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Abstract

We introduce a distributed negotiation framework for multi-
agent resource allocation where interactions between agents
are limited by a graph defining a negotiation topology. A
group of agents may only contract a deal if that group is fully
connected according to the negotiation topology. An impor-
tant criterion for assessing the quality of an allocation of re-
sources, in terms of fairness, is envy-freeness: an agent is said
to envy another agent if it would prefer to swap places with
that other agent. We analyse under what circumstances a se-
quence of deals respecting the negotiation topology may be
expected to converge to a state where no agent envies any
of the agents it is directly connected to. We also analyse
the computational complexity of a related decision problem,
namely the problem of checking whether a given negotiation
state admits any deal that would both be beneficial to every
agent involved and reduce envy in the agent society.

Introduction
Mechanisms for resource allocation can roughly be classi-
fied as centralised (when a central authority takes the re-
sponsibility to compute and allocate goods —the canonical
case being auctions) or decentralised (with the final allo-
cation emerging as a consequence of local, uncoordinated
decisions of the agents). There are many reasons why we
may want to study decentralised processes, for instance be-
cause of a lack of confidence in —or the mere absence of—
a central authority. One even more compelling reason is
that agents may be spatially distributed, with restricted in-
teraction opportunities between them. In this context, the
assumption of a fully connected graph (or global network)
clearly vanishes. This has been recognised in various situ-
ations, for instance in the case of communication networks
(discussed as an instance of a distributed constraint optimi-
sation problem by Yokoo et al. (1998)), or in “real-world”
economies, where “we need only shop at the corner gro-
cery or the downtown mall to acquire goods from around
the world” (Wilhite 2001).

How does this restriction on the potential interactions be-
tween agents affect the outcome of a mechanism? In gen-
eral, as one may expect, it makes it more difficult to realise
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an efficient state of the system. It is then crucially impor-
tant to identify the structural constraint induced by the net-
work topology. In the context of communication networks
for instance, the notion of “blocking island” has been used
to abstract away from the topological structure, giving rise
to a certain partitioning of the network which allows to iden-
tify bottlenecks (Frei, Faltings, & Hamdi 2005). The effect
of the network topology has also been studied in economics
(Bell 1996), where empirical results show how some net-
work structures enjoy fast convergence to an efficient allo-
cation, while others make the process much slower. In short
then, while taking the topology into account is necessary in
most real world applications, it usually causes difficulties.

Still, in some cases, the topology of the system can actu-
ally make things better. One such example is given by an
interesting criterion used to assess the fairness of a given al-
location of resources: the notion of envy, which we are going
to detail and investigate later on in this paper. To understand
the following, however, no further details are required: in
the extreme case of a society of completely disconnected is-
lands (that is, no agent can see any other agent), no agent
would ever be envious of the situation of any other agent.

The case of unconnected agents being of course of lit-
tle interest, we shall study in this paper how mechanisms
can be designed to eliminate envy in general, that is with
no specific assumption regarding the network structure. The
rest of the paper is as follows. The next section introduces
the framework of distributed resource allocation, with deal-
ing opportunities constrained by a negotiation topology. We
then precisely define what “envy” means is this context. As
our approach to eliminate envy amounts to redistribute some
part of the wealth generated by the trading process, we first
need to study what “level” of efficiency can be guaranteed
in our framework: we introduce for that purpose a notion
of clique-wise efficiency, obviously weaker than global effi-
ciency. Having established this, we prove that a simple de-
centralised “tax” scheme has the desired property to indeed
eliminate envy. As in general it is however not possible to
fully reconcile agents’ self-interest and envy compensation,
the solution requires some initial wealth redistribution —to
compensate for a potentially unfair initial allocation of re-
sources. In situations where this is not regarded as accept-
able, it is still interesting to investigate what can be achieved
within the limits of the agents’ self-interest. To this end, the
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paper finally examines the complexity of the decision prob-
lem faced by an agent involved in such a negotiation process,
namely: how difficult is it to identify a deal that is both ben-
eficial for him, but still envy-reducing for the society?

