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Abstract—This paper proposes a novel task allocation framework, PSTasker, for participatory sensing (PS), which aims to maximize

the overall system utility on PS platform by coordinating the allocation of multiple tasks. While existing studies mainly optimize the task

allocation from the perspective of the task organizer (e.g., maximizing coverage or minimizing incentive cost), PSTasker further

considers diverse factors on the participants’ side, including user work bandwidth, user availability, devices’ sensor configuration, task

completion likelihood, and mobility pattern. Furthermore, by considering the heterogeneity in three dimensions (i.e., task, time and

space), it adopts a novel model to measure task sensing quality and overall system utility. In PSTasker, it first calculates the utlity of a

given task allocation plan by jointly fusing different participant-side factors into one unified estimation function, and then employs an

iterative greedy process to optimize the task allocation. Extensive evaluations based on real-world mobility traces demonstrate that

PSTasker outperforms the baseline methods under various settings.

Index Terms—Participatory sensing, mobile crowd sensing, task allocation, participant-side factors

✦

1 INTRODUCTION

PARTICIPATORY sensing (PS) or mobile crowd sensing
[1], [2] is a novel paradigm for monitoring the urban

landscape. In a PS system, task organizers publish sensing
tasks with certain specifications (e.g., sensing target area and
duration), while ordinary citizens (called participants) col-
lect sensing data from their surrounding environment with
their mobile devices, and report to the cloud server. The data
contributed from multiple participants can be aggregated to
build a spatio-temporal view of the phenomenon of interest
in a city (e.g., pollutant distribution monitoring, noise map
construction and traffic congestion detection, etc.).

Many PS platforms such as Campaignr [3] and Medusa
[4] have been developed. In order to reduce the burden
of participants in finding appropriate sensing tasks on the
PS platform, automatic task allocation has been studied
extensively in recent years [11], [12], [14], [15], [16], but these
approaches are mostly single-task-oriented. This assumes
that tasks are independent and there are always sensing
resources (participants or mobile devices) available for each
task. Based on the above assumptions, their goal is to select
an optimal subset of mobile users from a large user pool to
complete the sensing task with certain optimization goals
(e.g., spatio-temporal coverage and incentive cost).

However, with more and more applications leveraging
PS paradigm, sensing tasks are not independent on a multi-
task platform, because they compete with each other in
a shared and limited resource pool (i.e., the same set of
participants). To this end, some recent studies (e.g., [20],
[22], [23], [24]) have started to focus on multi-task allocation,
where the interdependency of multiple tasks is considered.
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Although the corresponding multi-task allocation frame-
works or approaches are proven to be effective in solving
their formulated problems, the following limitations still
exist.

First, existing studies do not fully consider the het-
erogeneity when modeling and quantifying overall utility
of multiple PS tasks. For PS tasks, a number of sensor
data samples are needed to guarantee the reliability of the
collected data [11]. In a multi-task PS platform, we observe
that in terms of the required number of data samples,
there exist heterogeneity among tasks, sensing cycles and
subareas. First of all, different sensing tasks require different
numbers of data samples to guarantee a certain level of
reliability. For example, the number of data samples needed
for a noise level sensing task is larger than that for a air
quality monitoring task, because the noise level may be very
diverse even among nearby locations, while the distribution
of air quality is much more uniform. Furthermore, even for
the same task, the required number of data samples in a
different time (sensing cycles) and space (subareas) is also
different. By taking the traffic detection task as an example,
in terms of space, it requires more data samples for the
subareas in downtown than those in the suburb. In terms of
time, the task will also require more samples in rush hours
than at night.

Second, existing studies mainly optimize the PS task al-
location from the perspective of task organizers (e.g., task’s
spatio-temporal coverage, the number of completed tasks,
budget constraints, etc.), while neglecting participant-side
factors. For example, both [23] and [24] aim at optimizing
the overall utility of multiple tasks while keeping a total
budget constraint for the platform, and the authors in [20],
[31] propose frameworks to minimize the incentive cost
while ensuring the completion of required sensing tasks.
In these research works, participant-side factors, such as
participants’ bandwidth, availability, devices’ sensor config-
uration and task completion likelihood, are rarely taken into
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consideration. They commonly assume that participants are
able to perform an unlimited number of tasks, or assume
that participants complete tasks at any time and locations if
the task is assigned, which does not conform to the practical
application scenarios.

Considering the heterogeneity among tasks and the di-
verse participant-side factors, this paper defines a novel
multi-task allocation problem. Specifically, the objective is
to assign an appropriate set of tasks to each participant (i.e.,
selecting an appropriate set of task-and-participant pairs) to
maximize the overall system utility, with consideration of
the following participant-side factors.

• Participant bandwidth. Each participant is willing to
be assigned with a limited number of tasks, as they
do not want to be disturbed frequently. Thus, in
this paper, we allow each participant to pre-define
their maximum number of assigned tasks (called
bandwidth).

• Participant availablility. Delivering PS tasks to partici-
pants brings intrusiveness and privacy risk to them.
In fact, participants may not be willing to receive and
complete during some periods of time or at some
locations. For example, some may not want to be
disturbed during working time, while others may
reject the task when they are at home for location
privacy concerns. Thus, in this paper, we allow each
participant to explicitly define the spatio-temporal
cells where they do not want to do tasks.

• Sensor configuration. The participant’s mobile device
might not possess the required sensors. Besides, even
if having required sensors, the participants may also
choose to actively disable some (e.g., those sensors
collecting sensitive data). The sensor configuration
information can be automatically captured by the
PS platform when the participants registered their
mobile devices.

• Task completion likelihood. State-of-the-art research
works assume that the participants would complete
each assigned task. However, the recent literature
[37] reveals that this assumption may not be true
and people usually complete the assigned tasks with
a certain probability. In this paper, we assume that
each participant has a task completion likelihood,
which could be learned through his/her historical
participation records.

The aforementioned overall utility maximization prob-
lem is NP-hard1, so that it is impossible to use a brute-force
enumeration approach. Thus, we require a feasible mecha-
nism to optimize the multi-task allocation while ensuring
that the computation complexity is under control.

The main contributions of this paper are:

(1) This paper investigates and formulates a novel
multi-task allocation problem for PS. First, while
most of the existing work mainly optimizes the task
allocation from task organizers’ perspective, we take
into account several participant-side factors, includ-
ing the bandwidth, availability, devices’ sensor con-
figuration and task completion likelihood. Second,

1. The NP-hardness of the problem is proved in the preliminary
conference version of this work [33].

by considering the heterogeneity among tasks and
spatio-temporal cells, we adopt a novel model to
measure task sensing quality and define the overall
system utility.

(2) We convert the multi-task allocation problem into
the representation of a bipartite graph and propose
a multi-task allocation framework, called PSTasker.
PSTasker first reduces the complexity of the original
problem by assigning feasible tasks to underloaded
participants. It then takes an iterative greedy pro-
cess to optimize task assignments for overloaded
participants. Specifically, it calculates the utility in-
crease achieved by different task-and-participant
pairs by jointly modeling diversifying participant-
side factors in one unified function.

(3) We evaluate PSTasker extensively with real-world
mobility traces and simulations. We verify that, un-
der various settings, PSTasker outperforms baseline
methods by achieving higher overall utility.

2 RELATED WORKS

2.1 Task Allocation in Online Crowdsourcing

Many online crowdsourcing platforms (e.g.,[25], [26], [27])
have been developed in recent years. Meanwhile, task al-
location is also extensively studied for online crowdsourc-
ing, where corresponding approaches [28], [29], [30], [34],
[35] are proposed with different optimization goals and
constraints. These approaches are designed for human in-
telligence tasks (e.g., image classification), which are com-
pleted online (e.g., through a desktop computer at home).
On the contrary, the goal of PS tasks is to sense physical
environment or phenomenon in cities (e.g., temperature,
traffic status, and air quality). This is location-dependent
and requires the participant’s physical presence at some
locations. Therefore, some key factors, such as the user’s
mobility, sensor configuration and heterogeneity among dif-
ferent tasks, should be taken into account in PSTasker. Thus,
existing task allocation approach for online crowdsourcing
cannot be directly adopted to solve our formulated problem.

