subpixels
for each class.

extraction [2], soft classification [3], and subpixel mapping

[4] (SPM, also termed superresolution mapping [5], [6]) that

determine the land cover classes contained within a mixed

pixel, the proportions or fractions of the classes, and their

spatial distribution, respectively. According to the outputs of

soft classification (i.e., fractions of classes) and desired zoom

scale, the number of subpixels belonging to each class can

be determined, and the aim of SPM is to predict the spatial

location of subpixels for each class. SPM is essentially a hard

classification technique at a finer spatial resolution than that of

the input coarse spatial resolution remote sensing image.

SPM has been paid increasing attention these years, and

various SPM algorithms have been developed. In terms of the

way of obtaining the SPM results, there are two basic types of

SPM algorithms (see Fig. 1).

1) For the first type, the subpixels for each class are first

allocated randomly (or by using some fast SPM algo-

rithms [7]–[9]) under the condition of maintaining class

fractions. Then, the initialized subpixel map is optimized

by changing the spatial arrangement of subpixels inside

coarse pixels to gradually approach a certain objective,

such as maximizing the attraction between neighboring

subpixels in pixel-swapping algorithm [7], [10], [11],

the neighboring value [12], [13], the Moran’s I of the

image [14], simultaneously the attractions between and

within pixels [8], or minimizing the perimeter of the

area belonging to each class [15]. In addition, the ob-

jective of optimization can be to match the two-point

histogram [16], [17] or landscape structure [18] ex-

tracted from training images. The optimization can be

realized by employing artificial intelligence algorithms

to solve the relevant models, including particle swarm

optimization in [7], simulating annealing in [14]–[16] and

[18], and genetic algorithms in [8] and [12]. During the
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optimization process, only the spatial locations of the

subpixels can vary, and the number of subpixels for each

class within each coarse pixel is fixed.

2) The second type of SPM algorithm consists of two steps.

First, the soft attribute values (between 0 and 1) of all

classes for all subpixels are estimated, and a set of soft-

classified images for all classes at a desired fine spatial

resolution are generated in this way. This step is also

termed subpixel sharpening [19]. The second step is to

allocate hard attribute values for subpixels according to

the soft attribute values of each class and constraints from

class fractions. Algorithms falling into this type include

subpixel/pixel spatial attraction model (SPSAM) [20],

back-propagation neural network (BPNN) [19], [21]–

[23], Hopfield neural network (HNN) [24]–[27], kriging

[28], and indicator cokriging (ICK) [29]–[32]. To facili-

tate description in the whole paper, we denote this type

of SPM algorithm as soft-then-hard SPM (STHSPM)

algorithm. For both BPNN and ICK, prior spatial struc-

ture information at fine spatial resolution is needed, in

order to train the network and extract the semivariance,

respectively. HNN requires a large number of iterations to

minimize the energy function in its model. With respect to

SPSAM and kriging, they do not need prior information

at fine spatial resolution or iterations to estimate soft

attribute values at subpixel scale.

Additionally, [33]–[35] applied an SPM method to directly

draw the boundaries of classes according to the coarse fractions,

which is different from the previous two types of algorithms.

This method, however, does not maintain coarse proportion [33]

and may fail to restore land cover objects within a single coarse

pixel. SPM can be also performed by the one-stage methods that

do not need soft classification process and take as input the raw

image in units of reflectance [5], [6], [36], [37]. These methods

consider spectral and spatial information simultaneously to

achieve SPM. The estimation of the parameter controlling the

contributions from spatial and spectral terms is always a case-

by-case problem: the choice of the optimum parameter depends

upon the spatial pattern of studied area and spectral variation of

the remote sensing image.

In recent years, the two types of SPM algorithms in Fig. 1

have been extended and enhanced by making use of various

additional information, such as using LIDAR data [38], inter-

mediate spatial resolution fused images [39], subpixel shifted

remote sensing images [40], [41], panchromatic images [42]

for HNN, fine scale information for ICK [43], panchromatic

images for two-point histogram [16], digital elevation models

[44], and shape information [45] for pixel-swapping algorithm.

How to allocate classes for STHSPM algorithms is a critical

issue that directly affects the performance of STHSPM and

needs in-depth study. When HNN-based SPM was initially

proposed, a simple class allocation approach was applied: each

subpixel is assigned to the class with the highest soft attribute

value. This approach is easy to realize, since it does not take

the constraints from class fractions into account and is carried

out by only comparing the soft attribute values for subpixel.

The approach was also applied to some other STHSPM algo-

rithms, such as BPNN in [19] and [21]–[23] and ICK in [43].

However, the experiments in the related literature showed that

this allocation approach does not guarantee coarse proportion

reproduction and the SPM results are over smooth. It is insuf-

ficient to reproduce land cover objects smaller than a coarse

pixel [41].

In [28], linear optimization technique (LOT) was introduced

to allocate class. In that work, kriging was applied to estimate

the soft attribute value for each class at each location. A

mathematical model was then constructed to maximize the

sum of soft attribute values of all subpixels in SPM results,

while satisfying constraints from class fractions. The model

was solved using LOT. LOT can obtain the theoretically op-

timal solution in terms of maximizing the objective function in

the mathematical model. However, LOT involves numbers of

iterations to gradually approach the optimal solution. When the

zoom scale or the number of classes is large, much time will

be consumed. Computational burden is a key issue in the LOT-

based class allocation method [28].

A sequential-assignment-based class allocation method was

also adopted for class allocation in [29]–[31]. It assigns classes

in units of subpixel (UOS). With UOS, the hard-classified

subpixel map is generated along a randomly predefined path

that determines the order of visited subpixels. According to

the path, each visited subpixel is assigned to the class with

the highest soft attribute value, on condition that the subpixels

of the dominant class have not been completely exhausted.

In this way, the subpixel class labels within coarse pixels

reproduce exactly the corresponding coarse fractions. The UOS

method involves no iteration and is fast. However, many speckle

artifacts appear in SPM results when UOS is used [31].

Another sequential-assignment-based class allocation

method was applied in [19], [20], and [32], where subpixels

with highest soft attribute values are assigned first (HAVF).

With the HAVF-based method, among soft attribute values

for all subpixels and all classes within each coarse pixel,

the highest one is found out during each comparison, and

the corresponding subpixel of this value is allocated to the

dominant class if the subpixels of this class have not been

completely exhausted. The main difference between HAVF

and UOS is that the visiting order of subpixels in HAVF is

not randomly determined, instead, each subpixel in the path is

specified by comparison of all soft attribute values.

In this paper, a novel sequential-assignment-based class al-

location method is proposed for STHSPM algorithms, which

allocates classes in units of class (UOC). Unlike UOS and

HAVF, UOC allocates classes for subpixels along a predefined

path that determines the order of visited class. The visiting

order of all classes can be obtained from Moran’s I [14],

an index of intraclass spatial correlation. The proposed UOC

approach holds several characteristics and advantages.

1) Similar to UOS and HAVF, UOC is free of any iteration.

UOC is a very fast method (particularly in comparison

with LOT).

2) Similar to LOT, UOS, and HAVF, UOC is implemented

under the condition of reproducing exactly the coarse

fraction data.

3) The unique advantage of UOC over LOT, UOS, and

HAVF is that UOC is processed on each soft-classified

image at fine spatial resolution in turn. In STHSPM

algorithms, intraclass spatial dependence is taken into

consideration in the first step. As a result, within each

coarse pixel, subpixels staying together tend to have
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close soft attribute values for the same class, and each

generated soft-classified image at fine spatial resolution

encapsulates intraclass spatial correlation. During class

allocation in UOC, autocorrelation for each class can be

maximized, and hence, the proposed method is able to

produce more satisfactory SPM results.

The contributions of this paper are given as follows.

1) STHSPM algorithms are introduced, and five STHSPM

algorithms (i.e., BPNN, HNN, SPSAM, kriging, and

ICK) are systematically summarized for the first time.

2) Existing class allocation methods (i.e., LOT, UOS, and

HAVF) for STHSPM algorithms are systematically sum-

marized for the first time.