Negotiation along Graphs
We consider the setting of a finite set of agents A = {1..n}
negotiating over the allocation of a finite set of indivisible
resources R (or goods). Not every agent may be able to
“see” all of the other agents. A negotiation topology is an
undirected graph G = (A, E), the vertices of which are the
agents in A. Two agents i and j stand in the relation E iff
they can see each other. As will become clear, this means
that (a) i and j may engage in negotiation and exchange re-
sources, and (b) that i and j may envy each other (you can
only interact with people, or envy people, whom you can
see). Note that our visibility relation E is symmetric (the
graph is undirected); this is important to be able to define
negotiation along graphs in a meaningful manner, but envy
along graphs could also be defined with respect to a directed
graph.

An allocation A : A → 2R specifies for each agent i
the bundle of resources owned by i, such that each and ev-
ery resource gets assigned to exactly one agent. A deal can
be described as a pair of (distinct) allocations δ = (A, A′),
fixing the situation before and after the exchange. Ex-
isting work within this framework, e.g. (Sandholm 1998;
Endriss et al. 2006; Dunne, Wooldridge, & Laurence 2005),
either allows for any such deals to take place or considers
structural restrictions in terms of the number of goods mov-
ing between agents. For example, a “swap deal” (Sandholm
1998) is any deal between two agents whereby exactly one
good is moving from the first to the second agent, and vice
versa. Instead, in this paper, we consider a very natural re-
striction induced by the negotiation topology: any deal is
possible, as long as it only involves agents belonging to a
common clique of the graph G. (A clique is a set of vertices
C ⊆ A such that (i, j) ∈ E for all distinct i, j ∈ C). We
call deals meeting this condition clique-deals.

Each agent i ∈ A is equipped with a valuation function
vi : 2R → Q, to express their preferences over alternative
bundles of resources. In the general case we do not impose
any restrictions on valuation functions (such as additivity),
except that they are normalised: vi({ }) = 0. This assump-
tion does not affect our results in any significant way; it
merely simplifies presentation. We sometimes write vi(A)
as a shorthand for vi(A(i)), the value agent i assigns to the
bundle it obtains in allocation A.

Deals may be coupled with monetary side payments.
These are given in terms of a payment function p : A → Q
satisfying

∑
i∈A p(i) = 0. A positive value p(i) means that

agent i is paying; a negative value p(i) means that agent i
is receiving the respective amount. A deal δ = (A, A′) is
called individually rational (IR) iff there exists a payment
function p such that vi(A′) − vi(A) > p(i) for all agents
i ∈ A, except possibly p(i) = 0 for agents i with A(i) =
A′(i). We assume that agents will only agree on such IR
deals, i.e. deals that benefit everyone involved. The sum of

all previous payments p(i) made by agent i is given by its
payment balance π(i). A negotiation state (A, π) is a pair of
an allocation and a function giving the payment balance for
each agent. Finally, each agent i is equipped with a quasi-
linear utility function ui mapping pairs of resource bundles
and past payments to a utility scale: ui(R, x) = vi(R) − x.
For example, ui(A(i), π(i)) is the utility of agent i in state
(A, π), while ui(A(j), π(j)) is the utility that i would expe-
rience if it were to swap places with j (in terms of both the
bundle owned, and the sum of payments made so far).

Envy along Graphs
A central consideration when assessing alternative alloca-
tions of resources concerns fairness (Moulin 1988; Cheva-
leyre et al. 2006). A particular interpretation of fairness is
referring to the notion that, if at all possible, we would like
each agent to feel that they are at least as well of as any
of the others; that is, the solution chosen should be envy-
free (Brams & Taylor 1996). In the context of a negotia-
tion framework admitting monetary side payments, a suit-
able definition of envy-freeness will have to take into ac-
count not only the allocation of resources, but also the pay-
ment balance.

We end up with the following definition: A state (A, π) is
called envy-free iff ui(A(i), π(i)) ≥ ui(A(j), π(j)) for all
agents i, j ∈ A. To account for a negotiation topology, we
propose a simple modification of this definition, which only
considers envy amongst agents that can see each other:

Definition 1 (GEF states) A state (A, π) is called graph-
envy-free (GEF) with respect to the graph G = (A, E) iff
ui(A(i), π(i)) ≥ ui(A(j), π(j)) for all agents (i, j) ∈ E.

