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The problem of allocating divisible goods has enjoyed a lot of attention in both mathematics
(e.g. the cake-cutting problem) and economics (e.g. market equilibria). On the other hand, the
natural requirement of indivisible goods has been somewhat neglected, perhaps because of its
more complicated nature. In this work we study a fairness criterion, called the Max-Min Fairness
problem, for k players who want to allocate among themselves m indivisible goods. Each player
has a specified valuation function on the subsets of the goods and the goal is to split the goods
between the players so as to maximize the minimum valuation. Viewing the problem from a
game theoretic perspective, we show that for two players and additive valuations the expected
minimum of the (randomized) cut-and-choose mechanism is a 1/2-approximation of the optimum.
To complement this result we show that no truthful mechanism can compute the exact optimum.

We also consider the algorithmic perspective when the (true) additive valuation functions are
part of the input. We present a simple 1/(m− k + 1) approximation algorithm which allocates to
every player at least 1/k fraction of the value of all but the k − 1 heaviest items. We also give an
algorithm with additive error against the fractional optimum bounded by the value of the largest
item. The two approximation algorithms are incomparable in the sense that there exist instances
when one outperforms the other.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems; G.2.1 [Discrete Mathematics]: Combinatorics –
Combinatorial Algorithms; G.2.2 [Discrete Mathematics]: Graph Theory – Graph Algorithms

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Approximation Algorithms, Cake-cutting, Fairness, Game
Theory, Truthfulness

1. INTRODUCTION

The need for fair division of a set of objects among several parties emerges naturally
in many real-life scenarios, ranging from inheritance and divorce settlements to
border disputes. Naturally, the political science and economic literature addresses
the issues of fair division under various assumptions and objectives (see, e.g., Brams
and Taylor [Brams and Taylor 1996]). But few of the methods view the problem
from a computational perspective and most assume the existence of several divisible
objects or the possibility of a monetary compensation in order to achieve a balanced
division. In certain situations such as some inheritance disputes the items are often
indivisible, of different value to each of the parties, and the parties might not be
able to compensate the other players financially.
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General Max-Min Fairness Problem. There are k players and a set A of m
indivisible objects. Player i has a non-negative valuation function vi : 2A → R+

0

which is normalized to vi(A) = 1. The goal is to find a partition A1, . . . , Ak of the
goods which maximizes mini vi(Ai).

The inspiration for the Max-Min Fairness problem comes from its divisible coun-
terpart: the cake-cutting problem. Initiated by the Polish school of mathematicians
in the 1950’s, in the cake-cutting problem k parties attempt to divide a cake between
them in a fair manner. Generally, one of two objectives comes under consideration:
envy-freeness or fair-fractions. A division is envy-free if every player thinks she got
at least as much as any other player. A division is divided into fair fractions, if
each person gets at least 1/k of the whole cake (from her perspective). The cake-
cutting represents a problem from the class of divisible fair allocation problems and
several solutions for both objective functions are well-known (see, e.g., Robertson
and Webb [Robertson and Webb 1998]). Perhaps the most interesting aspect of
the cake-cutting solutions is their truthfulness; in other words, players are given
guarantees if they do not lie about their valuation functions.

Lipton, Markakis, Mossel and Saberi [Lipton et al. 2004] studied the indivisible
variant of the envy-free cake-cutting problem. Under the assumption that players
reveal their true valuation functions, Lipton et al. presented a simple polynomial-
time algorithm producing an allocating with an absolute bound on the envy. Their
envy is guaranteed to be at most the maximal marginal utility defined as the largest
value by which a value of a set increases after enlarging it by exactly one element.
Their algorithm works for (essentially) unrestricted classes of valuation functions,
with the caveat that the true valuation functions are known to the algorithm. It is
not known whether there is a reasonable mechanism when the players can lie about
their valuations in order to obtain a larger portion.

The Max-Min Fairness problem is an indivisible analogue of the fair-fractions
cake-cutting problem, and it has been proposed by Lipton et al. as an open direction.
We note that this problem and the envy-minimization problem are of different
nature as there exist instances when the minimum value obtained by the envy-
minimizing splits is arbitrarily worse than the minimum in the max-min allocations.
Similarly, the envy of the max-min allocations might be much bigger than the envy
in the envy-minimizing splits.