3) Proposing a new class allocation method, i.e., UOC, for

STHSPM algorithms.

4) Proposing an approach to estimate Moran’s I from coarse

fraction images to determine the visiting order of classes

in UOC, which needs no prior class information.

5) Intercomparison of the five STHSPM algorithms is

studied.

The rest of this paper is organized as follows: In Section II,

the five STHSPM algorithms, i.e., BPNN, HNN, SPSAM, krig-

ing, and ICK, are briefly described. Section III introduces three

existing class allocation methods, i.e., LOT, UOS, and HAVF.

Section IV presents details of the proposed UOC, including

implementation steps of UOC and using Moran’s I to specify

the visiting order of classes. Experimental results are provided

and discussed in Section V, and conclusions are drawn in

Section VI.

II. STHSPM ALGORITHMS

As mentioned in the introduction, STHSPM algorithms con-

tain two steps: 1) subpixel sharpening: computing soft attribute

values for each class at fine pixels and 2) class allocation:

allocating classes for these fine pixels according to the soft

attribute values and class fractions. The outputs of the first and

second steps are a set of soft-classified images and a set of

hard-classified images for all classes at fine spatial resolution,

respectively. The first step can be accomplished by BPNN,

HNN, SPSAM, kriging, and ICK. The first steps of these five

STHSPM algorithms are briefly introduced in this section.

Suppose S is the zoom scale factor (i.e., each coarse pixel

is divided into S2 subpixels), Pt (t = 1, 2, . . . ,M ; M is the

number of pixels in the coarse image) is a coarse pixel, pi (i =
1, 2, . . . ,MS2) is a subpixel, and Zk(pi) denotes the soft

attribute value for the kth (k = 1, 2, . . . ,K; K is the number

of classes) class at subpixel pi. The outputs of the first step

of STHSPM algorithm are {Zk(pi)|i = 1, 2, . . . ,MS2; k =
1, 2, . . . ,K}. Define xk(pi) as the binary class indicator for the

kth class at subpixel pi

xk(pi) =

{

1, if subpixel pi belongs to class k

0, otherwise.
(1)

A. BPNN-Based SPM

References [19] and [21]–[23] presented a BPNN-based

SPM method. This method first extracts training samples from

available high spatial resolution images, which are used as

training images. The input of each training sample is a vector

composed of coarse fractions for the kth class at all coarse

pixels within a local window, whereas the output is a vector

composed of xk(pi) for all subpixels within the center coarse

pixel. The training samples are then used to fit a BPNN.

During the training process, the connection weightings between

neurons of different layers are obtained iteratively. The trained

BPNN is used to predict the outputs of test samples subse-

quently, of which the inputs are extracted from the fraction

images for SPM.

B. HNN-Based SPM

In HNN-based SPM, each subpixel is considered as a neu-

ron, and HNN is set up to minimize an energy function that

comprises a goal and constraints [10], [24]–[27], i.e.,

E = α1G+ α2C (2)

where α1 and α2 are weightings, the term G is to increase

the spatial correlation between neighboring subpixels, and C

are the constraints from the fraction data and the sum-to-

one condition (i.e., the sum of soft attribute values for all

classes at each neuron is equal to 1) [24]–[27]. The HNN is

an optimization tool in nature. In this model, the attribute value

(between 0 and 1) per subpixel per class is pushed iteratively

toward 0 or 1 [46]. The output of each neuron, i.e., Zk(pi), is

an attribute value either close to 0 or 1, but not completely equal

to 0 or 1.

C. SPSAM-Based SPM

Mertens et al. [20] applied SPSAM to directly calculate

the spatial correlation between subpixels and their neighboring

pixels by attractions. Suppose the neighboring coarse pixels of

subpixel pi are P1, P2, . . . , PN (N is the number of neighbor-

ing coarse pixels). In SPSAM, each pi is assumed to be attracted

by its neighboring coarse pixels. The soft attribute value Zk(pi)
can be calculated by the attraction from the kth class to pi, i.e.,

Zk(pi) =
1

N

N
∑

n=1

Fk(Pn)

d(Pn, Pi)
(3)

where d(Pn, pi) is the Euclidean distance between geometric

centers of pixel Pn and subpixel pi, and Fk(Pn) is the coarse

fraction of the kth class at the nth neighboring pixel Pn.

D. Kriging-Based SPM

The kriging-based SPM developed by [28] was based on the

assumption that the soft attribute value for each class at each

location (i.e., subpixel) is a weighted linear combination of N0

observed values, i.e.,

Zk(pi) =

N0
∑

n=1

βnZk(Pn) (4)

where βn is a weight, and Zk(Pn) denotes a continuous vari-

able for the kth class at pixel Pn. Zk(Pn) can be depicted by

fraction of the kth class at Pk, and βn are estimated by solving

the kriging system [47]. The semivariance in the kriging system
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can be derived from the coarse images, which does not require

any prior information.

E. ICK-Based SPM

Let all fractions for the kth class be arranged in a (M × 1)
vector Fk and πk be the mean of all elements in vector Fk.

Suppose there are H informed (i.e., the class labels are known)

fine pixels available and the H indicators for the kth class are

arranged in a (H × 1) vector jk. Then, the soft attribute value

Zk(pi) can be estimated by

Zk(pi) = ηk(pi)
TF k + λk(pi)

T jk+

πk

[

1− sum
(

ηk(pi)
T
)

− sum
(

λk(pi)
T
)]

(5)

where the (M × 1) vector ηk(pi) and the (H × 1) vector

λk(pi) are ICK weightings for the kth class. The function

sum(•) takes the sums of all the elements in vector •. The

weightings ηk(pi) and λk(pi) are calculated by solving the

ICK system [29]–[32]. The semivariance in the ICK system

needs to be extracted from available fine spatial resolution

images.

The soft attribute value Zk(pi) estimated by STHSPM al-

gorithms can be understood as the probability of the kth class

occurrence at subpixel pi. Usually, the preliminarily obtained

soft attribute value, denoted as Z ′
k(pi), may be less than 0

or may not satisfy the sum-to-one condition (particularly for

BPNN). Taking account of the physical meaning, two extra

steps for adjustments are applied. The first is to revise the

attribute values to 0 if they are less than 0, and the second is

to normalize the soft attribute values by

Zk(pi) =
Z ′
k(pi)

K
∑

k=1

Z ′
k(pi)

(6)

so that Zk(pi) ∈ [0, 1] and
∑K

k=1
Zk(pi) = 1.

III. THREE CLASS ALLOCATION METHODS FOR

STHSPM ALGORITHMS

The ultimate goal of SPM is to generate hard-classified maps

at the subpixel level. After {Zk(pi)|i = 1, 2, . . . ,MS2; k =
1, 2, . . . ,K} are obtained by any STHSPM algorithm intro-

duced in Section II, they are used to allocate hard attribute

values for subpixels along with the class fractions. This section

describes three existing class allocation methods, i.e., LOT,

UOS, and HAVF.

To facilitate description in this section, all subpixels in

the coarse image that has M pixels are divided into M

groups, i.e., {pi|i = 1, 2, . . . ,MS2} is re-denoted as {pti|i =
1, 2, . . . , S2; t = 1, 2, . . . ,M}, where pti denote the subpixels

within coarse pixel Pt, and S is the zoom scale factor. The

objective of class allocation is to acquire binary class indicators

{xk(p
t
i)|i = 1, 2, . . . , S2; t = 1, 2, . . . ,M ; k = 1, 2, . . . ,K},

and a subpixel map R (i.e., SPM result) having K gray values

can be produced by

R
(

pti
)

=
K
∑

k=1

kxk

(

pti
)

, i = 1, 2, . . . S2; t = 1, 2, . . . ,M.

(7)

As can be concluded from (1) and the principle that each

subpixel belongs to only one class, R(pti) = 1, 2, . . . ,K.