A known result states that, in the presence of money, envy-
free states always exist (Alkan, Demange, & Gale 1991).
As the restriction to a graph will only reduce the number
of potentially envious agents, this existence result immedi-
ately extends to GEF states. Of course, the existence of a
solution alone does not mean that we have a suitable method
of finding that solution. This paper analyses to what extent
the distributed negotiation approach set up in the previous
section can be used to this end.

Clique-wise Efficiency
Economic efficiency of an allocation A is often measured in
terms of (utilitarian) social welfare (Moulin 1988), defined
as sw(A) =

∑
i∈A vi(A). By a known result, a (general)

deal is IR iff it increases social welfare (Endriss et al. 2006).
In this section we develop a notion of efficiency that takes

the negotiation topology into account and relates this notion
to IR negotiation when restricted to clique-deals.

Definition 2 (Clique-variants) Let A be an allocation. An-
other allocation A′ is called a clique-variant of A iff there
exists a clique C such that

⋃
i∈C A(i) =

⋃
i∈C A′(i) and

A(i) = A′(i) for all i �∈ C.

Observe that A and A′ are clique-variants of each other iff
δ = (A, A′) is a clique-deal.
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Definition 3 (Clique-wise efficiency) An allocation A is
called clique-wise efficient iff sw(A) ≥ sw(A′) for every
clique-variant A′ of A.

It should be noted that, in its own right, this notion of ef-
ficiency would only be of very limited interest. While our
definition of envy with respect to a graph is very natural and
reaching GEF states seems indeed desirable, it is question-
able whether the standard notion of efficiency can be rela-
tivised with respect to a negotiation topology in a meaning-
ful manner. Our interest in clique-wise efficiency stems from
the fact that it will be helpful in in characterising conditions
under which convergence to a GEF state can be guaranteed
(as will become clear in the next section). But first we prove
a convergence result for clique-wise efficiency:

Lemma 1 (Clique-wise efficiency) Any sequence of IR
clique-deals will eventually result in a clique-wise efficient
allocation of goods.

Proof. There can be no infinite sequence of deals (clique-
deals or otherwise), because any deal strictly increases so-
cial welfare and the set of possible allocations is finite. Now
let A be the terminal allocation. For the sake of contradic-
tion, suppose that A is not clique-wise efficient. Then there
exists an allocation A′ that is a clique-variant of A such that
sw(A) < sw(A′). But then δ = (A, A′) must be IR (En-
driss et al. 2006) as well as a clique-deal. This contradicts
our assumption of A being a terminal allocation. �

Lemma 1 generalises a result by Sandholm (1998), which
is equivalent to the case of a fully connected graph (in other
words, the cited result applies to the case without the restric-
tions imposed by a negotiation topology). While Lemma 1
guarantees clique-efficient outcomes, it does not say any-
thing about which clique-efficient allocation will be reached.
For most graphs there will be a range of clique-efficient al-
location of varying quality in terms of global efficiency (in
this sense the concept is similar to that of Pareto efficiency).
There is no guarantee that we will end up with the “best”
clique-efficient allocation. Nevertheless, as we shall see
next, clique-wise efficiency is a sufficiently strong notion to
serve as a basis for negotiating envy-free states.

Convergence to GEF States
In this section we are going to prove a convergence theo-
rem for GEF states: we show that under certain conditions
on the valuation functions and for a particular choice of pay-
ment function (including a so-called “initial equitability pay-
ment”), any sequence of IR deals that respect the negotiation
topology will result in a GEF state. This generalises a recent
result for the case without the restrictions imposed by a ne-
gotiation topology (Chevaleyre et al. 2007).

