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Abstract - In this paper, a two-tiered wireless sensor 
networks consisting of small sensor nodes, application 
nodes and base-stations is considered. An algorithm 
based on particle swarm optimization (PSO) is 
proposed for multiple base stations under general 
power-consumption constraints. The proposed 
approach can search for nearly optimal BS locations in 
heterogeneous sensor networks, where application 
nodes may own different data transmission rates, 
initial energies and parameter values. Experimental 
results also show the good performance of the 
proposed PSO approach and the effects of the 
parameters on the results.

I. INTRODUCTION 

In the past, many approaches were proposed to 

efficiently utilize energy in wireless networks. For example, 

appropriate transmission ways were designed to save 

energy for multi-hop communication in ad-hoc networks 

[16][10][5][19][7][6][20]. Good algorithms for allocation 

of base stations and sensors nodes were also proposed to 

reduce power consumption [12][15][16] [8][9].  

Recently, a two-tiered architecture of wireless sensor 

networks has been proposed and become popular [1]. It is 

motivated by the latest advances in distributed signal 

processing and source coding and can offer a more flexible 

balance among reliability, redundancy and scalability of 

wireless sensor networks. A two-tiered wireless sensor 

network, as shown in Figure 1, consists of sensor nodes 

(SNs), application nodes (ANs), and one or several base 

stations (BSs).  

SN

AN

BS

Figure 1: A two-tiered architecture of wireless sensor networks 

Sensor nodes are usually small, low-cost and disposable, 

and do not communicate with other sensor nodes. They are 

usually deployed in clusters around interesting areas. Each 

cluster of sensor nodes is allocated with at least one 

application node. Application nodes possess longer-range 

transmission, higher-speed computation, and more energy 

than sensor nodes. The base station is usually assumed to 

have unlimited energy and powerful processing capability. 

Wireless sensor networks usually have some assumptions 

for SNs and ANs. For instance, each AN may be aware of 

its own location through receiving GPS signals [11] and its 

own energy. 

A fundamental problem in wireless sensor networks is to 

maximize the system lifetime under some given constraints. 

Pan et al. proposed two algorithms to find the optimal 

locations of base stations in two-tiered wireless sensor 

networks [13]. Their approaches assumed the initial energy 

and the energy-consumption parameters were the same for 

all ANs. If any of the above parameters were not the same, 

their approaches could not work.  

In this paper, an algorithm based on particle swarm 

optimization (PSO) is proposed to find the multiple 

base-station locations for general power-consumption 

constraints. The PSO technique was proposed by Eberhart 

and Kennedy in 1995 [2][3] and has been widely used in 

finding solutions for optimization problems. Some related 

researches about its improvement and applications has also 

been proposed [4][14][17][18]. It maintains several 

particles (each represents a solution) and simulates the 

behavior of bird flocking to find the final solutions. All the 

particles continuously move in the search space, tending to 

better solutions, until the termination criteria are met. After 

a lot of iterations, the optimal solution or an approximate 

optimal solution is expected to be found. The proposed 

approach can search for nearly optimal BS locations in 

heterogeneous sensor networks. Experimental results also 

show the performance of the proposed PSO approach on 

finding the BS locations and the effects of the parameters 

on the results. 

II. REVIEW OF RELATED WORKS 

As mentioned above, a fundamental problem in wireless 

sensor networks is to maximize the system lifetime under 

some given constraints. Pan et al. proposed two algorithms 

to find the optimal locations of base stations in two-tiered 

wireless sensor networks [13]. The first algorithm was used 

to find the optimal locations of base stations for 

homogenous ANs, and the second one was used for 
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heterogeneous ANs. Homogenous ANs had the same data 

transmission rate and heterogeneous ANs might have 

different data transmission rates. In their paper, only the 

energy in ANs was considered. If a single SN ran out of 

energy, its corresponding AN might still have the capability 

to collect enough information. However, if an AN ran out of 

energy, the information in its coverage range would be 

completely lost, which was dangerous to the whole system. 