2.2 Single Task Allocation in PS

There are two main groups of research in single task alloca-
tion for PS. A group of research aims at minimizing the
cost while ensuring a certain degree of the data quality.
Xiong et al. [9], [10] investigated how to assure the full
coverage over a several cell towers with the minimum
number of users. Zhang et al. [8] studied offline participant
selection for probabilistic coverage, whose objective is to
select a minimum number of participants to guarantee that
a certain percentage (e.g., 85%) of coverage. Karaliopoulos
et al. [15] studied the user recruitment problem, whose goal
is to minimize the total incentive payment while ensuring
each points-of-interest is visited by participants before the
deadline. Hachem et al. [16] proposed a participant selection
framework for participatory sensing, which reduces the
number of selected participants by predicting mobile users’
future locations in next time slot. Song et al. [14] proposed
a QoI-aware and energy-efficient participant selection strat-
egy, which aims at balancing the quality of Information and
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energy cost.In [17], [18], the authors leveraged the spatial or
temporal correlations to reduce the number of participants,
while meeting certain coverage quality constraints. In [19],
the authors proposes a compressive sensing based approach
to select a minimum number of participants while ensuring
the sensing accuracy.

In contrast, another set of literature aims at maximizing
the data quality of PS with certain constraints. In [5], [6]
Reddy et al. investigated the research challenges of partic-
ipant recruitment in PS and proposed a strategy to select
a predefined number of participants so as to maximize
the spatial coverage. In [11], [12], the authors attempt to
maximize the coverage quality under an overall budget
constraint. Cardone et al. [7] developed a platform, where
a simple participant selection mechanism was proposed
to maximize the spatial coverage of crowd sensing with
a predefined number of participants. Singla et al. [13]
designed an adaptive participant selection mechanism for
maximizing spatial coverage with the limited total budget
in community sensing with privacy preserving concerns.

These research works focused on single task allocation
and did not consider the interdependency among multiple
tasks. In contrast, PSTasker optimizes the task allocation of
multiple concurrent PS tasks.

2.3 Multi-Task Allocation in PS

In recent years, researchers start to focus on multi-task allo-
cation of PS [22], [24], [31], [32], [33]. In [22], the optimization
goal is to minimize total cost while ensuring different levels
of coverage for multiple tasks. In [24], the goal is to achieve
the best quality satisfaction metrics for all tasks under the
total budget constraints. Another work [31] aims at mini-
mizing the overall sensing cost of mobile devices while com-
pleting all location-specific tasks. Yang et al. [32] proposed
an approach to minimize the total latency of sensing tasks
to ensure the quality of data. Authors in [20], [21] studied
two cases for multi-task mobile crowd sensing (i.e., few
participants many tasks, and many participants few tasks).
Our previous conference paper [33] also formulated a multi-
task allocation problem by taking the task coverage quality
and participant’s maximum bandwidth into account.

These works mainly optimize the multi-task allocation
from the perspective of task organizer without fully taking
into account participant-side factors. For example, most
of them assume that participants are able to perform an
unlimited number of tasks, or assume that participants
complete tasks at any time and location, which does not con-
form to the practical application scenarios. On the contrary,
PSTasker takes into account diverse participant-side factors,
including the bandwidth, availability, devices’ sensor con-
figuration and task completion likelihood. In addition, by
considering the heterogeneity in three dimensions (i.e., task,
time and space), PSTasker measures task sensing quality and
overall system utility more practically.

3 SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we first display a running use case in sub-
section 3.1, which is used throughout the paper. Second, we
model the data quality by considering heterogeneity in three

TABLE 1
Major notations used throughout this paper

Notation Interpretation
t1, . . . , tk A set of tasks
p1, . . . , pH A set of participants
MinTx,MaxTx Minimum and maximum number of sam-

ples for a subarea in a cycle of task x

ESx
i,j The effective number of samples for a

specific task x on a subarea i and in a cycle
j

Cell DQIxi,j Data quality of a specific task x on a
spatio-temporal cell (subarea i and cycle
j)

δxi,j The importance of each spatio-temporal
cell

DQIx Data quality of a specific task x

U(Ψ) PS system’s overall utility achieved by
task allocation plan Ψ

Vf A set of task-and-participant pairs (task
allocation instance set)

βu,i,j Representing if participant pu allow the
system to assign tasks in subarea i and
cycle j

Lu The bandwidth of participant pu
řu,i the likelihood that pu completes tasks in

subarea i

dimensions, and further define the overall system utility
in subsection 3.2. Third, we present the participant-side
factors we consider in PSTasker in subsection 3.3. Finally, the
optimization problem is formally formulated in subsection
3.4. The important notations are summarized in Table 1.

Similar to [9], [10], [33], we also uses the cell tower as
the sensing range of each subarea (i.e., sensing task) due to
two reasons: 1) The cell tower IDs of mobile phones are
accessible in call logs, thus using cell towers as subarea
division metrics can illustrate the core idea of PSTasker; 2)
For PS applications, such as urban air quality monitoring,
covering a high percentage of cell towers ensures that most
parts of the entire sensing region is measured, even though
the granularity of cell tower may not be the best choice.
However, the key algorithms of PSTasker are not restricted
by how the subareas are divided, and using cell towers as
subarea division metrics is just an example to illustrate the
core idea of PSTasker.

3.1 Use Case Description

To aid in understanding, we present a use case with ParSens,
a PS-driven platform, which shares real-time location-dependent
information in a city. Let us consider a downtown area with
sensing requirements for a certain time period (e.g. one week). This
downtown area is divided into several virtual subareas, where the
region covered by a cell tower is regarded as a subarea (see Figure

1). The entire sensing duration is divided into equal-length cycles
(e.g. 2 hours per cycle). In ParSense there are multiple sensing
tasks (e.g., air quality monitoring, traffic congestion detection,
and noise map construction), which share the same subareas
and cycles. Each task is published by an organizer with task-
specific data quality requirement. There are a set of mobile users
registered in ParSense as candidates, and they share their cell
tower connection records to the platform. Each participant pre-
defines the maximum number of assigned tasks (bandwidth) and
availability in different spatial-temporal cells through ParSense’s
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Fig. 1. Sensing area and subareas: an example

mobile client side. Moreover, the mobile phone of each participant
has a set of sensors, which can complete different sets of tasks
(sensor configuration). An appropriate subset of tasks is assigned
to each participant. The pre-assigned tasks will only be pushed
to the participants online when they connect to the cell towers
(e.g., placing a phone call or sending a textual message). After
noticing the recommended tasks, the participants complete them
with a probability (completion likelihood).

3.2 Sensing Quality and Overall Utility

In order to define the overall system utility, we first need to
characterize the sensing quality of multiple concurrent and
heterogeneous PS tasks. As different types of tasks require
a different number of samples in a subarea, we set a range
(MinTx,MaxTx) for a specific task x, where MinTx and
MaxTx are the task-specific minimum and a maximum
number of samples for a subarea in a cycle, respectively.
Based on the thresholds, we define the following concepts.

Definition 1 (Effective Number of Samples) Given a
specific multi-task allocation plan ψ, the effective number of
samples ESx

i,j for a specific task x on a subarea i and in a cycle j
is defined as follows:

ESx
i,j(Ψ) =

{

0,ASx
i,j(Ψ) < MinTx

min{ASx
i,j(Ψ),MaxTx},AS

x
i,j(Ψ) ≥MinTx

(1)

where ASx
i,j(Ψ) is the actual number of samples for a specific

task x on a subarea i and in a cycle j.