We now introduce the the conditions under which our the-
orem applies. Firstly, all valuations v are required to be su-
permodular: v(R1 ∪ R2) ≥ v(R1) + v(R2) − v(R1 ∩ R2)
for all R1, R2 ⊆ R. That is, goods are complementaries; the
valuation derived from a bundle is always at least as high as
the sum of the valuations of its parts. This is a very natu-
ral class of valuations to consider, which plays an important

role in several application domains. Secondly, we are go-
ing to assume that agents use a specific payment function to
determine the exact payments to be made from amongst the
range of IR payments that are possible in most cases. We use
the globally uniform payment function (GUPF), which fixes
payments at p(i) = [vi(A′)−vi(A)]− [sw(A′)−sw(A)]/n
for a given IR deal δ = (A, A′). Finally, we also require
agents to make so-called initial equitability payments. Be-
fore negotiation starts, from the initial allocation A0, each
agent is required to make a one-off payment of π0(i) =
vi(A0) − sw(A0)/n. This condition does present a depar-
ture from the ideal of IR negotiation, but as argued else-
where (Chevaleyre et al. 2007), and as we are also going
to see later on, the concepts of envy-freeness and individual
rationality are in fact incompatible: there can be no fully IR
negotiation process that would guarantee convergence to a
GEF state under all circumstances.

Theorem 1 (Convergence) If all valuations are supermod-
ular and if initial equitability payments have been made,
then any sequence of IR clique-deals using the GUPF will
eventually result in a GEF state.

Proof. The proof is adapted from Chevaleyre et al. (2007).
First observe that the use of the GUPF together with initial
equitability payments ensures that we get a payment bal-
ance satisfying π(i) = vi(A) − sw(A)/n for every state
(A, π) reached during negotiation and every agent i ∈ A.
For the initial state, this is just the definition of the initial eq-
uitability payments, and the GUPF payment p(i) for a deal
δ = (A, A′) is precisely the difference between the balances
associated with A′ and A:

p(i) = [vi(A′) − vi(A)] − [sw(A′) − sw(A)]/n
= [vi(A′) − sw(A′)/n] − [vi(A) − sw(A)/n]
= π′(i) − π(i)

By Lemma 1, negotiation will eventually terminate and the
final allocation A∗ will be clique-wise efficient. The associ-
ated payment balance will be π∗(i) = vi(A∗)− sw(A∗)/n.
We need to show that the state (A∗, π∗) must be GEF when-
ever all valuations vi are supermodular.

Let i and j be any two agents. We show that i does not
envy j in state (A∗, π∗). Suppose (i, j) ∈ E (if i cannot see
j then we are done). Agents i and j form a clique. So due
to the clique-wise efficiency of A∗, giving both A∗(i) and
A∗(j) to i will not increase the sum of valuations for this
clique any further:

vi(A∗(i)) + vj(A∗(j)) ≥ vi(A∗(i) ∪ A∗(j))

As vi is supermodular (and normalised) , this entails:

vi(A∗(i)) + vj(A∗(j)) ≥ vi(A∗(i)) + vi(A∗(j))

Adding sw(A∗)/n to both sides of this inequation, af-
ter some simple rearrangements, yields ui(A∗(i), π∗(i)) ≥
ui(A∗(j), π∗(j)), i.e. agent i does indeed not envy agent j.
Hence, (A∗, π∗) must be a GEF state. �

Theorem 1 means that agents can negotiate in a distributed
manner, guided only by their own rational interests and lim-
ited to their “neighbourhoods” as given by the cliques of the
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negotiation topology, and —as long as all the side condi-
tions are satisfied— a state that is envy-free according to all
agents (whose vision is limited by the negotiation topology)
will eventually emerge. In particular, agents can go ahead
and negotiate any beneficial deals, without fear of getting
stuck in a local optimum.

A critical point in Theorem 1 is the use of the GUPF,
as this payment function does not respect the negotiation
topology. However, it is easy to show that there can be
no clique-wise payment function (a payment function giv-
ing non-zero payments only to agents belonging to a partic-
ular maximal clique within which the deal is taking place)
that would allow us to achieve a convergence result for
GEF states. To see this, consider the following exam-
ple. Suppose there are three agents on a line (i.e. E =
{(1, 2), (2, 1), (2, 3), (3, 2)}), the payment balance is cur-
rently 0 for all agents, and the valuation function of agent 3
is v3(R) = 0 for any R ⊆ R. Then any deal between
agents 1 and 2, where the former makes a non-zero payment
to the latter, will render agent 3 envious of agent 2.