Let d be the Euclidean distance from an AN to a BS, and 

r be the data transmission rate. Pan et al. adopted the 

following formula to calculate the energy consumption per 

unit time: 

)(),( 21
ndrdrp ,         (1) 

where 1 is a distance-independent parameter and 2 is a 

distance-dependent parameter. The energy consumption 

thus relates to Euclidean distances and data transmission 

rates.

Pan et al. assumed each AN had the same 1, 2 and 

initial energy. For homogenous ANs, they showed that the 

center of the minimal circle covering all the ANs was the 

optimal BS location (with the maximum lifetime). They 

then tried to find by stacked planes the optimal BS location 

for heterogeneous ANs, which had different transmission 

rates.

III. REVIEW OF PARTICALE SWARM 

OPTIMIZATION 

When the PSO technique is used to solve a problem, each 

possible solution in the search space is called a particle, 

which is similar to a bird mentioned above. All the particles 

are evaluated by a fitness function, with the values 

representing the goodness degrees of the solutions. The 

solution with the best fitness value for a particle can be 

regarded as the local optimal solution found so far and is 

stored as the pBest solution for the particle. The best one 

among all the pBest solutions is regarded as the global 

optimal solution found so far for the whole set of particles, 

and is called the gBest solution. In addition, each particle 

moves with a velocity, which will dynamically change 

according to pBest and gBest. After finding the two best 

values, a particle updates its velocity by the following 

equation: 

)(() idid11
old

id
new

id xpBestRandcVwV

)(() idd22 xgBestRandc ,       (4) 

where the terms are explained below. 

1. new
idV  : the velocity of the i-th particle in the d-th 

dimension in the next iteration; 

2. old
idV  : the velocity of the i-th particle in the d-th 

dimension in the current iteration; 

3. pBestid: the current pBest value of the i-th particle in 

the d-th dimension; 

4. gbestd: the current gBest value of the whole set of 

particles in the d-th dimension; 

5. xid: the current position of the i-th particle in the d-th 

dimension; 

6. w: the inertial weight, generally set at 1 [17]; 

7. c1: the acceleration constant for a particle to move to its

pBest, generally set at 2 [3]; 

8. c2: the acceleration constant for a particle to move to 

the gBest, generally set at 2 [3]; 

9. Rand1(), Rand2(): two random numbers between 0 to 1. 

After the new velocity is found, the new position for a 

particle can then be obtained by the following formula: 
new

id
old
id

new
id Vxx             (5) 

All the particles thus continuously move in the search 

space, tending to better solutions, until the termination 

criteria are met.  

IV. A GENERAL PSO ALGORITHM FOR 

ALLOCATION OF MULTIPLE BASE STATIONS 

The ANs produced by different manufacturers may own 

different data transmission rates, initial energies and 

parameter values. When different kinds of ANs exist in a 

wireless network, it is hard to find the optimal BS locations. 

In this section, the problem for allocation of base stations is 

considered. A heuristic algorithm based on PSO to search 

for the locations of multiple base stations under general 

constraints is thus proposed. An initial group of particles is 

first randomly generated, with each particle representing a 

set of possible base-station locations. Each particle is also 

allocated an initial velocity for changing its state. Let ej(0) 

be the initial energy, rj be the data transmission rate, j1 be 

the distance-independent parameter, and j2 be the 

distance-dependent parameter of the j-th AN. The lifetime 

li(k)j of an application node ANj communicating with the 

k-th location in the i-th particle is calculated by the 

following formula: 

)()0( )(21)(

n
jkijjjjjki drel ,      (6) 

where n
jkid )(  is the n-order Euclidian distance from the j-th 

AN to the k-th location in the i-th particle. Assume there are 

M base stations to be allocated. The lifetime lij of ANj for 

the i-th particle is calculated by the following formula: 

}{ )(
1

jki

M

k
ij lMaxl              (7) 

The fitness function used for evaluating each particle is 

thus shown below: 

},{)(
1

ij

N

j
lMinifitness            (8) 

where N is the number of ANs. That is, each particle takes 

the minimal lifetime of all ANs as its fitness value. A larger 

fitness value denotes a longer lifetime of the whole system, 

meaning the corresponding base station locations are better. 