We consider two different input settings. In the “known valuations” setting the
algorithm is given an oracle access to the vi’s. In the opposite “unknown valuations”
setting, the algorithm asks the players directly for the vi values. This setting is
conceptually more difficult, since the players might opt to lie in the hope of achieving
a better split for themselves. We assume that the players do not know anything
about the other players’ valuations.

A general valuation function assigns a real number to every subset of A, and
one may need to specify 2m numbers to describe it. Therefore we will work with
two restricted but natural classes of valuations. We call a valuation additive if the
value of a set equals the sum of the values of the individual items. A valuation is
maximal if the value of a set of items equals the value of the most expensive item
in the set. This situation corresponds to a set of items of similar functionality such
as finding a full-time job. Notice that the above valuations are induced by m real
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numbers, the values of single items from A.
In the case of known additive valuations, the Max-Min Fairness problem is a spe-

cial case of a scheduling problem where the completion time of any single machine is
maximized. Woeginger [Woeginger 1997] and Epstein and Sgall [Epstein and Sgall
2004] presented polynomial-time approximation schemes for uniformly related ma-
chines. These results immediately translate to instances of the Max-Min Fairness
problem where all the players have equal valuations. Woeginger [Woeginger 2000]
gave a pseudo-polynomial algorithm for constant number of machines (players).

1.1 Our Results

Mechanism design. In the unknown valuations setting, the mechanism needs to
elicit relevant information from the players who may play deceitfully. Our main
result is a randomized allocation procedure for two players, which achieves at least
half the optimum for both players in expectation. This result might not sound
surprising. A trivial algorithm gives all the items to a single player, determining
the recipient by an unbiased coin flip. Every player expects 1/2 value of the goods,
so the minimum of the expected values is 1/2. However, the expected minimum is
0, since the other player does not get anything. We want to avoid this situation.

We say that a randomized algorithm for the Max-Min Fairness problem c-appro-
ximates the optimum, if the algorithm guarantees that the expected minimum
(as opposed to the minimum of the expected values) is within a c factor of the
deterministic optimum. Our algorithm, a randomized cut-and-choose mechanism, is
an expected 1/2-approximation, provided that the players play rationally. However,
full rationality requires the cutter to solve an NP -complete problem: finding the
optimal cut. Fortunately this is not necessary. We show that it suffices to be
rational in a limited sense: the cutter needs to find a locally optimal cut for which
we provide a polynomial-time algorithm. This is the first truthful mechanism with
provable guarantees for a problem of fair allocation of indivisible goods.

Omniscient algorithms. We present a simple polynomial matching-based al-
gorithm for known maximal valuations. Building on this algorithm we obtain a
1/(m− k + 1) approximation of the optimal allocation for known additive utilities.
Iteration of a variant of this algorithm guarantees a 1/k fraction of all but the k−1
heaviest items to every player. More precisely, every player gets a bundle that is
at least as good as getting every k-th item, where the items are sorted decreasingly
by their individual values.

We also present an algorithm based on an integer rounding of the correspond-
ing linear programming relaxation, which allocates to every player the fractional
optimum value minus the heaviest item. The rounding technique is inspired by
the work of Lenstra, Shmoys and Tardos [Lenstra et al. 1990] who considered
the makespan-minimization problem when scheduling a set of jobs on unrelated
machines. Our contribution consists of finding a special combinatorial structure,
described in Lemma 3.3.

We note that the two algorithms we exhibit for the additive valuations are com-
plementary, in the sense that each outperforms the other on some inputs.

Our algorithms are not only polynomial time but are efficiently implementable.
All our theorems (including the one related to unknown valuations) are tight in the
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sense that the analysis of the algorithms which the theorems refer to cannot be im-
proved. An improvement could come only from more cleverly designed algorithms.

To complement our results, we note that no ρ approximation algorithm exists for
ρ > 1/2 unless P = NP . The proof of this statement follows from a reduction from
3-Matchings, using an idea similar to that of Lenstra et al. [Lenstra et al. 1990]. A
linear factor approximation algorithm and a 1/2 + ε hardness result were obtained
independently by Markakis and Saberi [Markakis and Saberi 2004].

Due to space constraints we defer all proofs to the full version of the paper.