A variation of this example shows that even when there
exists a clique-wise payment function leading to a GEF
state, the exact amount of the payments to be made may de-
pend on agents outside the clique where the deal is taking
place. For the same negotiation topology as above, let again
v3(R) = 0 for any R ⊆ R, but now suppose that agent 3
has benefited from a previous deal in monetary terms, i.e.
π(3) = x for some x < 0. Then an envy-eliminating deal
between agents 1 and 2 should be such that it brings the pay-
ment balance of agent 2 to at least x as well (which may or
may not be possible, depending on the scenario at hand).
This shows that the best possible clique-wise payment func-
tion may not be identifiable locally.

A positive point to be made about the GUPF is that the
payments to non-involved agents (in particular those outside
the clique where the deal is taking place) solely depend on
the social surplus generated by the deal and the overall num-
ber of agents in the system. So agents do only need to be
“aware” of agents they cannot “see” in so far as they need to
know their overall number. This arguably corresponds well
to human society: our sphere of influence may be very much
restricted to a small section of society (negotiation topol-
ogy), but we are still aware of some basic facts concerning
society as a whole (such as the number of its members).

In fact, the GUPF appears to be the only payment func-
tion (meeting certain mild conditions) that would allow us
to obtain a convergence result such as Theorem 1. Firstly,
Lemma 1 shows that the terminal allocation A∗ will be
clique-wise efficient —whatever the payment function. Sec-
ondly, there are many examples where, for the final state
to be GEF, the final payment balance must be defined by
π∗(i) = vi(A∗)− sw(A∗)/n, as in the proof of Theorem 1.
Any scenario where all agents have the same valuation func-
tion may serve as an example. Of course, any number of
payment functions could achieve the above final payment
balances, as long as we can be sure that the rule applied
during the very last deal is such that we get the correct val-
ues for π∗. Now, if we postulate that a reasonable payment
function must be defined such that payments can be com-

puted independently of whether the deal in question will be
final or not, then π(i) = vi(A) − sw(A)/n should hold af-
ter every deal. This in turn, forces initial payments to be
exactly as defined above (because the initial allocation may
already be efficient and hence final), and the only possible
payment function is the GUPF, as it is precisely the function
we obtain when we compute the difference of the payment
balances for two consecutive negotiation states.

Computational Complexity
The objectives of achieving envy-freeness and of maintain-
ing individual rationality during negotiation are not entirely
compatible; this is why Theorem 1 requires initial equitabil-
ity payments. In other words, there are negotiation states
such that no possible IR deal would allow us to eliminate
envy (Chevaleyre et al. 2007). So one may ask whether a
given negotiation state admits a follow-up deal that would
not only be IR but that also reduces envy in the system (or,
as a special case, that completely eliminates envy). This
section is devoted to the analysis of the computational com-
plexity of this problem. A precise statement of the problem,
firstly, requires us to define what is to be understood by the
degree of envy of a society of agents.

Define the degree to which agent i envies agent j in state
(A, π) as e(i, j) = max{ui(A(j), π(j))−ui(A(i), π(i)), 0}
for (i, j) ∈ E and e(i, j) = 0 for (i, j) �∈ E. There are
various options in which to combine these individual envies
so as to define a notion of degree of envy of an entire society
(Chevaleyre et al. 2007). Here, we define a measure of envy
as any function envy(., .) mapping negotiation states to the
rationals that is monotonically non-decreasing in e(i, j) for
any i, j ∈ A, and that satisfies envy(A, π) = 0 iff (A, π)
is envy-free.1 This includes natural definitions of degree of
envy, such as the sum of all envies

∑
i,j∈A e(i, j) and the

number of envious agents #{i ∈ A | 0 <
∑

j∈A e(i, j)}.
We now define the decision problem we want to analyse.

For the purposes of stating the problem, let a negotiation
problem be specified by a negotiation topology G = (A, E);
a set of resources R; and valuations 〈v1, . . . , vn〉.

WELFARE IMPROV. WITH ENVY REDUCTION (WIER)
Instance: negotiation problem; state (A, π); K ∈ Q;

measure of envy envy(., .)
Question: Is there an alternative state (A′, π′) satisfying

– δ = (A, A′) is a clique-deal;
– vi(A′)−vi(A) > π′(i)−π(i) for all i ∈ A;
– envy(A, π) − envy(A′, π′) ≥ K?