The intuition behind the above definition of maximum
and minimum thresholds is that, on each subarea and in
each cycle, a number of measurements are required, which
is task-specific. First, at least a number of samples is needed
(i.e., the minimum threshold) to guarantee the reliability
of collected data. If the minimum requirement cannot be
reached, the collected data should not be trusted and is
regarded as meaningless, so that the effective number of
samples is set to zero. If the minimum requirement is
met, the quality would increase as the number of samples
increases. However, if it increases beyond a certain value

(i.e., the maximum threshold), the data quality might not in-
crease anymore [8], [11]. Note that if the minimum value of a
task is set to be 0, thenESx

i,j(Ψ) = min{ASx
i,j(Ψ),MaxTx}.

Based on the definition of ESx
i,j(Ψ), the sensing quality of a

specific task on a spatio-temporal cell is defined as follows.
Definition 2. (Cell DQI , Data Quality Index per Cell)

Given a task allocation plan Ψ, the sensing quality of a specific
task x on a spatio-temporal cell (subarea i and cycle j) is defined
as Cell DQI(Data Quality Index per Cell) as follows:

Cell DQIxi,j(Ψ) =
ESx

i,j(Ψ)

MaxTx
(2)

Even for the same task, the requirements in dimensions
of the time and space are also different. We take the traffic
detection task as an example. In terms of space, it requires
more data samples for the subareas in downtown than those
in the suburb. In terms of time, it requires more samples in
rush hours than at night. To this end, we introduce the fol-
lowing concepts to model the spatio-temporal heterogeneity.

Definition 3 (Spatio-temporal Weight) The importance
of each spatio-temporal cell is characterized by the weight factor
denoted as δxi,j . It is calculated based on the historical query
frequency of a PS task and normalized into [0, 1]. First, we
calculate the average number data queries in each spatio-temporal
cell (subarea i and cycle j) for each task x, which is denoted as
avgxi,j . Then, the spatio-temporal weight factor δxi,j is defined as
follows:

δxi,j =
avgxi,j

Σi,javgxi,j
(3)

Based on definition 2 and 3, this paper proposes novel
metrics to evaluate the data quality for multiple concurrent
PS tasks, named Data Quality Index (DQI), which is de-
scribed as follows:

Definition 4 (DQI, Data Quality Index). Data quality
of a specific task x achieved by a certain task allocation plan Ψ is
defined as the weighted sum of the data quality per spatio-temporal
cell (i.e., Cell DQIxi,j defined in definition 2, and the weight is
the δxi,j described in definition 3). The mathematical formula of
DQI of task can be defined as follows:

DQIx(Ψ) = Σi,jCell DQI(Ψ) ∗ δxi,j (4)

In this way, the achieved data quality of a task x ranges
from 0 to 1, where 0 indicates that requirements for task x
are not satisfied at all, while 1 means that requirements for
task x are fully satisfied2.

Definition 5 (Overall System Utility) PS system’s overall
utility achieved by task allocation plan Ψ is defined as the
weighted sum of DQI of all tasks, which is formulated as follows:

U(Ψ) = Σx=K
x=1 DQI

x(Ψ) ∗ wx (5)

where wx is the weight characterizing the importance
of each task and their sum is kept as 1, and K is the
total number of tasks. In realistic scenarios, the weights
are relevant to many factors. For example, we can simply

2. For example, in order to calculate avgxi,j , whose corresponding
subarea is i and cycle is j (8:00-9:00 am), we will consider the task x’s
historical query data of subarea i and the same period time (8:00-9:00
am) in the historical data.
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consider that it is in proportion to the payment of each
task, or we can take many others factors (e.g., social benefit)
into account. However, this paper does not focus on how
to determine the weights. Instead, we assume that it has
already been pre-defined by the multi-task PS platform.

3.3 Participant-Side Factors

There are H participants on the platform denoted by P =
{p1, . . . , pH} and a total of K PS tasks denoted by the T =
{t1, . . . , tk} We denote all task-and-participant pairs as V =
P × T , where (pu, tv) ∈ V . In this work, we consider the
participant-side factors including sensor configuration, user
bandwidth, user availability, and task complete likelihood,
which is characterized as follows.

First, based on the sensor configuration of each par-
ticipant’s mobile device, we further select valid task-and-
participant pairs and denote it as Vf = {(pu, tv) ∈ V |pu’s
mobile device is embedded the sensor to complete tv}.

Second, the bandwidth of participant pu is the maximum
number of assigned tasks that pu is willing to accept, which
is denoted as Lu.

Third, even with the required sensors, participants may
not want to be disturbed by task assignments during some
time intervals or at some locations. Thus, PSTasker allows
each participant set personalized cycles or subareas where
he/she is not willing to receive tasks, which is called the
participant availability in this paper. Specifically, we define
a spatio-temporal matrix for each participant denoted as
βu,i,j , where βu,i,j represents whether a participant pu allow
the system assign tasks to him/her in subarea i and cycle j
(1: allowed, 0: not allowed).

Finally, in realistic application scenarios, even if in those
spatio-temporal cells where the participants allow the task
assignments, they will not necessarily complete the assigned
tasks. For example, he/she suddenly has something urgent
to handle so that fails to get the task done. Thus, given
this uncertainty due to human behavior, we use proba-
bilistic modeling to include the participants’ task comple-
tion likelihood. The recent literature [37], [38] indicate that
participants of online crowdsourcing usually complete the
assigned tasks with a certain probability. In these works,
they assume that participants have a fixed task comple-
tion probability (say 0.5). However, PS tasks are different
from generic online crowdsourcing tasks in that PS tasks
require the participants physically move to certain locations
for completing the task. Even if for the same participant,
his/her task completion likelihood is diverse among differ-
ent locations [39]. For example, the empirical study in [39]
further demonstrates that participants are more willing to
complete tasks in close proximity to their homes. Therefore,
instead of setting a fixed probability for each participant
as [37], [38], PSTasker characterizes the location-based task
completion likelihood. We use řu,i to represent the task
completion likelihood for participant pu in subarea i. Differ-
ent from the availabilility constraints, which is participant-
defined and deterministic, the task completion likelihood
is learned from the participants’ historical participation
records.

3.4 Problem Definition

A task allocation plan Ψ can be abstracted as a set of task-
and-participant pairs, which is called the task allocation
instance set (TAIS), which is formally defined in section 4.
By taking the above participant-side factors into account, the
objective of the research work is to assign an appropriate
set of tasks to each participant offline for maximizing the
overall system utility while satisfying constraints of max-
imum bandwidth, availability, and sensor configuration.
Meanwhile, it assumes that participants complete assigned
tasks with personalized and location-based likelihood. The
offline multi-task assignment problem can be formulated as
determining a subset of task-participant pairs Vf (denoted
as V ∗

f ⊆ Vf , if (pu, tv) ∈ V ∗

f , then it means that we assign
task tu to participant pu) to maximize the overall system
utility defined in equation (5), subject to various constraints,
which is denoted as follows:

Maximize Σx=K
x=1 DQI

x(V ∗

f ) ∗ wx (6)

Subject to Σv=K
v=1 yu,v ≤ Lu (7)

where Lu is the maximum bandwidth of participant pu,
and yu,v indicates whether the task tv is assigned to the
participant u (yu,v = 1 if task tv has been assigned to the
participant pu, and otherwise yu,v = 0).

4 TASK ALLOCATION FRAMEWORK

4.1 Framework Overview

PSTasker follows a centralized approach, where a central
server collects and stores the volunteering mobile users’
historical call/mobility traces in the target area, and the
server selects task-and-participant pairs. PSTasker adopts a
two-phase procedure to determine the task allocation plan
(see Figure 2).