1.2 Related Economic Work

In the economic and political sciences literature (see, e.g., Brams and Taylor [Brams
and Taylor 1996]) the goal differs somewhat from ours: the quality of an allocation
is measured in terms of equitability (did the players get the same utility?), envy-
freeness, and efficiency (no other allocation gives a larger utility to all players
simultaneously). Probably the most well-known method is the so-called adjusted
winner procedure. It uses a monetary rebalancing in order to satisfy the equitability,
envy-freeness and efficiency conditions simultaneously.

Moulin [Moulin 2002] considered a related problem where m identical indivisible
objects need to be allocated to k parties, each of which specifies a request for a
certain number of objects. He gave a proportional allocation method and proved
that it is the only fair method (in the sense of “Equal Treatment of Equals”, i. e., two
agents with identical claims should receive the same random allocation) satisfying
other desirable structural invariance properties.

2. KNOWN MAXIMAL VALUATIONS

Valuation functions induced by values vi(j) for i ∈ [k], j ∈ [m] can be expressed
conveniently as a complete weighted bipartite graph which we refer to as the val-
uations graph. One partition represents the set of players and the other the set of
goods where the weight of the edge (i, j) is vi(j). If the valuations are of maximal
type, then the Max-Min Fairness problem is equivalent to the following matching
problem applied to the valuations graph with the set of goods A and the set of
players B. The problem can be solved in polynomial time via a reduction to the
Maximum Matching problem.

Max-Min Matching Problem. Input: A bipartite graph G = (A∪B, E) and
edge-weights w : E → R≥0. Goal: A matching M ⊆ E such that (1) M covers B,
i.e. for every b ∈ B there exists a s.t. (a, b) ∈ M , and (2) the minimum weight
edge in M is as large as possible, i. e., for every M ′ covering B, mine∈M w(e) ≥
mine∈M ′ w(e).

3. KNOWN ADDITIVE VALUATIONS

In the case of known additive valuations, finding a fairness maximizing alloca-
tion is NP -complete since the SUBSET SUM problem (see, e.g., Garey and John-
son [Garey and Johnson 1979]) is a special case for 2 players and identical valuations,
i. e., v1 ≡ v2. We present an approximation guarantee of 1/(m− k + 1) where m is
the number of items and k the number of players. Moreover every player gets at
least the value of every k-th item if items are sorted decreasingly by this player’s
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valuations. We analyze an LP based algorithm with an additive guarantee against
the fractional optimum. Our algorithm gives a utility of at least the fractional
optimum minus the player’s largest item to every player. These two algorithms are
incomparable, in the sense that neither performs consistently better than the other.

3.1 An approach via Matching

First we state a generalization of the Max-Min Matching problem which can also
be solved in polynomial time.

Generalized Max-Min Matching Problem. Input: A bipartite graph G =
(A ∪ B, E), edge-weights w : E → R≥0, and vertex values v(b) ∈ R+ for every
b ∈ B. Goal: A matching M ⊆ E such that (1) M covers B, i.e. for every b ∈ B
there exists a s.t. (a, b) ∈ M , and (2) minimum weight edge in M , together with
the value of the adjacent vertex, is as large as possible, i. e., for every M ′ covering
A, min(a,b)∈M w(a, b) + v(b) ≥ min(a,b)∈M ′ w(a, b) + v(b).

Applying the Generalized Max-Min Matching problem iteratively we get:

Theorem 3.1. Let xi,1, . . . , xi,m be a decreasingly sorted sequence of goods ac-
cording to the i-th player’s valuation, i. e., vi(xi,j) ≥ vi(xi,j+1) for every j. There
exists a polynomial-time algorithm which produces a partition of the goods such that
each player i is guaranteed a value of at least

∑

` vi(xi,k`) ≥ (1−
∑k−1

j=1 vi(xi,j))/k.
Moreover, the algorithm has a 1/(m− k + 1) approximation guarantee, where m is
the number of goods and k is the number of players.

3.2 Linear Programming Relaxation

Another approach to solving the Max-Min Fairness problem is to formulate it as
an integer program. Let xi,j denote the indicator variable for “player i gets item
j”. Then xi,j ∈ {0, 1}. The constraints on the program are that each item must
be allocated exactly once and that each player’s utility must be at least as much
as the objective function. Thus the optimal allocation for the Max-Min Fairness
problem instance is the solution to the integer program:

Maximize ω subject to: xi,j ∈ {0, 1}, ∀j :
∑

i

xi,j = 1 and ∀i : ω ≤
∑

j

vi(j) xi,j

We consider the linear programming relaxation that allows fractional allocations,
or in other words, arbitrarily divisible goods.