The fitness value of each particle is then compared with that 

of its corresponding pBest. If the fitness value of the i-th 

particle is larger than that of pBesti, pBesti is replaced with 

the i-th particle. The best pBesti among all the particles is 

chosen as the gBest. Besides, each particle has a velocity, 

which is used to change the current position. All particles 

thus continuously move in the search space. When the 

termination conditions are achieved, the final gBest will be 
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output as the locations of the multiple base stations. The 

proposed algorithm is stated below. 

The proposed PSO algorithm for allocation of multiple 

base stations: 

Input: A set of N ANs, each ANj with its location (xj, yj), 

data transmission rate rj, initial energy ej(0), 

parameter j1, and parameter j2.

Output: M base-station locations that will cause a nearly 

maximal lifetime for the system. 

Step 1: Initialize the fitness values of all pBests and the 

gBest to zero. 

Step 2: Randomly generate a group of n particles, each 

particle representing a possible solution of M
base-station locations. Locations may be 

two-dimensional or three-dimensional, depending 

on the problems to be solved.  

Step 3: Randomly generate an initial velocity for each 

particle.  

Step 4: Calculate the lifetime li(k)j of the j-th AN 

communicating with the k-th base station in the i-th 

particle by the following formula: 

),()0( )(21)(
n

jkijjjjjki drel

where ej(0) is the initial energy, rj is the data 

transmission rate, j1 is a distance-independent 

parameter, j2 is a distance-dependent parameter of 

the j-th AN, and n
jkid )(

 is the n-order Euclidean 

distance from the k-th base station of the i-th particle 

to the j-th AN. 

Step 5: Calculate the maximal lifetime lij of the j-th AN for 

the i-th particle by the following formula:  

}{ )(
1

jki

M

k
ij lMaxl .

Step 6: Calculate the lifetime of the whole sensor system 

for the i-th particle as its fitness value (fitnessi) by 

the following formula:  

ij

N

j
lMinifitness

1
)( ,

where N is number of ANs and i = 1 to n.

Step 7: Set pBesti as the current i-th particle if the value of 

fitness(i) is larger than the current fitness value of 

pBesti.

Step 8: Set gBest as the best pBest among all the particles. 

That is, let:  

fitness of pBestq = 
n
imax 1

fitness of pBesti, and set 

gBest=pBestq.

Step 9: Update the velocity of the i-th particle as:  

)
)()()()(

(() dkidki11
old

dki
new

dki xpBestRandcVwV

)(() )( dkikd22 xgBestRandc ,

where new
dkiV )(

 is the new velocity of the k-th base 

station at the d-th dimension for the i-th particle,  is 

the current velocity of the k-th base station at the 

d-th dimension for the i-th particle, w is the inertial 

weight, c1 is the acceleration constant for particles 

moving to pBest, c2 is the acceleration constant for 

particles moving to gBest, xi(k)d is the current 

position of the k-th base station at the d-th 

dimension for the i-th particle, pBesti(k)d is the value 

of the k-th base station of pBesti at the d-th 

dimension, and gBestkd is the value of the k-th base 

station of gBest at the d-th dimension, Rand1() and 

Rand2() are two random numbers among 0 to 1. 

Step 10: Update the position of the i-th particle as: 

new
dki

old

dki

new

dki
Vxx )(

)()(

,

where 
new

dkix )(
 and 

old
dkix )(

 are respectively the new 

position and the current position of the k-th base 

station at the d-th dimension for the i-th particle. 

Step 11: Repeat Steps 4 to 10 until the termination 

conditions are satisfied. 

In Step 11, the termination conditions may be 

predefined execution time, a fixed number of iterations or 

when the particles have converged to a certain threshold. 