• Phase 1: Participant profiling. PSTasker establishes the
participants’ profiles based on the sensor configura-
tion, mobility traces, user availability settings and
users’ participation history. This profile is used in
estimating the overall utility given a set of task-and-
participant pairs (or a TAIS).

• Phase 2: Task allocation instance set selection. PSTasker
converts the multi-task allocation problem into the
representation of a bipartite graph and performs the
task allocation in the following two steps. It first
selects participants whose bandwidth is not less than
the number of tasks the participants can complete
according to the sensor configurations (named un-
derloaded participants) and determines their task
assignments, which reduces the complexity of the
original problem. It then takes an iterative greedy
process to optimize the allocation for the rest of par-
ticipants (named overloaded participants). In each
of the iterations, it incrementally selects task-and-
participant pairs based on the estimated overall sys-
tem utility.
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Fig. 2. PSTasker: framework overview

4.2 Participant Profiling

In this subsection, we describe how the participants’ profiles
are pre-constructed.

The participant profiling can be divided into the follow-
ing two categories. One is directly captured from partici-
pants’ mobile device or their self-defined information, and
the other is learned from historical task participation and
mobility records.

(1) Directly-Captured Profile
First, PSTasker allows each participant pre-define their

bandwidth and availability. The bandwidth refers to the
self-defined maximum number of tasks each participant is
willing to complete. Additionally, participants may not be
willing to receive tasks during some periods of time or at
some locations, so that we allow each participant to define
their blocked spatio-temporal cells (i.e., availability).

Second, the participant’s mobile device might not pos-
sess the required sensors, or some sensors may be dis-
abled by the participants. To reduce the participants’ bur-
den, PSTasker automatically captures sensor configurations
when the participants registered their mobile devices on the
PS platform.

(2) Learning-based Profile
First, PSTasker learns the task completion likelihood

řu,i based on the historical participation records of the
participant pu. We assume that, according to the historical
participation records, the number of tasks participant pu
receives in subarea i is qu,i, while the number of com-
pleted tasks is COMu,i, so that we calculate the location-
based task completion likelihood of participant pu in sub-
area i as řu,i = COMu,i/qu,i.We also notice that some
participants may not have historical participation records
in certain locations. In this case, we calculate it based on
his/her overall participation records in all locations, i.e.,
řu,i = ΣiCOMu,i/Σiqu,i.

Second, we predict the number of samples during cycle j
at subarea i by calculating the probability of each participant
connecting at least one time to the tower in each cycle.
We first map each participant’s historical call traces onto
N sensing cycles. Then it counts the average number of
connection by each participant pu at each subarear i in
each cycle j, which is denoted as λu,i,j For example, to
estimate λu,i,j for cycle j from 08:00 to 09:00, we will count
the average number of connections by pu at i during the
same period 08:00-09:00 in the historical records. Assuming

the connection sequence follows an inhomogeneous Poisson
process [11], the probability of a participant pu to connect n
times to cell tower i in cycle j can be modeled as:

Proi,j(u, n) =
λnu,i,j
n!

× e−λu,i,j (8)

Therefore, we can estimate the probability of participant
pu connecting at least one time during cycle j at cell tower i
as follows:

Proi,j(u) = Σ∞

n=1Proi,j(u, n) = 1− e−λu,i,j (9)

Thus, we predict that the probability of participant pu
providing one sample for each assigned task during cycle j
at cell tower i as:

αi,j(u) = Proi,j(u) = 1− e−λu,i,j (10)

4.3 Utility Estimation

The objective is to find a set of task-and-participant pairs
offline that can maximize the overall utility online. There-
fore, we need to estimate the overall utility of different com-
binations in one unified function. By further considering
different participant-side factors (including task completion
likelihood, availability constraints, and mobility patterns),
given a set of task-and-participant pairs (or a TAIS) denoted
as V ′ ⊆ P × T , the estimated actual number of samples for
task x in subarea i and cycle j can be estimated as follows.

ASx
i,j(V

′) = Σ(pu,x)∈V ′{(1− e−λu,i,j ) ∗ řu,i ∗ βu,i,j} (11)

According to definition 1 and equation (1), we can get
the effective number of sumaple ESx

i,j(V
′) by comparing

ASx
i,j(V

′) with MaxTx and MinTx.
Finally, according to definition 2, 4 and 5, the overall

utility achieved by TAIS V’ can be calculated as:

Σx=K
x=1 (Σi,j

ESx
i,j(V

′)

MaxTx
∗ δxi,j) ∗ wx (12)

4.4 Task Allocation Instance Selection

(1) Bipartite Graph Representation PSTasker first converts the
original multi-task assignment problem into a representa-
tion of a bipartite graph. Specifically, given a participant
set P = {p1, . . . , pH} and a PS task set T = {t1, . . . , tK},
we denote each participant/task as a vertex in the bipartite
graph, where participant and task vertices have distinct
vertex types. There exists an edge between a participant
vertex pu and a task vertex tv , if and only if participant pu
can complete task tv according to the sensor configuration
profile. We say that the task-and-participant pair (pu, tv)
is valid, if there is an edge between vertices pu and tv in
the graph. Based on the definition of valid pairs, we define
the concept of task allocation instance set as follows. The
bipartite graph consisting of all valid task-and-participant
pairs is called the original graph, which is denoted as G0.

Definition 6: Task allocation instance set. Given an
original graph G0 consisting of participant set P and a task
set T , a task allocation instance set (TAIS), denoted by I ,
is a set of task-and-participant pairs in the form (pu, tv),
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Fig. 3. Illustration of the task-and-participant assignment: an example

where each (pu, tv) is a valid pair and the degree of vertex
pi (denoted as deg(pu)) subject to deg(pu) ≤ Lu, where Lu

is the pre-defined maximum bandwidth of participant pu.
Figure 3 (left) illustrates an example of valid pairs

(i.e., original graph G0), where five available participants
and three PS tasks are denoted by triangular and circular
nodes, respectively, and valid task-and-participant pairs are
represented by dashed lines. If we assume that the maxi-
mum bandwidth of each participant is two, then the Figure
3 (right) depicts the result of one possible task allocation
instance, where the bold lines indicate assignment pairs.
Then, the problem formulated above can be converted into
determining a task allocation instance set in an original
bipartite graph G0 consisting of multiple valid task-and-
participant pairs to maximize the overall system utility.

(2) Task Assignment for Underloaded Participants In this
step, we first divide the participant vertices into two cat-
egories (i.e., the overloaded participant vertexes and un-
derloaded participant vertexes) based on if a participant is
competed by different tasks. We search the original graph
and count the degree of each participant vertex pu (denoted
as deg(pu))). Based on the relationship between deg(pu))
and the maximum bandwidth of pu , we define these two
types of vertexes as follows.

Definition 7 (Two Types of Participant Vertexes). Partic-
ipant vertexes subject to deg(pu) > Lu (i.e., vertexes whose
degree is more than its maximum bandwidth) is called the
overloaded participant vertexes. Otherwise, the participants are
referred to as the underloaded participant vertexes.

Intuitively, the underloaded participants are those whose
maximum bandwidth is not less than the number of tasks
he/she is capable of completing according to sensor con-
figuration, while the others are the overloaded ones. For
example, if a participant’s profile (sensor configuration and
spatio-temporal availability) indicates that he/she can only
complete two of the tasks in the system and he/she sets
the maximum bandwidth as three, then the participant is
underloaded.