A. LOT

LOT was introduced in [28] for kriging-based SPM, which

is to maximize an objective function while meeting a set of

equality constraints. In the following constructed mathematical

model, for each coarse pixel Pt in the coarse image, Jt is

maximized:

max Jt =
S2

∑

i=1

K
∑

k=1

xk

(

pti
)

Zk

(

pti
)

s.t.

K
∑

k=1

xk

(

pti
)

=1, i = 1, 2, . . . , S2

S2

∑

i=1

xk

(

pti
)

=Fk(Pt)S
2, k = 1, 2, . . . ,K (8)

where Fk(Pt) is the coarse fraction of the kth class at pixel

Pt, and
∑K

k=1
Fk(Pt) = 1. Zk(p

t
i) were originally obtained by

kriging in [28], but we know now they can be also calculated

by any STHSPM algorithm introduced in Section II. The two

types of equality constraints in (8) can be written as the two

corresponding expressions

X1K =1S2 (9)

XT1S2 =S2F (10)

where X is a (S2 ×K) matrix

X =

⎡

⎢

⎣

x1 (p
t
1) x2 (p

t
1) · · · xK (pt1)

x1 (p
t
2) x2 (p

t
2) · · · xK (pt2)

· · · · · · · · · · · ·
x1

(

pt
S2

)

x2

(

pt
S2

)

· · · xK

(

pt
S2

)

⎤

⎥

⎦

and F = [F1(Pt), F2(Pt), . . . , FK(Pt)]
T . 1K and 1S2 denote

a (K × 1) and a (S2 × 1) vector of ones, respectively.

Constraints in (9) means that each subpixel should be as-

signed to only one class, whereas constraints in (10) means that

the number of subpixels belonging to each class should be con-

sistent with the coarse fraction data. In all, this mathematical

model is to maximize the sum of soft attribute values of all

subpixels in the resulting SPM map, in the meanwhile, fixing

the number of subpixels for each class according to the coarse

fractions. The linear problem in (8) can be solved by LOT, and

the classical simplex algorithm [48] can be employed for this

purpose.

Using LOT, the optimal solution to (8) will be generated. The

whole process, however, requires numbers of iterations and is

time consuming. It can be observed that, for each coarse pixel,

there are KS2 variables and K + S2 equality constraints in (8),

and correspondingly KS2 elements in matrix X . Therefore, the

computing complexity is closely related to M , K, and S. When

K or S increases, the computing complexity will noticeably

increase. Computational limitations prevent further research

into finer spatial resolutions and more classes [28].
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B. UOS

The sequential-assignment-based class allocation method,

i.e., UOS, is also performed under the conditions of meeting

the equality constraints in (8) or (9) and (10), and the basic

principle of UOS is the same as the objective function in (8).

The class allocation process of UOS, however, is different

from LOT. UOS is performed by direct comparison of K soft

attribute values for each subpixel.

UOS first determines the number of subpixels for each class

according to the coarse fractions. To satisfy the constraints

in (8), during the allocation process, each subpixel has to be

assigned to only one class and the subpixels for each class have

to be completely exhausted. A visiting path is then defined that

determines the order of visited subpixels. Along this path, for

a subpixel being visited, e.g., pi, the K soft attribute values

Z1(pi), Z2(pi), . . . , ZK(pi) are compared and ranked in a de-

scending order. If the subpixels for the class with the highest

soft attribute value, e.g., class k0, have not been completely

exhausted, then pi is allocated to class k0 (i.e., xk0
(pi) = 1,

xk �=k0
(pi) = 0); if the subpixels for k0 have already been

exhausted, pi is allocated to the class whose subpixels have

not been completely exhausted, as well as having the highest

soft attribute value, and for the remaining subpixels, the soft at-

tribute values for class k0 are not considered in the comparisons

any more.

UOS is a single-pass method, and thus, it involves no itera-

tion [29]. The visiting order of subpixels in the UOS method

is randomly determined. The visiting path has direct influence

on the SPM performance, and different paths may result in

different SPM results. There is much randomness, when the

path is randomly determined, as there are S2! paths for each

coarse pixel in all. The experimental results in the literature on

UOS revealed that many speckle artifacts appear in the SPM

results [31].

C. HAVF

Similar to UOS, another sequential-assignment-based class

allocation method, i.e., HAVF, is also realized by direct compar-

ison of soft attribute values. HAVF has been applied to BPNN

[19], SPSAM [20], and ICK [32]. In each comparison, however,

HAVF does not only compare K soft attribute values for a

subpixel but also KS2 values for all S2 subpixels and K classes

within a particular coarse pixel. The highest soft attribute value

is found out, and the corresponding subpixel is also selected out

meanwhile. The selected subpixel is allocated to its dominant

class, on condition that the subpixels for this class have not been

completely exhausted; otherwise, all S2 soft attribute values

for this class are set to a value less than 0 to be excluded

in the following comparisons. When the selected subpixel is

successfully allocated to a class, the K soft attribute values for

this subpixel are also set to a value less than 0. The process is

terminated when all S2 subpixels within each coarse pixel are

allocated.

HAVF is also noniterative and reproduces exactly the coarse

fraction data. Different from UOS, for each coarse pixel, each

subpixel in the visiting path in the HAVF method is found

by comparison of all KS2 values. Therefore, for each coarse

pixel, the visiting path is unique, rather than a random one

(as in UOS). Note that for UOS and HAVF, a normalization

procedure is suggested [9], [19], [20]. Specifically, within each

coarse pixel, each soft attribute value is divided by the sum

of S2 attribute values from the same class. This adjustment is

advantageous in cases where subpixels are surrounded by small

fractions of a certain class and soft attribute values for this class

are small [19], [20]. This normalization procedure is performed

previous to that in (6).

IV. UOC

From LOT, UOS, and HAVF, we can learn that three tasks

should be completed during the class allocation process for

STHSPM algorithms.

1) For each subpixel, it should be assigned to one and only

one class.

2) For each class, the number of subpixels belonging to it

should be consistent with the coarse fraction data, and

they should be completely exhausted during the class

allocation process.

3) Attempt to maximize the objective function in (8).

Based on these three aspects, a new class allocation method,

i.e., UOC, is proposed in this paper. In UOC, subpixels for each

class are allocated in turn. Actually, UOS and HAVF start with

1) whereas the proposed UOC starts with 2).

A. Implementation of UOC

The implementation of UOC includes the following six steps.

Step 1: Define a visiting order of K classes, i.e., k1, k2, . . . , kK .

This order can be defined randomly or by Moran’s I (see

Section IV-B for details).

Step 2: For the being visited class, e.g., kr, the number of

subpixels belonging to it in coarse pixel Pt is determined

as Fkr
(Pt)S

2.

Step 3: At the current coarse pixel Pt, rank the S2 soft at-

tribute values Zkr
(pt1), Zkr

(pt2), . . . , Zkr
(pt

S2) that have

been obtained by any STHSPM algorithm in Section II, in

a decreasing order, and a new sequence is generated, i.e.,

Zkr
(ptD1

), Zkr
(ptD2

), . . . , Zkr
(ptD

S2
).

Step 4: According to aforementioned tasks 2) and 3) in

Section IV, the first NCr(NCr = Fkr
(Pt)S

2) subpixels

in the new sequence, i.e., ptD1
, ptD2

, . . . , ptDNCr
, are allo-

cated to class kr.