V. EXPERIMENTAL RESULTS 

Experiments were made to show the performance of the 

proposed PSO algorithm on finding the optimal positions of 

base stations. They were performed in C language on an 

AMD PC with a 2.0GHz processor and 1G main memory 

and running the Microsoft Window XP operating system. 

The simulation was done in a two-dimensional real-number 

space of 100*100. That is, the ranges for both x and y axes 

were between 0 to 100. The data transmission rate was 

limited between 1 to 10 and the range of initial energy was 

limited between 10000000 to 99999999. The data of all 

ANs, each with its own location, data transmission rate and 

initial energy, were randomly generated. Each experiment 

was made with 100 runs for average. 

Experiments were first made to show the convergence of 

the proposed PSO algorithm for two base stations when the 

acceleration constant (c1) for a particle moving to its pBest
was set at 2, the acceleration constant (c2) for a particle 

moving to its gBest was set at 2, the inertial weight (w) was 

set at 0.6, the distance- independent parameter ( j1) was set 

at zero, and the distance-dependent parameter ( j2) was set 

at one. The experimental results of the resulting lifetime 

along with different iterations for 50 ANs and 5 particles in 

each iteration are shown in Figure 2.  

It is easily seen from Figure 2 that the proposed PSO 

algorithm could converge very fast (below 100 iterations). 

Next, experiments were made to show the effects of 

different parameters on the lifetime. The influence of the 

acceleration constant (c1) for a particle moving to its pBest
on the proposed algorithm was first considered. The 

process was terminated at 300 iterations. When w = 1 and c2

= 2, the nearly optimal lifetimes for 50ANs and 5 particles 

along with different acceleration constants (c1) are shown in 

Figure 3. 
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Figure 2: The lifetime for 50 ANs and 5 particles 
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Figure 3: The lifetimes along with different acceleration constants (c1)

It can be observed from Figure 3 that the lifetime first 

increased and then decreased along with the increase of the 

acceleration constant (c1). When the value of the 

acceleration constant (c1) was small, the velocity update of 

each particle was also small, causing the convergence speed 

slow. The proposed PSO algorithm might thus not get the 

optimal solution after the predefined number of iterations. 

On the contrary, when the value of the acceleration constant 

(c1) was large, the velocity change would be large as well, 

causing the particles to move fast. It was then hard to 

converge. In the experiments, the optimal c1 value was 

about 2. Next, experiments were made to show the effects 

of the acceleration constant (c2) for a particle moving to its 

gBest on the proposed algorithm. When w = 1 and c1 = 2, 

the experimental results are shown in Figure 4.  

It can be observed from Figure 4 that the lifetime first 

increased and then decreased along with the increase of the 

acceleration constant (c2). The reason was the same as 

above. In the experiments, the optimal c2 value was about 2. 

Next, experiments were made to show the effects of the 

inertial weight (w) on the proposed algorithm. When c1 = 2 

and c2 = 2, the experimental results are shown in Figure 5. 

It can be observed from Figure 5 that the lifetime first 

increased and then decreased along with the inertial weight 

(w). This was because when the value of the inertial weight 

was large, the particles would move fast due to the multiple 

of the old velocity. It was then hard to converge. In the 

experiments, the optimal w value was about 0.6. 
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Figure 4: The lifetimes along with different acceleration constants (c2)
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Figure 5: The lifetimes along with different inertial weights (w)

Experiments were then made to show the effects of the 

distance-independent parameter ( 1) on the lifetime. In the 

experiments, all ANs had the same value of the 

distance-independent parameter. The experimental results 

are shown in Figure 6.  
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Figure 6: The lifetimes along with different values of the 

distance-independent parameter ( 1)

It can be observed from Figure 6 that the lifetime 

decreased along with the increase of the value of the 

distance-independent parameter ( 1). It was consistent with 
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the formula of energy consumption. Next, experiments 

were made to show the effects of the distance-dependent 

parameter ( 2) on the lifetime. The experimental results are 

shown in Figure 7. 
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Figure 7: The lifetimes along with different values of the 

distance-dependent parameter ( 2)