That is, WIER asks whether, for a given negotiation state,
there exists a clique-deal that is IR (second condition) and
for which payments can be arranged such that the degree of
envy reduces at least by an amount of K (third condition).
Observe that, if we set K = envy(A, π), then WIER asks
whether there exists an IR clique-deal that eliminates envy
entirely (independently of the measure of envy chosen).

To establish the complexity of WIER, we are going to use
a reduction from another decision problem:

1Lastly, we also assume that any measure of envy envy(., .) is
polynomial-time computable.
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WELFARE IMPROVEMENT (WI)
Instance: negotiation problem; state (A, π)
Question: Is there a state (A′, π′) such that

– vi(A′)−vi(A) > π′(i)−π(i) for all i ∈ A?

That is, WI asks whether a given state admits an IR deal
(without any restriction to clique-deals). The name of the
problem stems from the fact that any IR deal increases so-
cial welfare. WI has been shown to be NP-complete for a
range of different ways of representing the valuation func-
tions of agents (Dunne, Wooldridge, & Laurence 2005;
Chevaleyre et al. 2006). As our interest here is not in prefer-
ence representation languages, we state our complexity re-
sult without explicit reference to the language used; it ap-
plies to any language for which WI is NP-complete.

Theorem 2 (Complexity) WIER is NP-complete.

Proof. NP-membership follows from the fact that the con-
ditions of WIER can be verified in polynomial time for
any proposed solution state. We are going to show NP-
hardness by reduction from WI, which is known to be NP-
hard even for the case of just two agents. Given an in-
stance of WI for two agents with valuations 〈v1, v2〉, re-
sources R, and state (A, π), we build an instance of WIER
(for three agents) as follows: The negotiation topology is
G = ({1, 2, 3}, {(1, 2), (2, 1), (2, 3), (3, 2)}) and the set of
resources is R ∪ {r∗1 , r∗2 , r∗3}. The initial state (A∗, π∗) is
defined as follows:

A∗(1) = A(1) ∪ {r∗1} π∗(1) = π(1)
A∗(2) = A(2) ∪ {r∗2} π∗(2) = π(2)
A∗(3) = {r∗3} π∗(3) = 0

The valuation functions of the first two agents are given by
v∗1 = v1 − 3Ωr∗2 − 3Ωr∗3 and v∗2 = v2 − 3Ωr∗1 − 3Ωr∗3 , and
v∗
3 is defined as follows:

v∗
3(R) =

{ Ω if R = A∗(1) or R = A∗(2)
−Ω if R = {r∗3}−2Ω otherwise

Here, Ω is a constant, the value of which will be chosen
big enough. Finally, we set K = envy(A∗, π∗), i.e. we are
looking for an IR clique-deal that will result in an envy-free
state. This completes the description of the WIER instance.
In state (A∗, π∗), the utility enjoyed by agent 3 will be −Ω,
and that of agents 1 and 2 will be v1(A)−π(1) and v2(A)−
π(2), respectively. Now notice the following few facts:

• In the initial state (A∗, π∗), agent 3 envies agent 2
(e(3, 2) = 2Ω−π∗(2)), and agents 1 and 2 are envy-free.

• No IR deal can involve agent 3. Suppose agent 3 gets
A∗(1) or A∗(2), then its utility increases by 2Ω. Then,
either 1 or 2 would get r∗3 , which would reduce social
welfare by 3Ω. Also, if 3 gets any other bundle, social
welfare will decrease by an amount of Ω.

• No IR deal can involve any of the resources {r∗1 , r∗2 , r∗3}.
Such a deal would decrease social welfare by at least Ω.

• A deal is IR on the WI instance iff it is IR on the WIER
instance. This is a consequence of the previous two facts.

• Any IR deal δ = (A∗, A∗′) will reduce the envy of agent 3.
Specifically, 3 can only envy 2 and the bundle held by 2
will become unattractive for agent 3 (v3 = −2Ω). That is,
e(3, 2) will go down to max{−Ω−π∗′(2), 0}. Thus, if Ω
has been chosen sufficiently big, then the envy of agent 3
will become 0 after any IR deal.