Step 5: According to task 1), the already allocated subpixels

should not be considered in the allocation for remaining

classes. To guarantee that, all soft attribute values for the

next visited class kr+1 are adjusted by

Zkr+1

(

pti
)

= Zkr+1

(

pti
)

− c

r
∑

j=1

xkj

(

pti
)

(11)

where c > 1 is a coefficient. After adjustment, at any

already allocated subpixel pa,

r
∑

j=1

xkj
(pa) = 1

Zkr+1
(pa) ∈ [0, 1]

⎫

⎬

⎭

⇒

⎡

⎣Zkr+1
(pa)− c

r
∑

j=1

xkj
(pa)

⎤

⎦

∈ [−c, 1− c] (12)
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which indicates with (11), the soft attribute values for

the next visited class kr+1 at already allocated sub-

pixels are automatically suppressed to be less than

0(1− c < 0) On the other hand, at any unallocated

subpixel pua,

r
∑

j=1

xkj
(pua) = 0

Zkr+1
(pua) ∈ [0, 1]

⎫

⎬

⎭

⇒ Zkr+1
(pua)− c

r
∑

j=1

xkj
(pua)

= Zkr+1
(pua) ∈ [0, 1] (13)

which indicates that the soft attribute values at unallocated

subpixels do not make any change using adjustment in

(11). From (12) and (13), it can be concluded that, after

adjustment, the following equation holds:

Zkr+1
(pa) < Zkr+1

(pua). (14)

Since the number of subpixels for class kr+1 is less than

the number of unallocated subpixels, adjustment in (11)

ensures that the already allocated subpixels will not be

allocated to class kr+1 any more. Therefore, the adjustment

in (11) is an adaptive and simple scheme that does not

need to artificially find out the already allocated subpixels

or particularly exclude them during the class allocation

process. Using (11), only one simple command is needed to

exclude the already allocated subpixels for class allocation,

as shown in the last sentence in the pseudocode given

below. Note that c can take any value greater than 1

to ensure 1− c < 0, and it does not have any influence

on the following class allocation process as it does not

change the soft attribute values at unallocated subpixels

at all.

Step 6: The whole process is terminated when all MS2 subpix-

els are allocated.

Algorithm: Class allocation based on UOC

Inputs:

Soft attribute values {Zk(p
t
i)|i = 1, . . . , S2; t = 1, . . . ,M ;

k = 1, . . . ,K};

Class fractions {Fk(Pt)|t = 1, 2, . . . ,M ; k = 1, 2, . . . ,K}
and zoom scale factor S.

Define a visiting order of K classes: k1, k2, . . . , kK
for r = 1 : K

for t = 1 : M
Rank sequence Zkr

(pt1), Zkr
(pt2), . . . , Zkr

(pt
S2) in a

decreasing order:Zkr
(ptD1

), Zkr
(ptD2

), . . . , Zkr
(ptD

S2
)

for i = 1: Fkr
(Pt)S

2

xkr
(ptDi

) = 1
end

for i = Fkr
(Pt)S

2 + 1 : S2

xkr
(ptDi

) = 0
end

end

Image Zkr+1
is updated by Zkr+1

= Zkr+1
− c

∑r
j=1

xkj

end

Fig. 2. Illustration of the necessity of the adjustment in (11).

Fig. 3. Follow-up to Fig. 2. Two different SPM results generated along two
different visiting orders of classes in UOC. (a) Class order: 1-2-3. (b) Class
order: 2-1-3.

Fig. 4. Difference between UOC and UOS: comparisons in different units.

TABLE I
STATISTICS OF SOFT ATTRIBUTE VALUE COMPARISON DURING CLASS

ALLOCATION PROCESS FOR UOS, HAVF, AND UOC
(ANALYZED FOR A SINGLE COARSE PIXEL)

Outputs:

Binary class indicators {xk(p
t
i)|i=1 . . . , S2; t=1, . . . ,M ;

k = 1, . . . ,K}

Without the adjustment in (11), some subpixels would be

allocated to more than one class, and some subpixels would

not be allocated to any class as a result. This conflicts with

the aforementioned task 1). An example in Fig. 2 is used to

illustrate the necessity of the adjustment in (11). Suppose a

coarse pixel covers three land cover classes, i.e., classes 1, 2,

and 3, and the fraction of the three classes are 50%, 25%, and

25%. With a zoom scale S = 2, there should be two, one, and

one subpixels assigned to classes 1, 2, and 3, respectively. Let

the visiting order of the three classes be 1-2-3. According to

the soft attribute values of class 1, subpixels p4 and p3 are

allocated to this class first. Without the adjustment, however,
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Fig. 5. Systemic framework of STHSPM algorithms, where the proposed class allocation method UOC is in bold.

when class 2 is visited, p3 is again allocated to class 2, as

0.5 is the largest value among the four soft attribute values of

class 2. Consequently, p2 will be allocated to class 3, and p1 will

not be allocated to any class. If adjustment in (11) is applied

(c is set to 2), when class 2 is visited after class 1, the four

soft attribute values of class 2 are adjusted to Z2(p1) = 0.3,

Z2(p2) = 0.2, Z2(p3) = −1.5, and Z2(p4) = −1.9. Z2(p3)
and Z2(p4) are very small after adjustment, and p4 and p3 will

not be considered in the allocation for class 2. Instead, p1 will

be allocated to class 2, and p2 will be allocated to class 3 as a

result.

B. Visiting Order of Classes Specified by Moran’s I

In UOC, there are K! visiting orders of classes in all, and

different orders may lead to different SPM results. This can be

also illustrated by the example in Fig. 2. Along two different

visiting orders, such as 1-2-3 and 2-1-3, different SPM results

are generated (see Fig. 3). The visiting order in UOC, therefore,

should be specified reasonably.

Moran’s I is an index of spatial autocorrelation for the

landscape [14]. In [14], Moran’s I was used to determine the

order of input classes for pixel-swapping algorithm that was

extended to multiple classes. Here, it is employed to determine

a reasonable visiting order of classes in UOC. The index can be

estimated from an available high spatial resolution land cover

map. The map needs to be representative of the studied area for

SPM. Moran’s I for the kth class, i.e., Ik, is calculated as

Ik =

V
V
∑

i=1

V
∑

j=1

Wij [xk(pi)− xk] [xk(pj)− xk]

(

V
∑

i=1

V
∑

j=1

Wij

)

V
∑

i=1

[xk(pi)− xk]
2

(15)

where

Wij =

{

1, if pi and pj are neighbors

0, otherwise
(16)

Fig. 6. Reference land cover map in the first experiment.

and V is the number of pixels in the high spatial resolution map.

xk is the mean of all binary class indicators for the kth class. In

this paper, eight nearest neighbors are considered in (16).

If the high spatial resolution map is available, it can be

readily used for Moran’s I estimation. A critical issue, however,

is that such high spatial resolution images are not obtainable in

general. For this reason, a novel method to calculate Moran’s

I without high spatial resolution map is proposed, which

estimates the index by directly using the fraction image of

each class. Although the fraction images are in coarse spatial

resolution, they contain spatial distribution characteristics for

land cover classes. With the novel method, Ik is calculated as

Ik =

M
M
∑

i=1

M
∑

j=1

Wij

[

Fk(Pi)− Fk

] [

Fk(Pj)− Fk

]

(

M
∑

i=1

M
∑

j=1

Wij

)

M
∑

i=1

[

Fk(Pi)− Fk

]2

(17)

where F k is the mean of all fractions for the kth class in

fraction image Fk. Ik take values in the range [−1, 1], and −1
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Fig. 7. Fraction images produced by degrading the reference land cover map in the first experiment with S = 10. (a) Roads. (b) Trees. (c) Buildings. (d) Grass.

and 1 indicate the weakest and the strongest autocorrelation,

respectively. After the indexes of K classes are calculated, they

are ranked in a decreasing order, and the classes with higher

indexes are visited first.

C. Comparison With UOS, HAVF, and LOT

Similar to UOS and HAVF, UOC is also a sequential-

assignment-based class allocation method. All of them are

single-pass methods that are free of iteration and thus are fast.

Moreover, all three methods are performed under the condition

of reproducing exactly the coarse fractions. The core difference

between UOS and UOC is that comparisons of soft attribute

values are implemented in different units (see Fig. 4). More

precisely, UOS compared K soft attribute values of K classes

at the being visited subpixel, whereas UOC compared S2 soft

attribute values for the being visited class within each coarse

pixel. UOS and UOC allocate classes for subpixels along paths,

which determine the order of visited subpixels and classes.