After identifying underloaded vertexes, we select all
their connected edges in into the TAIS, which means
PSTasker just assigns all feasible tasks to him/her. After the
tasks are assigned, we delete these underloaded vertexes
and assigned edges, because we have already taken full use
of their sensing resources. After the above deletion, if the
degree of a task vertex drops to 0, then it is deleted because

Fig. 4. Task assignment for underloaded participants: an example

none of the remaining participants can complete it.
Figure 4 (left) shows an example of an original bipartite

graph consisting of 3 tasks and 5 participants. If we assume
that bandwidth of each participant is set as 2, then the red
triangular nodes (p2, p3 and p4) are the underloaded vertices
and the rest are overloaded vertexes (p1 and p5). After the
task assignment and deletion of red vertexes and red edges,
the rest overloaded vertexes and corresponding edges form
a new graph denoted as G1 (see Figure 4 (right)). We can
see that the original problem is simplified after this step.

(3) Task Assignment for Overloaded Participants The goal
of this step is to select edges in the new graph (e.g., the
graph G1 in Figure 4), and combine it with selected edges
to maximize the expected overall system utility.

We first consider a special case, where the minimum
thresholdMinTx = 0 for each task. In this case, the effective
number of samples in each spatio-temporal cell defined in
Equation (1) is re-defined as ESx

i,j = min{ASx
i,j ,MaxTx}.

We can adopt a naive greedy algorithm, which incremen-
tally selects edges based on the estimated overall system
utility. Initially, we set the TAIS V ′ as the edges selected
in the step of task assignment for the underloaded partici-
pants. Then, we would incrementally select one edge with
the highest utility increase and add it to set V ′. Given an
edge (pu, tv), its utility increase can be calculated according
to equation (13). The greedy selection process repeats until
the bandwidths of all participants have been used up, or
the participants with remaining bandwidth are not willing
to complete any tasks according to their availability con-
straints.

Σx=K
x=1 (Σi,j

ESx
i,j(V

′ ∪ (pu, tv))

MaxTx
∗ δxi,j) ∗ wx−

Σx=K
x=1 (Σi,j

ESx
i,j(V

′)

MaxTx
∗ δxi,j) ∗ wx

= Σi,j{Cell DQI
v
i,j(V

′ ∪ (pu, tv))− Cell DQIvi,j(V
′)}
(13)

However, in general cases, where MinTx 6= 0, it is
likely that none of the task-and-participant pairs leads to
an overall utility increase when adding to the set during
earlier rounds of the greedy selection process, as MinTx
of each task has not been reached. One direct adjustment
is to randomly select task-and-participant pairs in earlier
iterations. With the additions of more task-and-participant
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Fig. 5. Nested-loop procedure for task assignment of overloaded partic-
ipants

pairs, tasks with lower MinTx would reach the thresholds
earlier, so that the algorithm tends to allocate more limited
resources (i.e., the participants) to those tasks. Nevertheless,
this may have a negative impact on the overall utility
optimization. For example, when tasks with lower MinTx
are less important (i.e., with lower weights) and total re-
sources are limited, important tasks (i.e., tasks with higher
weights) are less likely to be assigned participants, which
is bad for the overall utility maximization. Therefore, when
MinTx 6= 0, we need to improve the above naive greedy
method by introducing more sophisticated strategy.

Thus, to reduce the impact of MinTx on resource allo-
cation, we propose an iterative greedy procedure in Figure
5. The procedure is nested-loop, which consists of inner and
outer loops.

In the first iteration of the outer loop, PSTasker uses
the naive greedy algorithm to get the initial task allocation
instance set denoted as I1, in which it iteratively selects the
edges with highest overall utility increase only based on
Equation (13). Then, starting from the second iteration of
the outer loop, we also adopt the similar greedy process
but estimating the utility increase differently for a task-and-
participant pair. Specifically, we first try to estimate its utility
increase according to Equation (13). If the increase is not
zero, then it is regarded as the estimated utility increase
of this pair. Otherwise, we give another chance to estimate
it based on the obtained TAIS in the previous iteration.
The stopping criterion of the outer-loop iterations is that
the estimated system utility at the end of current iteration
does not increase compared to the previous iteration. For
the inner loop, the stopping criterion is that the bandwidths
of all participants have been used up, or the participants
still with remaining bandwidth cannot complete any tasks
according to their pre-defined availability constraints. The
pseudocode of the above process is illustrated as follows.

Finally, we analyze the time complexity of the above
iterative greedy process as follows. The time cost of com-
puting valid task-and-participant assignment pairs is given
by O(K ∗H) in the worst case, where any of H participants
can be assigned to any of K tasks (i.e., K ∗ H valid task-
and-participant pairs). Moreover, since each participant is

Algorithm 1 task assignment for overloaded participants

Input: I1, P, V
′, L

Output: Iω
1: ω = 1
2: repeat
3: for each (pu, tv) do
4: ∆u,v = Σi,j{Cell DQI

v
i,j(V

′ ∪ (pu, tv)) −
Cell DQIvi,j(V

′)}
5: u, v = argmax∆u,v, Iω = Iω ∪ (pu, tv), Lu =
Lu − 1

6: if Lu = 0 then P = P − {u}
7: end if
8: end for
9: until P = ∅

10: ω = 2
11: repeat
12: for each (pu, tv) do
13: ∆u,v = Σi,j{Cell DQI

v
i,j(V

′ ∪ (pu, tv)) −
Cell DQIvi,j(V

′)}
14: if ∆u,v = 0 then
15: if (pu, tv) ∩ Iω−1 = ∅ then
16: ∆u,v = Σi,j{Cell DQI

v
i,j(Iω−1 ∪

(pu, tv))− Cell DQIvi,j(Iω−1)}
17: else
18: ∆u,v = Σi,j{Cell DQI

v
i,j(Iω−1) −

Cell DQIvi,j(Iω−1 − {(pu, tv)})}
19: end if
20: end if
21: u, v = argmax∆u,v, Iω = Iω ∪ (pu, tv), Lu =

Lu − 1
22: if Lu = 0 then P = P − {u}
23: end if
24: end for
25: until P = ∅

26: if the overall utility is increased then
27: ω = ω + 1, go to line 11
28: end if
29: return Iω

assigned to at most Li tasks, the number of rounds in each of
the iterations is at most ΣLi times. Therefore, the total time
complexity of each of the outer-loop iterations can be given
by O(K ∗H ∗ ΣLi). Assume that the total number of outer
loop iterations is ω, then the total time complexity of the
iterative greedy process’s is O(ω ∗K ∗H ∗ΣLi). According
to our extensive experiment, the outer loop typically runs
iterations 5∼10 iterations, so that it is polynomial time
algorithm.

5 PERFORMANCE EVALUATION

5.1 Datasets and Experimental Settings

In this paper, we evaluate the performance of PSTasker
based on D4D, an open and real-world mobility trace
dataset [36]. The original D4D datasets involve 50000 users’
phone records of connections to the cell towers (e.g. making
phone calls or sending text messages) from Cote d’Ivoire, in
which each record includes user id, connection time and cell
tower. We extract and generate the datasets we need based
on D4D datasets in the following steps.
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Fig. 6. Cell towers used in our experiment

We first re-select the users randomly every 2 weeks and
totally 10 two-week periods of records are prepared. In each
two-week dataset, we use the mobility traces in the first
week to execute our task allocation algorithm and obtained
a TAIS. Then, we test the overall system utility of this TAIS
using the second-week dataset. Specifically, we extracted
records of the downtown area with 40 cell towers (Figure 6),
where the mobile users are densely distributed. We further
assume that each task executes for 5 days (weekdays in a
week), lasts for 10 sensing cycles every working day from
8:00 am to 6:00 pm, with each cycle lasting one hour. Thus,
the total period consists of 50 sensing cycles.