• Agents 1 and 2 will stay envy-free after any IR deal. This
must be so because of the resources r∗2 , r∗3 (resp. r∗1 , r∗3)
they highly dislike.

The last three points imply that: if the answer to the WI
problem is YES, then there is also an IR deal for the WIER
instance, and any such deal is bound to bring envy down
to 0. If the answer to the WI problem is NO, then there is
also no IR deal for the WIER instance. �

Our proof demonstrates that the restriction to clique-deals
does not affect computational complexity for this particular
kind of decision problem. The same is true for the addition
of the condition that the chosen deal is required to decrease
envy, but this is a lot more surprising. Intuitively, finding
a deal that is not just IR, but also envy-reducing, seems a
lot harder than finding an IR deal. Of course, this perceived
increase in complexity may both increase or decrease the
complexity of checking whether such a deal exists (which
is the question asked by WI and WIER, respectively). The-
orem 2 shows that neither is the case; the problem remains
NP-complete.

Related Work
Our results build on a series of papers developing an abstract
negotiation framework where rational but myopic agents in-
teract in a distributed manner (Sandholm 1998), in particular
various convergence (Endriss et al. 2006) and complexity
(Dunne, Wooldridge, & Laurence 2005) results pertaining
to this framework. Specifically, our convergence result gen-
eralises a recent result (Chevaleyre et al. 2007) by bringing
the notion of negotiation topology into the picture.

Outside of this particular line of work, fair division has
mostly been addressed by economists and social scientists,
e.g. (Brams & Taylor 1996); research on fair division in AI
is still rare. Two exceptions are the recent work by Lip-
ton et al. (2004) and Bouveret and Lang (2005). Both pa-
pers analyse the complexity of finding envy-free allocations
without the possibility of monetary side payments, i.e. when
envy-free allocation may not necessarily exist. Lipton et
al. (2004) give a polynomial algorithm for finding an allo-
cation with a bounded degree of envy. The measure of envy
used is maxi,j∈A e(i, j), which satisfies our criteria for mea-
sures of envy given in the previous section. Furthermore, the
paper studies approximation schemes for finding allocations
with minimum degree of envy. Bouveret and Lang (2005)
study the computational complexity of checking whether a
particular negotiation problem admits an allocation that is
both envy-free (without side payments) and Pareto efficient.
The paper focusses on compact encodings of the problem by
means of a logic-based language for modelling the individ-
ual agent preferences.
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Neither paper addresses the “procedural” aspects of find-
ing an envy-free allocation, which is the focus of Theorem 1.
In the literature on fair division in economics, the term “pro-
cedure” is usually applied to methods for finding fair alloca-
tions that are suitable for implementation by human players
(Brams & Taylor 1996), which is again different from our
approach, as it does not address computational issues.

Conclusion
The contributions of this paper may be summarised as fol-
lows. As a first “conceptual” contribution, we have en-
riched an abstract negotiation framework, previously stud-
ied by several authors (Sandholm 1998; Endriss et al. 2006;
Dunne, Wooldridge, & Laurence 2005; Chevaleyre et al.
2007), with an explicit negotiation topology. A negotia-
tion topology is an undirected graph specifying which agents
may trade goods with each other. Known impossibility re-
sults (Endriss et al. 2006) state that (almost) any structural
restriction to the negotiation protocol will mean that effi-
cient negotiation outcomes may not be attainable anymore
in all cases, and this also applies to our setting. As we have
shown, this can be circumvented by using a weaker notion
of efficiency (Lemma 1), but we have also argued that such
a relativisation of efficiency would be only of very limited
practical interest.

This is where our second conceptual contribution comes
in: Concerning envy-freeness, a weakened definition that
takes account of the negotiation topology is very much an
interesting concept in practice. The straightforward relativi-
sation of the standard definition lines up perfectly with our
intuitive understanding of how envy works in communities
that are not fully connected.