Compared with LOT, a significant advantage of UOC is its

less computing complexity. For each coarse pixel, LOT solves

a linear problem involving KS2 variables and K + S2 equality

constraints, as listed in (8). The optimal solution is obtained

after numbers of iterations. When K or S, or even M , is large,

the whole process will be considerably CPU demanding. As for

UOC, for each coarse pixel, only K comparisons need to be

carried out, and the output of each comparison is a sequence,

which is used to select out the subpixels for the corresponding

class, as shown in Step 3 in Section IV-A. The comparisons in

UOC require less time, far less than LOT does.

Table I summarizes the soft attribute value comparison for

three sequential-assignment-based class allocation methods,

i.e., UOS, HAVF, and UOC. As shown in the table, for each

coarse pixel, UOS and UOC need S2 and K comparisons, and

K and S2 elements are involved in each comparison for the two

methods; HAVF sometimes need more than S2 comparisons,

because the subpixels for the class, to which the highest soft

attribute value corresponds, may have been exhausted and the

selected subpixel will not be allocated to any class for that

comparison. For HAVF, KS2 elements are compared each time.

Obviously, HAVF requires more time than UOS to complete

class allocation. Similar to UOC, the consuming time of UOS

and HAVF is generally less than that of LOT, since the value

comparison is easy and fast for computers to realize.

TABLE II
MORAN’S I OF FOUR CLASSES AT DIFFERENT SCALES

IN THE FIRST EXPERIMENT

UOC is processed on K soft-classified images at fine spatial

resolution one by one. Each soft-classified image encapsulates

spatial continuity for the corresponding class. That is, within

each coarse pixel, subpixels with large soft attribute values for

the same class tend to stay together. Using UOC, subpixels

staying together are more likely to be allocated to the same

class than distant subpixels. In this way, autocorrelation for

each class can be maximized by Step 4 in Section IV-A, which

is not the case in LOT, UOS, and HAVF. According to spatial

dependence principle that underpins SPM, the intraclass spatial

correlation is expected to be maximized, which can just been

done by UOC. For UOC, this is the unique advantage over LOT,

UOS, and HAVF when it is applied to STHSPM algorithms.

After description of five STHSPM algorithms, existing LOT,

UOS, HAVF, and the proposed UOC, the systemic framework

of STHSPM algorithms are shown in Fig. 5.

V. EXPERIMENTS AND ANALYSIS

A. Experimental Setup and Accuracy Assessment

To demonstrate the effectiveness and advantages of the

proposed UOC-based class allocation method for STHSPM

algorithms, experiments on three remote sensing images were

implemented. UOC was applied to all the five STHSPM al-

gorithms introduced in Section II, i.e., BPNN, HNN, SPSAM,

kriging, and ICK. UOC was also compared with LOT-, UOS-,

and HAVF-based class allocation methods. All experiments

were tested on an Intel Core 2 Processor (1.800-GHz Duo

central processing unit, 2.00-GB random access memory) with

MATLAB 7.1 version. For BPNN, a 3 × 3 local window was
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Fig. 8. SPM results of five STHSPM algorithms combined with UOS-, HAVF-, LOT-, and UOC-based class allocation methods in the first experiment (S = 10).
(a) BPNN. (b) HNN. (c) SPSAM. (d) Kriging. (e) ICK. From left to right: UOS (a random realization), HAVF, LOT, and UOC (visiting order specified by
Moran’s I).

used to extract the inputs of both training and test samples, and

the parameters involved in this method were set to the same

values as in [22]. The parameters in HNN were the same as

in [49].

To objectively evaluate and solely concentrate on the perfor-

mance of the proposed UOC, in the first and second experi-

ments, the studied coarse images were produced by degrading

hard-classified reference land cover maps using an S × S mean

filter. The synthetic coarse images were considered as outputs

of soft classification. SPM algorithms were processed on the

coarse images to yield land cover maps having the same spatial

resolution as the corresponding reference maps, by zooming

in the coarse images with the scale factor S. The advantages

of using such synthetic coarse images include: 1) errors from

soft classification and some other processes (e.g., registration)

are avoided [50], and the test is directed at the SPM algorithm

itself [46]; 2) the reference land cover maps are completely

reliable for accuracy assessment. In the third experiment, a
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Fig. 9. PCC of five STHSPM algorithms combined with HAVF, LOT, and UOC at S = 5 and 10 in the first experiment. UOC+MoranIL means UOC with
Moran’s I estimated from low spatial resolution fraction images.

coarse image was produced by degrading a Landsat TM image.

Soft classification was then implemented on the coarse image

to generate fractions, with SPM subsequent to that. By such a

setup, inherent uncertainty in soft classification was taken into

consideration [46], and the fractions are more similar to those

in real applications, in comparison with those in the first two

experiments.

SPM is essentially a hard classification technique carried

out at the subpixel level. The accuracy of hard classification

algorithms is usually evaluated quantitatively by the overall ac-

curacy, in terms of the percentage of correctly classified pixels

(PCC). Due to that, PCC was used for accuracy assessment on

SPM results in all three experiments. To evaluate the statistical

significance in accuracy for different STHSPM algorithms and

class allocation methods, McNemar’s test [51] was also applied.

The significance of the difference between two classification

results is determined by

z01 =
f01 − f10√
f01 + f10

(18)

where f01 are the number of pixels that are correctly classified

in result 0 but incorrectly classified in result 1 and f10 vice

versa. Using the 95% degree of confidence level, the difference

between two classification results is considered to be statisti-

cally significant if |z01| > 1.96.

B. Experiment 1

In the first experiment, a land cover map of an area in

Bath, U.K., was studied, as shown in Fig. 6 (provided by

Dr. A. J. Tatem). The land cover map was obtained by manual

TABLE III
PCC (%) OF UOS METHOD IN EXPERIMENT 1 (AVERAGES

OF 100 RUNS ± STANDARD DEVIATION)

TABLE IV
LABELS OF 24 VISITING ORDERS IN UOC (C1, C2, C3, AND C4

DENOTE ROADS, TREES, BUILDINGS, AND GRASS)

digitizing of the aerial photograph in [52]. The map contains

360 × 360 pixels and covers four classes, namely, roads, trees,

buildings, and grass. The roads and buildings mainly appear

as straight lines and right angles, respectively. The spatial
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TABLE V
MCNEMAR’S TEST FOR DIFFERENT CLASS ALLOCATION METHODS IN THE FIRST EXPERIMENT (0: UOC+MORANIL; 1: UOS; 2: HAVF; 3: LOT)

pattern of trees is more complex and irregular. The map was

degraded with two scales, i.e., S = 5 and 10, to generate two

coarse images. The fraction images of four classes in the coarse

image generated with S = 10 are shown in Fig. 7. From these

fraction images, it can be seen clearly that the coarse proportion

information is insufficient to represent the spatial distribution of

land cover classes, which indicates the necessity of SPM in land

cover information extraction.

The five STHSPM algorithms, i.e., BPNN, HNN, SPSAM,

kriging, and ICK, were then processed on the two coarse images

generated with S = 5 and 10 to reconstruct the land cover

maps having the same spatial resolution as that in Fig. 6. The

reference map in Fig. 6 was used to extract training samples

for BPNN and indicator semivariograms for ICK. Table II lists

Moran’s I of the four classes in different spatial resolution

images and the corresponding specified visiting orders of four

classes. Here, S = 1 means the indexes were calculated using

(15), which is based on the assumption that the required high

spatial resolution map (i.e., Fig. 6) is available. For two coarse

images, the indexes of classes were calculated using our pro-

posed method in (17). As shown in the table, in this experiment,

the orders specified by two approaches at three scales are the

same.

Fig. 8 shows the SPM results for the coarse fraction images

in Fig. 7. The five STHSPM algorithms were combined with

UOS-, HAVF-, LOT-, and UOC-based class allocation methods.

The results of UOC shown in Fig. 8 were produced with a

specified order at S = 10 (i.e., roads-trees-buildings-grass), as

listed in Table II. For UOS, the results generated with a random

visiting order of subpixels for five STHSPM algorithms are

shown in the first column in Fig. 8. As can be seen from the

maps, there are many speckle artifacts in SPM results while

using UOS for class allocation. In comparison with UOS, much

less speckle artifacts are generated by HAVF and LOT, and both

of them can obviously obtain better results than UOS. Focusing

on maps yielded by the proposed UOC, the boundaries of

classes are clearer than those in UOS, HAVF, and LOT results.