Then, we simulate other parameters for both PS tasks
and participants. In terms of tasks, we randomly generate
the weights of each task and each spatio-temporal cell,
minimum and maximum threshold value (minimum: from
0 to 3, maximum: from minimum to 5). In terms of par-
ticipants, we simulate different aspects of their profiles as
follows. First, we randomly generate βu,i,j and feasibility
for all task-participant pairs (feasible/infeasible) as 0 or 1.
Second, we assume that the participant’s sensing bandwidth
Lu follows the Gaussian distribution with mean value µ.
Third, as participants are more willing to complete tasks in
close proximity to their homes than other places [39], we
generate the location-based task completion likelihood as
řu,i = min{base(u) ∗ (1 + LocV ariance(u, i), 1)}, where
base(u) of each participant follows Gaussian distribution
with mean value Bmean, and LocV ariance(u, i) = τ if
subarea i is where the participant’s residence place is lo-
cated, otherwise, LocV ariance(u, i) = 0 Though the ex-
perimental result in [39] indicates that people are more
likely to complete tasks at or close to home, we cannot
find literature which gives a specific value for τ . Thus, we
generate τ from (0.1, 0.5) randomly. For example, if base(u)
of participant pu is generated as 0.7 and τ is generated as
0.15, pu will complete tasks with the probability of 0.7*1.15
in subareas where the participant’s home is located and with
the probability of 0.7 in other subareas.

According to [40], home locations are the most fre-
quently visited stop during nighttime, so we simulate the

TABLE 2
Parameter settings

Parameter Settings
MinTx,MaxTx MinTx : (0, 3),MaxTx : (MinTx, 5)
K Number of tasks K = 10, 20, 50
H Number of participants H =

1000, 1500, 2000, 2500
σx
i,j Randomly generated from (0,1) while

keeping the sum of the different spatio-
temporal cell as 1.

Lu Randomly generated based on the Gaus-
sian distribution with mean value denoted
as µ

µ µ = 4, 6, 8, 10
řu,i base(u) ∗ (1 + LocV ariance(i))
U(Ψ) PS system’s overall utility achieved by

task allocation plan Ψ
τ Randomly generate from (0.1, 0.5)
base(u) Randomly generated based on Gaussian

distribution with mean value Bmean

Bmean Bmean = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

location of participants’ residence place based on the fol-
lowing rule: if the participants make most of the phone calls
between 10:00pm 4:00 am in a subarea i, then the subarea
i is regarded as the participants’ residence place. Before
executing the task allocation algorithm, we assume that the
generated řu,i has already been learned from the historical
participation records.

The multi-task allocation in this paper can be seen as a
resource allocation problem, where the demand and supply
of the resource may affect the system’s performance. Thus,
based on the above original and generated datasets and
experimental settings, we evaluate the PSTasker’s perfor-
mance by varying the number of participants/tasks, maxi-
mum bandwidth, and task completion likelihood. Table 2
summarizes the above parameter settings.

5.2 Baselines

We then provide the following baseline methods for com-
parative studies.

• Random Allocation (RA) - This method randomly
assigns tasks to each participant based on all
participant-side constraints. As the order of partici-
pants may have an impact on the performance, we
repeat the random allocation process for 30 times,
each of which is based on a randomly generated
participants’ order.

• Naive Greedy Allocation (NGA) - This method adopts a
simple greedy algorithm to perform task allocation.
It incrementally selects task-and-participant pairs
based on the estimated overall system utility increase
using Equation (13). If the utility increase of all task-
and-participant pairs is zero, we randomly select one
and add into the TAIS.

• Naive Greedy by Concave-relaxation (NGCR) - Similar
to NGA, this method also incrementally selects task-
and-participant pairs with highest utility increase.
However, when estimating the utility increase of a
given pair, it adopts a different utility function with
a concave-relaxation, which changes the Equation (1)

into ES
′x
i,j = min{ASx

i,j ,MaxTx}.



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2869387, IEEE

Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

5.3 Performance Comparison

In this subsection, we evaluate the performance of PSTasker
and other baseline methods by varying key parameters. We
carried out experiments using a laptop with an Intel Core
i7-4710HQ Quad-Core CPU and 16GB memory. PSTasker
and baseline algorithms were implemented with the Java
SE platform on a Java HotSpotTM 64-Bit Server.

(1) Different number of tasks
Figure 7a and Figure 8a present the performance

comparison on the overall utility and running time among
PSTasker and other baseline methods under a different
number of tasks, where we fixed the number of participants
to 2000, mean value µ to 8 and Bmean to 0.7.

From Figure 7a, we can see that PSTasker outperforms
RA, NGA and NGCR by achieving 7.3%∼15.1% higher over-
all utility for a various number of tasks, respectively, and the
advantage becomes more significant as the number of tasks
increases. The objective of this paper is to tackle the task
allocation problem on open and large-scale multi-task MCS
platforms. In practical application scenarios, such platforms
must have the capability to support a large number of
MCS tasks. Therefore, compared to other baseline methods,
PSTasker can better support such practical scenarios.

Figure 8a shows the running time of different methods.
The fastest algorithm is RA. The running time of PSTasker
is longer than NGA and NGCR. Although PSTasker needs
longer running time than other baselines, its running time is
less than 10 minutes for a various number of tasks. Consid-
ering that the algorithm is executed offline, the computation
time is reasonable. Furthermore, if we deploy PSTasker onto
a real-world PS system, then shorter computation time can
be obtained by using parallel algorithms or using a powerful
commercial server.

(2) Different number of participants
Figure 7b and Figure 8b presents the performance

comparison on the overall utility and running time among
different methods under a different number of participants,
where we fix the number of tasks to 20, mean value µ to 8
and value of Bmean to 0.7.

Figure 7b indicates that the overall utility increases with
the number of participants for all methods. This is because,
with increasing number of participants, the shared resources
become more abundant. PSTasker outperforms RA, NGA
and NGCR by achieving 10.9%∼25% higher overall utility
for a various number of participants.

Figure 8b reports the running time of different algo-
rithms, and we can see that the running time PSTasker
needs is longer than other baselines methods. However,
the running time of PSTasker is less than 10 minutes for
a various number of participants, which is acceptable as it
is executed offline.

(3) Different values of µ
When varying the parameter µ, we fix the number of

tasks to 20, the number of participants to 2000 and value of
Bmean to 0.7. Figure 7c shows the overall utility for different
values of µ. From the figure, we can see that under various
settings of mean value µ, PSTasker outperforms RA, NGA
and NGCR by achieving 9.7%∼18.3% higher overall utility.
Figure 8c shows the running time of PSTasker is longer than
other baseline methods but less than 10 minutes.

(4) Different values of B

When varying Bmean, we fix the number of tasks as
20, the number of participants to 2000 and bandwidth’s
mean value µ to 8. From Figure 7d, we can see that,
with higher task completion likelihood Bmean, the overall
utility of different approaches is improved in general. This
is because the higher the task completion likelihood is, the
more predictable the participants become. The PSTasker
consistently outperform the other baselines by achieving
8.0%∼14.1% higher overall utility when Bmean varies. In
addition, Figure 8d shows that the completion likelihood
does not have an obvious impact on the running time of
different approaches.

5.4 Detailed Analysis

The above experimental results demonstrate that PSTasker
outperforms other baseline methods under various settings.
In this subsection, we will give more details to clarify the
reason why PSTasker can outperform them.

First, we investigate why PSTasker outperforms NGA.
We demonstrate the number of assigned task-and-
participant pairs for tasks with different MinTx. Due to the
space limit, we only show the result under a specific setting
(20 tasks and 2000 participants) in Figure 9.