Maximize ω subject to: 0 ≤ xi,j ≤ 1, ∀j :
∑

i

xi,j = 1 and ∀i : ω ≤
∑

j

vi(j) xi,j

Note that the optimal value of ω for the linear program, henceforth denoted FOPT ,
is at least 1/k where k is the number of players. Moreover the optimal (fractional)
allocation satisfies the property that all players in a connected component of the
valuations graph receive the same total value.

Given a feasible solution x = (xi,j)1≤i≤k,1≤j≤m to the above linear program, let
xi = (xi,j)1≤j≤m denote the items allocated to player i. By abuse of notation, we’ll
use vi(xi) to denote

∑

j vi(j) xi,j , the utility to player i from this allocation.

Theorem 3.2. Let x̂ be an optimal (fractional) solution of the above program,
with FOPTi := vi(x̂i). Then there exists an integer solution y such that vi(yi) ≥
max(0, FOPTi − maxj vi(j)). Thus, mini vi(yi) ≥ max(0, FOPT − maxi,j vi(j)).
Moreover, y can be found in polynomial time.
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We credit part of the proof of the above theorem to Lenstra, Shmoys and Tar-
dos [Lenstra et al. 1990] who used a similar theorem in a different scheduling con-
text. Their rounding method is based on the insight that the graph underlying
the fractional solution is a bipartite pseudoforest, which may then be rounded to
a matching. We use the same framework for the first part of our rounding scheme.
However, since our problem is of an opposite nature (a maximization rather than
a minimization), we need to round the pseudoforest edges to a structure which has
a matching-like behavior for one partition of the underlying bipartite graph while
in the other partition it behaves like an “anti-matching”, as summarized in the
following lemma.

Lemma 3.3. Let G be a bipartite pseudotree, i. e., a connected graph with at most
as many edges as vertices. Let A and B be the vertex sets of G and let E be the
edge set. Then there is a set S ⊂ E such that for all j ∈ A, S covers j by exactly
one edge, and for every i ∈ B, S covers i by at least deg(i)− 1 edges. This set can
be found in polynomial time.

4. UNKNOWN ADDITIVE VALUATIONS

We now consider the case where the algorithm does not know the players’ true
valuations as part of its input but must instead elicit information about them from
the players. Thus the task of finding an optimal allocation becomes a mechanism
design problem, as the players may try to cheat to their own advantage. Ideally, one
would like a mechanism which forces all the players to be truthful (by arranging the
payoffs so that revealing their true valuation is the players’ best strategy). Unfor-
tunately, as the next example shows, no mechanism (deterministic or randomized)
for the Max-Min fair allocation problem can be truthful.

Example 4.1. Suppose M is a mechanism to compute a Max-Min fair alloca-
tion. Consider two players and three items: Alice has valuation (2

3 , 1
3 , 0) while Bob

has valuation (0, 1
2 , 1

2 ). M will allocate item 1 to Alice and the rest to Bob, giving
Alice a utility of 2

3 . However by declaring her valuation as (1
3 , 2

3 , 0) Alice can trick
the mechanism into giving Bob only item 3, and increasing her utility to 1.

In light of this, we would like to examine what can be accomplished by mecha-
nisms which elicit only partial information about the valuations from the players.
In the spirit of the classical cake cutting problem of Banach, Knaster, and Stein-
haus [Steinhaus 1948] we would like to have a mechanism that gives each player a
guarantee based on the information received from the player, such that deceitful
play always results in a worse guarantee to the player, even if not a worse payoff
in every instance. Also, we would like deceitful play by one player to affect the
guarantees of other players as little as possible. The guarantees provided by the
mechanism should be as nice as possible, in terms of the following definition.

Definition 4.2. Let OPT denote the optimum value. We say that a randomized
algorithm is an expected c-approximation of the optimum if E(mini vi(Ai)) ≥ cOPT .

As a first attempt, we consider mechanisms that get no information from the
players, giving them no opportunity to cheat. Consider the mechanism that simply
assigns all the goods to a single player chosen uniformly at random. Then each
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player’s expected utility is 1/k and hence the minimum expected utility is 1/k.
However the mechanism always gives nothing to all but one player. Thus the
actual minimum utility (and hence also the expected minimum utility) is always 0,
which is rather unsatisfactory.