There are fewer isolated pixels in UOC results, which is partic-

ularly well illustrated by the restoration of roads in five maps in

the last column. Among the four class allocation methods, UOC

produces the most satisfactory fine spatial resolution maps.

The SPM results were also assessed quantitatively by PCC.

As can be observed in the fraction images in Fig. 7, there are

some pure coarse pixels containing only one land cover class.

In SPM, all subpixels within the pure pixel are allocated to the

same class to which the pure pixel belongs. This simple copy

process only raises PCC without providing useful information

about the SPM algorithms’ prediction abilities [7], [8], [12],

TABLE VI
RUNNING TIME (IN SECONDS) OF EACH CLASS ALLOCATION

METHOD IN THE FIRST EXPERIMENT

Fig. 10. Reference land cover map in the second experiment.

[53], [54]. To eliminate the influence brought by the pure pixels,

subpixels within them were excluded in the accuracy statistics

in this experiment. Fig. 9 shows the PCC of five STHSPM

algorithms combined with HAVF, LOT, and UOC, at S = 5 and

10, corresponding to ten subfigures in all. To clearly exhibit the

differences between the lines of LOT and HAVF, the PCC of

UOS is not shown in Fig. 9, but in Table III instead. Because

different visiting paths of subpixels lead to different SPM re-

sults in UOS, 100 random paths were tested for UOS. In all ten

cases, the PCC of UOS is lower than that of HAVF, LOT, and

UOC. The PCC of UOC with all 24 (4! = 24) visiting orders

are also displayed in Fig. 9. The labels for the corresponding

visiting orders are illustrated in Table IV. As shown in Table II,

Moran’s I estimated from both high and low spatial resolution

images specify the same visiting order of classes in UOC in this

experiment. Therefore, we only consider the UOC+MoranIL

case, which means UOC with specified order by Moran’s I

estimated from low spatial resolution fraction images.

Comparing PCC at different scale factors, we can clearly

see that as the scale factor increases, the accuracies of SPM
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Fig. 11. Fraction images of the four classes produced by degrading the reference land cover map in the second experiment with S = 8. (a) C1. (b) C2. (c) C3.
(d) C4.

decrease (see Fig. 9). The reason is that the SPM problem be-

comes more complicated with higher scale factors, as for each

coarse pixel, the spatial locations of more subpixels need to be

estimated and uncertainty increases [8], [19]. More precisely,

at S = 5 and 10, the locations of 25 and 100 subpixels need

to be predicted within each coarse pixel. While observing the

data for UOC in each subfigure, it can be found that different

visiting orders of classes result in different SPM accuracies,

which is particularly obvious in SPSAM, kriging, and ICK

results. Hence, the visiting order in UOC has direct influence

on SPM accuracy. When Moran’s I is applied in UOC (i.e.,

UOC+MoranIL) in each STHSPM algorithm, the highest ac-

curacy is achieved among all 24 orders, which indicates that

Moran’s I is able to select out the best visiting order in UOC

and also validates the effectiveness of using Moran’s I gained

from coarse fraction images in UOC. Furthermore, from the

comparison of the PCC of UOC+MoranIL, HAVF, and LOT,

we can conclude that UOC+MoranIL is capable of producing

higher accuracy than HAVF and LOT in all cases.

Table V lists the McNemar’s test results for UOS, HAVF,

LOT, and UOC+MoranIL that were applied to five STHSPM

algorithms. The statistically insignificant values at the 95%
confidence level are underlined. As can be concluded from

these values, UOC+MoranIL produces significantly higher ac-

curacy than the other three class allocation methods in nearly all

cases. This reveals that the intraclass spatial correlation is more

important than the objective function in (8) in this experiment.

With a reasonably specified visiting order of classes, UOC

maximized the spatial autocorrelation of each class, which was

not well taken into consideration in UOS, HAVF, and LOT.

In addition, the running time of the four class allocation

methods in this experiment is given in Table VI. Note that,

for each method, the hard class labels of subpixels within pure

coarse pixels were determined by the simple copy process.

The consuming time of three soft attribute comparison-based

methods, i.e., UOS, HAVF, and UOC, has the same order of

magnitudes, which is less than 10 s and much less than that of

LOT. More precisely, LOT needs several minutes to complete

the class allocation process at both scales. The running time

of LOT increases from 135 to 380 s when S increases from

5 to 10, because at S = 5, the optimization problem in LOT

contains 100 variables and 29 equality constraints at each

coarse pixel, whereas at S = 10, the corresponding number

of variables and equality constraints increase to 400 and 104,

TABLE VII
MORAN’S I OF FOUR CLASSES AT DIFFERENT

SCALES IN THE SECOND EXPERIMENT

respectively. However, for UOS, HAVF, and UOC, within 10 s

were consumed because only comparisons of soft attribute

values were carried out and no complex processes are involved.

C. Experiment 2

A land cover map of an area in Nanjing, China, was used

for test in the second experiment (see Fig. 10). This map was

derived from a 30-m spatial resolution image in [55], using a

maximum-likelihood classifier (MLC) along with a modal filter

removing the noises in MLC results. The studied area contains

360 × 360 pixels and was assigned to four classes, namely, C1,

C2, C3, and C4. Comparing Fig. 10 with Fig. 6, one can find

that the distribution of the classes in this experiment is more

random and more complex than that in the first experiment.

The reference land cover map was degraded with S = 8 and

12, producing two different coarse spatial resolution images.

Fig. 11 displays the fraction images of four land cover classes

for S = 8. Table VII lists Moran’s I of the four classes in dif-

ferent spatial resolution images and the corresponding specified

visiting orders of four classes. Comparing the values at S = 1
in Table VII to those at S = 1 in Table II, we can find that

the indexes of the four classes in this experiment are generally

lower than those in the first experiment, as the spatial continuity

of classes in Fig. 10 is weaker than that in Fig. 6. In addition,

specified orders using Moran’s I estimated from high spatial

resolution map and low spatial resolution fraction images are

different in this experiment.

The 20 SPM results for coarse fraction images in Fig. 11

are shown in Fig. 12, which were produced by combining the

five STHSPM algorithms with UOS, HAVF, LOT, and UOC.
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Fig. 12. SPM results of five STHSPM algorithms combined with UOS-, HAVF-, LOT-, and UOC-based class allocation methods in the second experiment
(S = 8). (a) BPNN. (b) HNN. (c) SPSAM. (d) Kriging. (e) ICK. From left to right: UOS (a random realization), HAVF, LOT, and UOC (visiting order specified
by Moran’s I that was estimated from fraction images at S = 8).

For UOC, the visiting order of classes used was determined

by Moran’s I at S = 8. Again, many speckle artifacts ap-

pear in UOS results. HAVF obtains subpixel maps with much

fewer speckle artifacts than UOS. However, the performance of

HAVF is still poorer than that of LOT and UOC. For example,

the boundaries of C4 in five HAVF results are rougher than

those in LOT and UOC results. SPM results obtained with LOT

and UOC look nearly the same, and both of them produce more

satisfactory SPM results than UOS and HAVF.

In this experiment, subpixels within pure pixels were also

excluded in quantitative assessment. The PCC of five STHSPM

algorithms combined with four class allocation methods at S =
8 and 12 is shown in Fig. 13. In each subfigure, the PCC of

UOS is the average of 100 runs. As for UOC, all 24 visiting

orders of classes in UOC were tested, and labels for visiting

orders are similar to those in Table IV. UOC+MoranIH and

UOC+MoranIL mean that the visiting orders of classes in

UOC were specified by Moran’s I estimated from high spatial
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Fig. 13. PCC of five STHSPM algorithms combined with UOS, HAVF, LOT, and UOC at S = 8 and 12 in the second experiment. The PCC of UOS is the
average of 100 runs; UOC+MoranIH and UOC+MoranIL mean UOC with Moran’s I estimated from high spatial resolution map and low spatial resolution
fraction images, respectively.