From the figure, we can see that the tasks with lower
MinTx obtain more assigned participants. In particular, this
trend is more obvious for NGA than PSTasker. By reviewing
the optimizing process of NGA, we find that for tasks
with lower MinTx, with the adding of task-and-participant
pairs, the number of estimated sensor readings in spatio-
temporal cells would reach to MinTx earlier. Therefore,
the participants are more likely to be assigned to these
tasks, while other tasks have fewer assigned ones. From the
definition of overall system utility, we can see that if the
tasks with lower MinTx are less important (i.e., with lower
weight), assigning most of the limited participants to these
tasks counts against the overall utility optimization. On the
contrary, PSTasker adopts an iterative process, where the
estimation of utility increase is based on the solution in the
previous iteration, so that tasks with higher MinTx gain
another opportunity get participants assigned. In summary,
PSTasker outperforms the NGA in that its iterative greedy
process reduce the impact of MinTx on resource allocation.

Next, we discuss why PSTasker outperforms NGCR. We
analyze the actual number of samples ASx

i,j in each spatio-
temporal cell for different tasks. Specifically, the spatio-
temporal cells are divided into three categories: Category-1:
ASx

i,j = 0; Category-2: 0 < ASx
i,j < MinTx ; Category-3:

ASx
i,j ≥MinTx The datasets we used in the experiment are

related to 40 subareas and 50 cycles so that there are 2000
total spatio-temporal cells. Figure 10 shows the distribution
of the above three classes (20 tasks, 2000 participants,Bmean

and µ=8).
Intuitively, the spatio-temporal cells with Category-2

have a negative effect on the optimization result because
it indicates wasted resources that consumed but do not help
to increase overall utility. From the figure, we can see that
the number of cells with Category-2 obtained by PSTasker
is significantly lower than NGCR, while the number of
cells with Category -3 obtained by PSTasker is higher than
NGCR. Therefore, the advantage of PSTasker (compared to
NGCR) lies in the fact that it reduces resource waste.
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Fig. 7. Overall utility comparison: (a) with various number of tasks (b) with various number of participants (c) with various maximum bandwidth (d)
with various Bmean

Fig. 8. Running time comparison: (a) with various number of tasks (b) with various number of participants (c) with various maximum bandwidth (d)
with various Bmean

Fig. 9. Number of assigned task-and-participant pairs for tasks with
different minimum thresholds

6 LIMITATION AND DISCUSSION

We have shown that PSTasker is effective in real-world
datasets and simulated parameters, but several issues and
limitations remain, which need to be further discussed and
explored.

First, the good performance of PSTasker relies on the
assumption that the likelihood can be learned accurately.
Thus, the first research question we should address in future
work is how to model the likelihood with its correlated
factors. From state-of-the-art literatures such as [41], [42], we
know that many related factors could affect the participants’
decision on whether completing a certain task, including

Fig. 10. Sampling status in spatio-temporal cells: NGCR vs PSTasker

both task attributes (e.g., task price, task type, sensing
time, consumed energy, etc.) and participant attributes (e.g.,
demographic, busyness, mental fatigue, etc.). A systematic
review is needed before building a more comprehensive
model.

Second, even if we are able to build a good model
of task completion likehood, it is still very hard to learn
it in real-world application scenarios, which will be our
future work direction. The first challenge is how to get the
value of correlated features. For example, the authors in
[42] found that busyness and mental fatigue have significant
impact on the task completion likehood. However, how to
obtain a participants’ busyness and mental fatigue status
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is very challenging. Sensors in smartphone may provide
some opportunity, but it is not a easy task. Aother challenge
is that, for new participants without an adequate number
of historical participation records, we cannot directly learn
their task completion likelihood. In these cold-start cases,
we may utilize the records of other participants with similar
profiles, and some semi-supervised learning approaches
may also be effective.

Third, although we used a real-world mobility dataset
in the evaluation section, some relevant parameters about
tasks and participants are simulated with certain assump-
tions (e.g., Bmean, µ, MinTx, MaxTx, LocV ariance(i)).
For future work, we are now cooperating with a local
government to develop a city-scale PS platform for ordinary
citizens to report information (e.g., traffic jams, missing
manhole cover, etc.). We intend to test the core algorithm
of PSTasker in the platform to identify more practical issues
for further improvement.

Fourth, PSTasker considers various factors (e.g., task
sensing quality, sensor configuration, spatial-temporal avail-
ability, completion likelihood, etc) when formulating the
problem and designing the task allocation framework. How-
ever, some other factors such as the budget constraints
of PS platforms and the interests of participants should
also be considered. Furthermore, this paper assumes that
sensing subareas and cycles are the same across different
tasks. However, we may encounter more complex situa-
tions, where subareas and cycles are different for multiple
tasks. Therefore, we plan to improve the practicality of
our proposed framework by considering other factors or
constraints in our future work.

7 CONCLUSION

This paper proposes a novel task allocation framework,
named PSTasker, for participatory sensing (PS). PSTasker
coordinates the allocation of multiple tasks to maximize
the overall system utility of the PS platform while con-
sidering various participant-side factors, PSTasker adopted
an iterative greedy process to optimize the task allocation.
Extensive evaluations based on real-world mobility traces
demonstrate that PSTasker outperforms the baseline meth-
ods under various settings.

REFERENCES

[1] J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan,
S. Reddy, and M. B. Srivastava, Participatory sensing, in ACM
SenSys’06, 2006, pp. 15.

[2] Kanhere, S. S. (2013, February). Participatory sensing: Crowdsourc-
ing data from mobile smartphones in urban spaces. InInternational
Conference on Distributed Computing and Internet Technology(pp.
19-26). Springer Berlin Heidelberg

[3] Campaignr: http://research.cens.ucla.edu/urban/
[4] M. Ra, B. Liu, T. F. L. Porta, and R. Govindan. 2012. Medusa: A

programming framework for crowd-sensing applications. In Pro-
ceedings of the 10th international conference on Mobile systems,
applications, and services (MobiSys ’12), 337-350.

[5] Sasank Reddy, Katie Shilton, Jeff Burke, Deborah Estrin, Mark
Hansen, and Mani Srivastava. Using context annotated mobility
profiles to recruit data collectors in participatory sensing. In Loca-
tion and Context Awareness, pages 5269. Springer, 2009.

[6] S. Reddy, D. Estrin, and M. Srivastava. Recruitment framework for
participatory sensing data collections. In Proceedings of Pervasive,
pages 138155. 2010.

[7] Giuseppe Cardone, Luca Foschini, Paolo Bellavista, Antonio Cor-
radi, Cristian Borcea, Manoop Talasila, and Reza Curtmola. Fos-
tering participaction in smart cities: a geo-social crowdsensing
platform. Communications Magazine, IEEE, 51(6), 2013.

[8] D. Zhang, H. Xiong, L. Wang, and G. Chen, Crowdrecruiter: select-
ing participants for piggyback crowdsensing under probabilistic
coverage constraint, in The 2014 ACM Conference on Ubiquitous
Computing, UbiComp ’14, Seattle, WA, USA, 2014, pp. 703714.

[9] H. Xiong, D. Zhang, L. Wang, and H. Chaouchi, EMC3: Energy-
efficient data transfer in mobile crowdsensing under full coverage
constraint, IEEE Transactions on Mobile Computing, 2015.

[10] H. Xiong, D. Zhang, L. Wang, J. Gibson, and J. Zhu, EEMC:
Enabling energy-efficient mobile crowdsensing with anonymous
participants, ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 2015.

[11] H. Xiong, D. Zhang, G. Chen, L. Wang, and V. Gauthier, Crowd-
tasker: Maximizing coverage quality in piggyback crowdsensing
under budget constraint, in IEEE International Conference on Per-
vasive Computing and Communications (Percom’15), 2015.

[12] Zhang, M., Yang, P., Tian, C., & Tang, S. (2015). Quality-aware
sensing coverage in budget constrained mobile crowdsensing net-
works.IEEE Transactions on Vehicular Technology, 1-1.

[13] Adish Singla and Andreas Krause. Incentives for privacy trade-
off in community sensing. In First AAAI Conference on Human
Computation and Crowdsourcing, 2013.