The mechanism that allocates the items by a separate k-way lottery for each
item also gives each player an expected utility of 1/k but it too fails to give a good
guarantee on the expected minimum utility, as the next example shows.

Example 4.3. Consider k players and k items. Suppose for each i, 1 ≤ i ≤ k,
player i’s valuation is given by vi(i) = 1, vi(j) = 0 for all j 6= i. The optimal
allocation is to assign each item to the unique player desiring it, so that everyone
has utility 1. The randomized mechanism described above achieves this allocation
1/kk of the time. The rest of the time it gives at least one item to a “wrong” player,
so that the minimum utility is 0. Thus, the expected minimum utility is 1/kk.

Thus, unless the players provide some information about their valuations, no
reasonable guarantee can be made for the expected minimum utility.

In Section 4.1 we present a randomized mechanism for two players which with
some assumptions on the players’ strategies, gives an expected 1/2-approximation
to the optimal allocation, while simultaneously guaranteeing each player at least
1/2 of what they would have got in the optimal allocation. How to extend this to
more than two players is as yet unclear.

4.1 Two Players: Cut-and-Choose

In this section we investigate the cut-and-choose mechanism for two players. In
the basic cut-and-choose mechanism player 1 divides the goods into two parts, and
player 2 chooses one of the parts. Player 1 then receives the other part. Even in
the case of divisible goods, player 2 may have an advantage in this game. We’ll
consider the more symmetric version in which the first player (“cutter”) is chosen
by a fair coin flip. (We do not assume that the players have the same valuations.)

We take the standpoint that each player wishes to optimize her worst case out-
come against adversarial play by the opponent. Thus the cutter’s goal is to divide
the goods as equally as possible. However, the cutter’s optimization problem is
NP-hard by reduction from SUBSET SUM. With this in mind we introduce the
following notion of local optimality.

Definition 4.4. We will call a partition (S, T ) of the goods locally optimal for
valuation v if moving a single item from either side to the other does not decrease
the disparity of the partition, |v(S)− v(T )|. Moreover we require that whenever the
disparity is positive, all items of zero value are on the smaller side.

We give a greedy algorithm which, given any valuation v, computes a locally
optimal partition in time O(m log m). The algorithm iteratively assigns the most
valuable remaining good to the less valuable of S and T .

Our main result here is that, assuming both players produce locally optimal par-
titions when cutting and select the larger piece when choosing the randomized cut-
and-choose mechanism produces an allocation whose expected minimum utility is
at least half the maximum minimum utility. Moreover, it guarantees each player at
least half what they would have received in a true optimal solution. These guaran-
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tees are preserved if the players are truly rational (computationally unconstrained)
as the optimal partition does satisfy the local optimality conditions.

Theorem 4.5. Let players P1 and P2 have additive valuation functions v1 and
v2. Let A1, A2 be the optimal allocation for these valuations, i. e., the allocation
maximizing mini vi(Ai) and let OPT = mini vi(Ai). Then, assuming both play-
ers produce locally optimal partitions, the randomized cut and choose mechanism
produces an allocation S1, S2 such that

E
(

min
i

vi(Si)
)

≥
1

2
OPT and for each i E (vi(Si)) ≥

1

2
vi(Ai)

5. OPEN PROBLEMS

There are many intriguing open questions related to the Max-Min Fairness prob-
lem. In the case of known additive valuations, can we use randomized rounding
to give a better-than-linear approximation guarantee? Can we get a better non-
approximability factor using Probabilistically Checkable Proofs [Arora et al. 1998]?

In the case of unknown additive utilities, can we obtain an improved approxima-
tion factor for two players? How can one generalize the two player mechanism for
three or more players?
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sions. We are also grateful to Pedro Felzenszwalb, Elchanan Mossel, Amin Saberi,
Gerhard Woeginger and anonymous referees for useful comments and pointers to
the literature.

REFERENCES

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. 1998. Proof verification and
the hardness of approximation problems. J. ACM 45, 3, 501–555.

Brams, S. J. and Taylor, A. D. 1996. Fair Division : From Cake-Cutting to Dispute Resolution.

Cambridge University Press.

Epstein, L. and Sgall, J. 2004. Approximation schemes for scheduling on uniformly related and
identical parallel machines. Algorithmica 39, 1, 43–57.

Garey, M. and Johnson, D. 1979. Computers and Intractability. Freeman and Co., New York.
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