TABLE VIII
MCNEMAR’S TEST FOR DIFFERENT CLASS ALLOCATION METHODS IN THE SECOND EXPERIMENT (0: UOC+MORANIL; 1: UOS; 2: HAVF; 3: LOT)

resolution map and low spatial resolution fraction images,

respectively.

As can be seen from the data in all ten subfigures, the

performances of HAVF and LOT in five STHSPM algorithms

are obviously superior to UOS. Compared with HAVF, LOT

obtains higher accuracy. From the comparison between UOC

and LOT, it is found that, when Moran’s I is used in UOC,

including both UOC+MoranIH and UOC+MoranIL, UOC is

capable of producing slightly higher accuracy than LOT in

nearly all cases. In addition, the accuracies of UOC+MoranIL

are generally slightly lower than those of UOC+MoranIH. For

BPNN at S = 12, the accuracies of both UOC+MoranIH and

UOC+MoranIL are lower than those of LOT. This is because

the output of the first step (i.e., subpixel sharpening result) in

BPNN is not as accurate as those in the other four STHSPM

algorithms, due to the inherent error in the BPNN model itself.

In this case, the spatial continuity of each class encapsulated in

the subpixel sharpening result of BPNN is not strong, and thus,

the performances of UOC+MoranIH and UOC+MoranIL are

slightly poorer than LOT.

The McNemar’s test results for UOS, HAVF, LOT, and

UOC+MoranIL in five STHSPM algorithms are displayed in

Table VIII. Likewise, 100 random paths for UOS were tested,

and the statistically insignificant values at the 95% confi-

dence level are underlined. In this experiment, UOC+MoranIL

obtains significantly higher accuracy than UOS and HAVF

for all five STHSPM algorithms. However, the PCC of

UOC+MoranIL is insignificantly higher than that of LOT in

most cases. This is because the intraclass spatial correlation in

the studied area in this experiment is not very strong, as can be

seen from Moran’s I at S = 1 in Table VII, and thus, in terms

of SPM accuracy, the advantage of UOC+MoranIL over LOT

is not obvious.

However, UOC has significant advantage over LOT in terms

of computing complexity. As shown in Table IX, at S = 8 and

12, LOT needs 360 and 700 s to complete class allocation
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TABLE IX
RUNNING TIME (IN SECONDS) OF EACH CLASS ALLOCATION

METHOD IN THE SECOND EXPERIMENT

Fig. 14. Landsat TM image in experiment 3. (a) Color image (bands 3, 2,
and 1 as RGB). (b) Reference land cover map: (blue) building, (red) woodland,
(yellow) water, (green) farmland, (black) unclassified.

for each STHSPM algorithm. For the proposed UOC, it only

consumes 2 s, much less than LOT does. Additionally, UOS

and HAVF also need less time for the class allocation process.

D. Experiment 3

In the third experiment, a 30-m spatial resolution multispec-

tral Landsat TM image (180 × 120 pixels) located in Xuzhou

City, China, was used for test. The Landsat TM image was

acquired in September 2000 and mainly covers four classes,

namely, building, woodland, water, and farmland. Bands 1,

2, 3, 4, 5, and 7 were used in this experiment. The image

and its reference land cover map are shown in Fig. 14. The

reference land cover map in Fig. 14(b) was obtained with

the aid of a 1:2000 land use map that was produced around the

same date as the Landsat TM image. To consider the inherent

uncertainty in soft classification and simulate SPM in real cases,

the coarse image for SPM was generated by degrading the

Landsat TM image with S = 6, and Fig. 14(b) can be then used

for supervised accuracy assessment.

First, soft classification was implemented on the coarse

image to generate fractions. Linear spectral mixture analysis

(LSMA) [56] is widely used, appreciating its simple physical

meaning and its convenience in application [49]. Here, LSMA

was used for soft classification. The fraction images of four land

cover classes are displayed in Fig. 15. SPM was then carried out

to obtain a land cover map that has the same spatial resolution

as that in Fig. 15. Moran’s I of the four classes obtained with

high spatial resolution map in Fig. 14(b) and fraction images

in Fig. 15 are listed in Table X. As shown in the table, in

this experiment, the specified order by the two approaches are

the same. Since the effectiveness of using Moran’s I in UOC

has been demonstrated in the first and second experiments, in

this experiment, only the visiting order of class specified by

Moran’s I was used for test of the UOC method.

The SPM results of five STHSPM algorithms combined with

UOS, HAVF, LOT, and UOC are shown in Fig. 16. Due to

the errors from soft classification, some pixels are unavoidably

misclassified in the results. For instance, in all 20 maps, some

Fig. 15. Fraction images of the four classes in the degraded Landsat TM
image. (a) Building. (b) Woodland. (c) Water. (d) Farmland.

pixels are misclassified as water class within the area of wood-

land class, which conflicts with the distribution of woodland in

the reference map in Fig. 14(b). Errors from soft classification

adversely affect the overall performance of SPM. Similar to

the corresponding results in the first and second experiments,

speckle artifacts were produced when UOS was applied for

class allocation. From visual inspection, the results of HAVF,

LOT, and UOC are close to each other, and all of them are

evidently superior to UOS results.

Table XI lists the PCC of five STHSPM algorithms combined

with UOS, HAVF, LOT, and UOC. In this experiment, PCC

was calculated taking account of all 180 × 120 pixels (except

the unclassified ones in Fig. 14) in each SPM result. The pure

pixels in fraction images were not excluded in the accuracy

statistics, as whether a pixel is pure or not is determined by

the soft classifier LSMA. We also consider the performance

of the soft classifier when a multispectral coarse image is

studied for SPM [57]. This is different from the first and second

experiments, where synthetic fraction images were studied and

no soft classifier was applied in fact. UOS was also tested

using 100 random paths. As can be concluded from the data

in Table XI, the accuracies of HAVF, LOT, and UOC for each

STHSPM algorithm are higher than those of UOS.

In Table XII, the McNemar’s test results for four class

allocation methods in five STHSPM algorithms are displayed.

In 100 random realizations of UOS, PCC values of SPSAM,

kriging, and ICK are all significantly lower than those of UOC;

for BPNN and HNN, 78% and 63% of the PCC values are

significantly lower than those of UOC. Focusing on values in

the last two columns in Table XII, it can be concluded that the

advantage of UOC over HAVF is obvious than that over LOT. In

particular, in comparison with HAVF, when UOC is applied to

ICK, UOC achieves significantly higher accuracy. For all five

STHSPM algorithms, however, the differences between UOC

and LOT in accuracy are statistically insignificant. The main

reason is that errors from soft classification were propagated

to SPM results [58] and suppressed the performances of UOC.

In this experiment, UOC is considered to produce comparable

SPM accuracy to LOT.

The running time of LOT, UOS, HAVF, and UOC in this exp-

eriment is 40, 2, 3, and 1 s, respectively. Again, UOC spends much

less time than LOT. Through this experiment, the effectiveness

and advantages of the proposed UOC are further demonstrated.

E. Intercomparison of Five STHSPM Algorithms

It is worth doing intercomparison of SPM algorithms, as

expected in [46]. Here, the five STHSPM algorithms are



WANG et al.: ALLOCATING CLASSES FOR SOFT-THEN-HARD SUBPIXEL MAPPING ALGORITHMS IN UOC 2955

Fig. 16. SPM results of five STHSPM algorithms combined with UOS-,
HAVF-, LOT-, and UOC-based class allocation methods in the third experiment
(S = 6). (a) BPNN. (b) HNN. (c) SPSAM. (d) Kriging. (e) ICK. From left
to right: UOS (a random realization), HAVF, LOT, and UOC (visiting order
specified by Moran’s I).

compared visually and quantitatively. As the effectiveness and

advantages of the proposed UOC have been demonstrated by

three experiments, we compare the results of five STHSPM al-

gorithms when UOC is applied in class allocation, with visiting

order of classes specified by Moran’s I that was estimated from

coarse fraction images.