[14] Song, Z., Zhang, B., Liu, C. H., Vasilakos, A. V., Ma, J., &
Wang, W. (2014, June). QoI-aware energy-efficient participant selec-
tion. InSensing, Communication, and Networking (SECON), 2014
Eleventh Annual IEEE International Conference on(pp. 248-256).
IEEE.

[15] Karaliopoulos, M., Telelis, O., & Koutsopoulos, I. (2015). User Re-
cruitment for Mobile Crowdsensing over Opportunistic Networks.
InINFOCOM 2015 Proceedings, IEEE.

[16] S. Hachem, A. Pathak, and V. Issarny. Probabilistic registration
for large-scale mobile participatory sensing. In Proceedings of the
2013 IEEE International conference on Pervasive Computing and
Communications, volume 18, page 22, 2013.

[17] D. Philipp, J. Stachowiak, P. Alt, F. Durr, and K. Rothermel.
Drops: Model-driven optimization for public sensing systems. In
proceedings of the 2013 EEE International Conference on Pervasive
Computing and Communications, volume 18, page 22, 2013.

[18] Wang, L., Zhang, D., Pathak, A., Chen, C., Xiong, H., Yang, D.,
& Wang, Y. (2015, September). CCS-TA: quality-guaranteed online
task allocation in compressive crowdsensing. InProceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing(pp. 683-694). ACM.

[19] Leye Wang, Daqing Zhang, Yasha Wang, Chao Chen, Xiao Han
and Abdallah Mhamed. Sparse Mobile Crowdsensing: Challenges
and Opportunities. IEEE Communications Magazine, 2016, vol. 54,
no. 7, 2016, pp. 161-167.

[20] Liu, Y., Guo, B., Wang, Y., Wu, W., Yu, Z., & Zhang, D. TaskMe:
multi-task allocation in mobile crowd sensing.ACM International
Joint Conference on Pervasive and Ubiquitous Computing (Ubi-
comp 2016).

[21] Guo, B., Liu, Y., Wu, W., Yu, Z., & Han, Q. (2016). ActiveCrowd: A
Framework for Optimized Multitask Allocation in Mobile Crowd-
sensing Systems.IEEE Transactions on Human-Machine Systems.

[22] Wang, Hanshang Li Ting Li Yu. ”Dynamic Participant Recruitment
of Mobile Crowd Sensing for Heterogeneous Sensing Tasks.” 12th
IEEE International Conference on Mobile Ad-hoc and Sensor Sys-
tems (MASS 2015).

[23] Wang, J., Wang, Y., Zhang, D., Xiong, H., Wang, L., & Sumi, H.,
et al. (2016). Fine-grained multi-task allocation for participatory
sensing with a shared budget. Internet of Things Journal (in press).

[24] Song, Z., Liu, C. H., Wu, J., Ma, J., & Wang, W. (2014). QoI-Aware
Multi-task-Oriented Dynamic Participant Selection With Budget
Constraints. Vehicular Technology, IEEE Transactions on,63(9),
4618-4632.

[25] M. Buhrmester, T. Kwang, and S. D. Gosling. 2011. Amazon’s
mechanical turk a new source of inexpensive, yet high-quality,
data? Perspectives on Psychological Science, 6: 3-5.

[26] CrowdFlower: https://www.crowdflower.com/
[27] Samasource: http://www.samasource.org/
[28] Roy, S. B., Lykourentzou, I., Thirumuruganathan, S., Amer-Yahia,

S., & Das, G. (2015). Task assignment optimization in knowledge-
intensive crowdsourcing.The VLDB Journal,24(4), 467-491.



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2869387, IEEE

Transactions on Mobile Computing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[29] Assadi, S., Hsu, J., & Jabbari, S. Online assignment of heteroge-
neous tasks in crowdsourcing markets. HCOMP 2015.

[30] Goel, Nikzad, and Singla, Mechanism Design for Crowdsourcing
Markets with Heterogeneous Tasks, HCOMP 2014.

[31] X. Lu, D. Li, B. Xu, W. Chen, and Z. Ding, Minimum cost collabo-
rative sensing network with mobile phones, in IEEE ICC’13, 2013,
pp. 18161820.

[32] ang, F., Lu, J. L., Zhu, Y., Peng, J., Shu, W., & Wu, M. Y. Hetero-
geneous Task Allocation in Participatory Sensing. IEEE GlobeCom
2015.

[33] Jiangtao Wang, Yasha Wang, Daqing Zhang, Feng Wang, Yuanduo
He, Liantao Ma: PSAllocator: Multi-Task Allocation for Participa-
tory Sensing with Sensing Capability Constraints. The 20th ACM
Conference on Computer-Supported Cooperative Work and Social
Computing(CSCW 2017); 02/2017, Portland, USA.

[34] Assadi, S., Hsu, J., & Jabbari, S. Online assignment of heteroge-
neous tasks in crowdsourcing markets. HCOMP 2015.

[35] Goel, Nikzad, and Singla, Mechanism Design for Crowdsourcing
Markets with Heterogeneous Tasks, HCOMP’14.

[36] V.D. Blondel, M. Esch, C. Chan, F. Clerot, P. Deville, E. Huens, F.
Morlot, Z. Smoreda, and C. Ziemlicki. Data for development: the
d4d challenge on mobile phone data. 2012.

[37] Ikeda, K., & Bernstein, M. S. (2016). Pay It Backward: Per-Task
Payments on Crowdsourcing Platforms Reduce Productivity.CHI
Conference on Human Factors in Computing Systems. ACM.

[38] Roy, S. B., Lykourentzou, I., Thirumuruganathan, S., Amer-Yahia,
S., & Das, G. (2015). Task assignment optimization in knowledge-
intensive crowdsourcing.The VLDB Journal,24(4), 467-491.

[39] Alt, F., Shirazi, A. S., Schmidt, A., Kramer, U., & Nawaz, Z. (2010,
October). Location-based crowdsourcing: extending crowdsourcing
to the real world. InProceedings of the 6th Nordic Conference on
Human-Computer Interaction: Extending Boundaries(pp. 13-22).
ACM.

[40] Chen, C., Bian, L., & Ma, J. (2014). From traces to trajectories: How
well can we guess activity locations from mobile phone traces?.
Transportation Research Part C: Emerging Technologies, 46, 326-
337.

[41] Thebault-Spieker J, Terveen L G, Hecht B. Avoiding the south side
and the suburbs: The geography of mobile crowdsourcing markets.
Proceedings of the 18th ACM Conference on Com-puter Supported
Cooperative Work & Social Computing. ACM, 2015: 265-275.

[42] Ikeda K, Hoashi K. Crowdsourcing GO: Effect of Worker Situation
on Mobile Crowdsourcing Performance. Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. ACM,
2017: 1142-1153.

Jiangtao Wang received his Ph.D. degree in
Peking University, Beijing, China, in 2015. He
is currently an assistant professor in Institute
of Software, School of Electronics Engineering
and Computer Science, Peking University. His
research interest includes collaborative sensing,
mobile computing, and ubiquitous computing.

Feng Wang is a master student at School of
Electronic Engineering and Computer Science,
Peking University, China. His research interest
is mobile crowd sensing.

Yasha Wang received his Ph.D. degree in North-
eastern University, Shenyang, China, in 2003.
He is a professor and associate director of Na-
tional Research & Engineering Center of Soft-
ware Engineering in Peking University, China.
His research interest includes urban data analyt-
ics, ubiquitous computing, software reuse, and
online software development environment. He
has published more than 50 papers in presti-
gious conferences and journals, such as ICWS,
UbiComp, ICSP and etc. As a technical leader

and manager, he has accomplished several key national projects on
software engineering and smart cities. Cooperating with major smart-
city solution providing companies, his research work has been adopted
in more than 20 cities in China.

Daqing Zhang is a professor at Peking Univer-
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