Finally, our technical contributions are twofold. We have
firstly extended a recent convergence result to show that any
sequence of individually rational deals that respect the nego-
tiation topology will, under certain conditions, result in an
allocation of goods and a payment scheme where no agent
envies any of the other agents it is connected to (Theorem 1).
Secondly, we have analysed the computational complexity
of the problem of checking whether a given negotiation state
admits a deal respecting the topology that is both individu-
ally rational and that reduces overall envy. (In this context
we have also given a fairly general interpretation of what
constitutes a reasonable definition of the degree of envy of
a society of agents.) Our NP-completeness result (Theo-
rem 2) illustrates that, despite the fact that convergence to an
envy-free state by means of a distributed negotiation scheme
is often possible, implementing a solution according to this
scheme still poses an algorithmic challenge.

There are a range of interesting questions to be consid-
ered for future work. One such question concerns the com-
plexity of checking whether a given negotiation problem ad-
mits reaching an allocation with social welfare exceeding
a given threshold K, if negotiation is required to proceed
by means of individually rational deals respecting the ne-
gotiation topology. If there are no restrictions on the nego-
tiation scheme, then the problem is equivalent to the win-
ner determination problem in combinatorial auctions, which
is known to be NP-complete (Rothkopf, Pekec̆, & Harstad

1998). However, with the restrictions imposed by a ne-
gotiation topology, the problem seems closer to so-called
reachability properties, some of which give rise to PSPACE-
complete decision problems (Dunne, Wooldridge, & Lau-
rence 2005; Chevaleyre et al. 2006). In particular, the sim-
ple argument for NP-membership given in the proof of The-
orem 2 does not apply here, as a “solution” would now be a
sequence of deals, and we cannot be sure that the sequence
in question will not have to be of exponential length.

References
Alkan, A.; Demange, G.; and Gale, D. 1991. Fair alloca-
tion of indivisible goods and criteria of justice. Economet-
rica 59(4):1023–1039.
Bell, A. M. 1996. Bilateral trading on a network: A simu-
lation study. Presented at the Second International Confer-
ence on Computing in Economics and Finance.
Bouveret, S., and Lang, J. 2005. Efficiency and envy-
freeness in fair division of indivisible goods: Logical rep-
resentation and complexity. In Proc. of IJCAI-2005.
Brams, S., and Taylor, A. 1996. Fair Division: From Cake-
cutting to Dispute Resolution. Cambridge University Press.
Chevaleyre, Y.; Dunne, P.; Endriss, U.; Lang, J.; Lemaı̂tre,
M.; Maudet, N.; Padget, J.; Phelps, S.; Rodrı́guez-Aguilar,
J.; and Sousa, P. 2006. Issues in multiagent resource allo-
cation. Informatica 30:3–31.
Chevaleyre, Y.; Endriss, U.; Estivie, S.; and Maudet, N.
2007. Reaching envy-free states in distributed negotiation
settings. In Proc. of IJCAI-2007.
Dunne, P.; Wooldridge, M.; and Laurence, M. 2005. The
complexity of contract negotiation. Artificial Intelligence
164(1–2):23–46.
Endriss, U.; Maudet, N.; Sadri, F.; and Toni, F. 2006. Ne-
gotiating socially optimal allocations of resources. Journal
of Artificial Intelligence Research 25:315–348.
Frei, C.; Faltings, B.; and Hamdi, M. 2005. Resource al-
location in communication networks using abstraction and
constraint satisfaction. IEEE Journal on Selected Areas in
Communication 23(2):304–320.
Lipton, R.; Markakis, E.; Mossel, E.; and Saberi, A. 2004.
On approximately fair allocations of indivisible goods. In
Proc. of ACM-EC-2004.
Moulin, H. 1988. Axioms of Cooperative Decision Making.
Cambridge University Press.
Rothkopf, M.; Pekec̆, A.; and Harstad, R. 1998. Computa-
tionally manageable combinational auctions. Management
Science 44(8):1131–1147.
Sandholm, T. 1998. Contract types for satisficing task al-
location: I Theoretical results. In Proc. AAAI Spring Sym-
posium: Satisficing Models.
Wilhite, A. 2001. Bilateral trade and ‘small-world’ net-
works. Computational Economics 18(1):49–64.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The distributed constraint satisfaction problem: For-
malization and algorithms. Knowledge and Data Engineer-
ing 10(5):673–685.

705