For visual comparison, we focus on the results in the second

experiment (i.e., the last column in Fig. 12). It can be seen that

TABLE X
MORAN’S I OF FOUR CLASSES AT DIFFERENT SCALES

IN THIRD SECOND EXPERIMENT

TABLE XI
PCC (%) OF FOUR CLASS ALLOCATION METHODS FOR FIVE STHSPM

ALGORITHMS (THE DATA FOR UOS ARE AVERAGES OF 100 RUNS ±

STANDARD DEVIATION AND THE VISITING ORDER OF CLASS

SPECIFIED BY MORAN’S I WAS USED FOR UOC)

TABLE XII
MCNEMAR’S TEST FOR DIFFERENT CLASS ALLOCATION METHODS IN

THE THIRD EXPERIMENT (0: UOC; 1: UOS; 2: HAVF; 3: LOT)

ICK is able to generate the best results among five STHSPM

algorithms. Specifically, there are evident jagged boundaries

in BPNN results. As for HNN, the distribution of classes

looks more reasonable than that in BPNN results. However,

the boundary of C4 is relatively rough when compared to

ICK. Observing SPSAM results, we can find some cone-shaped

objects in the map, particularly for those belonging to C2.

Kriging provides more satisfactory results than BPNN, HNN,

and SPSAM, but there are some linear artifacts. Compared with

kriging results, in the map yielded by ICK, there are less linear

artifacts, and the continuity of each class is stronger.

The quantitative comparison of five STHSPM algorithms is

studied for the first and second experiments. The McNemar’s

test results for five STHSPM algorithms in the two experiments

are shown in Tables XIII and XIV, and the PCC of each

STHSPM algorithm is also given in the two tables. Similar to

the conclusion drawn from visual comparison, the accuracy of

ICK is found to be the highest among five STHSPM algorithms

at each scale. ICK generates significantly higher accuracies

than the other four STHSPM algorithms in all cases. The

reason is attributed to the fact that the geostatistics-based ICK

method extracts prior spatial structure information of each class

from additional fine spatial resolution images. Therefore, ICK

is advantageous while dealing with complex spatial patterns.
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TABLE XIII
MCNEMAR’S TEST FOR STHSPM ALGORITHMS IN EXPERIMENT 1

TABLE XIV
MCNEMAR’S TEST FOR STHSPM ALGORITHMS IN EXPERIMENT 2

Fig. 17. PCC of ICK combined with different class allocation methods for various scale factor S. (a) Land cover map of Bath, U.K., in experiment 1. (b) Land
cover map of Nanjing, China, in experiment 2.

However, for another learning-based SPM method, i.e., BPNN,

it does not obtain satisfactory accuracies, which indicates that

BPNN still needs an additional training data set [53]. As for the

three STHSPM algorithms that need no prior spatial structure

information, HNN gives the highest accuracy at small scale

S = 5 in experiment 1, whereas kriging is advantageous at

large scales. In HNN, the spatial dependence is expressed at the

subpixel scale level and the spatial relation between subpixel,

and its nearest eight neighboring subpixels are considered. On

the one hand, this character enables HNN to produce more

continuous and better SPM results at small scale than do SP-

SAM and kriging that consider dependence between subpixel

and its neighboring coarse pixel. On the other hand, due to this

character of HNN, spatial locations of subpixels for each class

vary after each mapping, and iterations are needed to acquire

SPM results. It is easy to fall into local optimum, particularly

for complex SPM problems at large zoom scales. This is similar

to the case in pixel swapping algorithm [10], [11], [14], which

also considers dependence at the subpixel scale level. Conse-

quently, kriging could be a promising SPM approach for the

large-scale situation when prior spatial structure information is

unavailable.

F. Analysis of Scale Factor S

Here, scale factor S is analyzed for UOS, HAVF, LOT, and

UOC. The bar charts of PCC with various scales are shown

in Fig. 17 for the land cover maps in the first and second

experiments. The four class allocation methods were applied to

the STHSPM algorithm ICK. In the bar charts, the PCC of UOS

is the average of 100 random runs. The visiting order for UOC

is determined by Moran’s I , which was calculated from fraction

images. Five scales, i.e., 5, 8, 10, 12, and 15, were discussed for

each land cover map.

Due to the complex land cover pattern in the map of Nanjing,

the SPM accuracy of each method in Fig. 17(b) is much lower

than that in Fig. 17(a). Precisely, for the same scale, the PCC

of each method in Fig. 17(b) is at least 12% lower than that

in Fig. 17(a). As the scale increases, the PCC of all class

allocation methods in the two subfigures takes on the tendency
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TABLE XV
MCNEMAR’S TEST FOR RESULTS IN FIG. 17 (0: UOC; 1: UOS; 2: HAVF; 3: LOT)

of descension. Furthermore, compared with the other three class

allocation methods, the proposed UOC achieve higher SPM

accuracy for nearly all scales. The McNemar’s test results in

Table XV indicate that UOC generates significantly different

results, in comparison with UOS and HAVF, for both land cover

maps. The difference between UOC and LOT is significant

for the land cover map of Bath, but becomes insignificant for

S = 5, 8, and 12 for the land cover map of Nanjing. We can

find that the spatial dependence of the land cover in the map

of Bath is stronger than that in the map of Nanjing. Hence, the

difference between UOC and LOT illustrates that UOC is more

advantageous when the spatial autocorrelation in the studied

area is stronger.

VI. CONCLUSION

This paper has presented a novel class allocation method

UOC for STHSPM algorithms. The STHSPM algorithm first

obtains the soft-classified images for each land cover class at

target fine spatial resolution and then allocates classes for each

fine pixel according to the soft attribute values and constraints

from class fractions. With the UOC-based class allocation

method, subpixels for each class are allocated in turn. The

visiting order of classes can be specified by Moran’s I , which

can be estimated from either an available high spatial resolution

land cover map or coarse fraction images. UOC has the unique

advantage of taking account of the intraclass spatial correlation

in the second step of STHSPM algorithms. In the experiments

on three remote sensing images, the proposed UOC was applied

to five STHSPM algorithms, i.e., BPNN, HNN, SPSAM, krig-

ing, and ICK, and compared with the existing class allocation

methods, i.e., UOS, HAVF, and LOT. The conclusions are

summarized as follows.

1) The visiting order of classes in UOC can be reasonably

determined by comparing Moran’s I of each class. When

spatial structure information of classes at fine spatial

resolution is available, they can be readily utilized for

calculating Moran’s I of classes. However, when such

prior information is unavailable, our proposed method

that uses fraction images to calculate Moran’s I can also

select out a reasonable order.

2) UOC was successfully applied to five STHSPM algo-

rithms. For all five STHSPM algorithms, with Moran’s I

that was estimated from fraction images, UOC is capable

of obtaining more accurate SPM results than UOS and

HAVF and achieving at least comparable SPM accuracy

in comparison with LOT. When the intraclass spatial

correlation in the studied area is stronger, the advantage

of UOC in terms of SPM accuracy, particularly over

LOT, is more obvious. This is because UOC considers

the intraclass spatial dependence in the second step of

STHSPM algorithms.

3) Similar to UOS and HAVF, the computing complexity

of UOC is much less than that of LOT. Therefore, UOC

shows its great potential in real-time applications.

4) The intercomparison of five STHSPM algorithms reveals

that ICK is able to obtain the highest SPM accuracy

among the five algorithms, which is based on the pro-

posed UOC with Moran’s I estimated from fraction im-

ages. However, this advantage of ICK is based on the

existence of prior spatial structure information of land

cover that is representative of the studied area.

In the fields of image and signal processing, there are many

available superresolution reconstruction algorithms, such as

image interpolation, maximum a posteriori, iterative backward

projection, projection onto convex sets, etc. These algorithms

are also capable of obtaining the soft-classified image per class

at fine spatial resolution when coarse fraction images are used

as input. The proposed UOC can be used to harden these soft-

classified images and generate SPM results. Therefore, UOC

builds a bridge between superresolution reconstruction and

SPM. This seems to be considerably promising, and our future

work will focus on it.
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