It can be observed from Figure 7 that the lifetime 

decreased along with the increase of the distance-dependent 

parameter ( 2). It was also consistent with the formula of 

energy consumption. Besides, the relation between the 

lifetime and the value of the distance-dependent parameter 

presented an approximately inverse proportion. Next, 

experiments were made to show the relation between 

lifetimes and numbers of ANs. The experimental results are 

shown in Figure 8. 
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Figure 8: The lifetimes along with different numbers of ANs 

It can be seen from Figure 8 that the lifetime decreased 

along with the increase of the number of ANs. It was 

reasonable since the probability for at least one AN in the 

system to fail would increase when the number of ANs 

grew up. 

Experiments were then made to show the relation 

between lifetimes and numbers of particles for 50 ANs and 

300 iterations. The internal weight was set at 1. The 

experimental results are shown in Figure 9. It can be seen 

from Figure 9 that the lifetime increased along with the 

increase of numbers of particles. 

Next, experiments were made to show the relation 

between lifetimes and numbers of base stations. The 

experimental results are shown in Figure 10. It can be seen 

from Figure 10 that the lifetime increased along with the 

increase of the number of base stations. This is because the 

distance from an AN to a desired base station would 

become shorter for a larger number of base stations. 

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

0 10 20 30 40 50

Particles

L
if

e
ti

m
e

Figure 9: The lifetimes along with different numbers of particles 
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Figure 10: The lifetimes along with different numbers of base station 

Note that no optimal solutions can be found in a finite 

amount of time since the problem is NP-hard. For a 

comparison, an exhaustive search using grids was used to 

find nearly optimal solutions. The approach found the 

lifetime of the system when a BS was allocated at any 

cross-point of the grids. The cross-point with the maximum 

lifetime was then output as the solution. A lifetime 

comparison of the PSO approach and the exhaustive search 

are shown in Table 1. 

TABLE 1: A LIFETIME COMPARISON OF THE PSO APPROACH 

AND THE EXHAUSTIVE GRID SEARCH 

Method Lifetime 

The proposed PSO algorithm 1123.3463

The exhaustive grid search 

(grid size = 1)
1122.1773

It can be observed from Table 1 that the lifetime obtained 

by our proposed PSO algorithm was better than those by the 

exhaustive grid search. The lifetime by the proposed PSO 

algorithm was 1123.3463 and was 1122.1773 for the 

exhaustive search when the grid size was set at 1. The 

execution time by the two approaches is shown in Table 2. 
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TABLE 2: A COMPARISON OF EXECUTION TIME BY THE TWO 

APPROACHES 

Method Time (sec.)

The proposed PSO algorithm 0.07 

The exhaustive grid search  

(grid size = 1)
3983.515 

It can be seen from Table 2 that the exhaustive grid 

search spent much more execution time than the proposed 

PSO algorithm. 

VI. CONCLUSION AND FUTURE WORKS 

In this paper, a two-tiered wireless sensor networks has 

been considered and an algorithm based on particle swarm 

optimization (PSO) has been proposed for finding the 

multiple base stations. The proposed algorithm first 

randomly generates an initial group of particles, with each 

particle representing a possible solution of multiple 

base-station locations. Each particle is also allocated a 

velocity for changing its state. System lifetime is used as 

the fitness function to evaluate each particle. Both the 

local optimal value pBest and the global optimal value 

gBest are then used to guide the search direction. When 

the termination conditions are achieved, the final gBest
will be output as the location of the multiple base stations. 

Experiments have also been made to show the performance 

of the proposed PSO approach and the effects of the 

parameters on the results. In summary, the proposed 

algorithm can help find good BS locations to reduce power 

consumption and maximize network lifetime in two-tiered 

wireless sensor networks. In the future, we will attempt to 

extend the proposed approach to solving more complicated 

problems in wireless sensor networks. 
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