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Abstract

We study the problem of optimally allocating online advertisement space to budget-constrained adver-
tisers. This problem was defined and studied from the perspective of worst-case online competitive analysis
by Mehta et al. Our objective is to find an algorithm that takes advantage of the given estimates of the
frequencies of keywords to compute a near optimal solution when the estimates are accurate, while at
the same time maintaining a good worst-case competitive ratio in case the estimates are totally incorrect.
This is motivated by real-world situations where search engines have stochastic information that provide
reasonably accurate estimates of the frequency of search queries except in certain highly unpredictable yet
economically valuable spikes in the search pattern.

Our approach is a black-box approach: we assume we have access to an oracle that uses the given
estimates to recommend an advertiser every time a query arrives. We use this oracle to design an algorithm
that provides two performance guarantees: the performance guarantee in the case that the oracle gives an
accurate estimate, and its worst-case performance guarantee. Our algorithm can be fine tuned by adjusting
a parameter α, giving a tradeoff curve between the two performance measures with the best competitive
ratio for the worst-case scenario at one end of the curve and the optimal solution for the scenario where
estimates are accurate at the other end. Finally, we demonstrate the applicability of our framework by
applying it to two classical online problems, namely the lost cow and the ski rental problems.

1 Introduction

Search engines such as Google, Yahoo!, and MSN use a simple but innovative auction mechanism for allocating
the advertisement space on the side of search results. Goods that are being sold in these auctions, the search
queries, have very interesting characteristics; most importantly, they should be allocated to the buyers in a
fraction of a second or they will perish instantly. Moreover, they arrive in an online fashion and their total
supply, the number of times the users search for a specific keyword, is unknown. The online nature of these
auctions gives rise to interesting and challenging algorithmic problems. One of the most central problems in
this context is finding the optimum allocation algorithm: given the current bids and budgets of the advertisers,
what is the best algorithm for allocating each search query to the advertisers?

Mehta et al. [17] first posed this problem as a generalization of the online matching problem: the search engine
is given the bids and the budgets of advertisers. As a search query arrives, the ad space is allocated to the
advertisers and they are charged their bid for an impression. The goal is to compute the allocation in such a
way that maximizes the revenue while respecting the budget constraints of the advertisers. Mehta et al. [17]
gave an algorithm with the competitive ratio of (1 − 1/e) and showed that this is the best possible ratio an
online algorithm can achieve. They also presented extensions of their algorithm to more realistic settings used
in practice.

It has been argued by many (see, for example, Koutsoupias and Papadimitriou [14]) that the pessimistic
nature of the worst-case analysis for online algorithms favors algorithms that make extremely conservative
choices. In practice, as they point out, we usually have some information about the input. For example,
in our context it is reasonable to assume that the search engines have a good estimate of the frequencies of
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keywords. The main problem is that although these estimates are often accurate, they might turn out to be
completely wrong due to unexpected events. Examples include the sudden spike in the frequency of search
for “gas mask” right after speculations about terrorist activities, or for “Janet Jackson” after the wardrobe
malfunction incident in Super Bowl 2004, or simply the surge in the volume of associated queries after the
release of a new successful movie or record. Such spikes are usually very valuable for advertisers (and hence
for the search engine), and at the same time they are essentially impossible to predict. As we will observe in
the next section, an allocation algorithm that decides entirely based on the estimates might completely miss
out on such revenue opportunities.

To address this problem, we define a new framework for designing and evaluating online algorithms in presence
of unreliable estimates. Our goal is to design an algorithm that performs well in the case that the estimates
are accurate as well as in the worst case. We evaluate our algorithm using two parameters: the worst-case
competitive ratio γw, and the competitive ratio γa in the case the given estimates are accurate. In fact,
for the query allocation problem, we prove a stronger result: we show that given any oracle that makes a
recommendation to the algorithm in every step, we can design an algorithm that allocates queries in such a
way that the value of the solution is always at least a fraction γw of the optimal offline solution, and a fraction
γa of the solution provided by the oracle. For example, if estimates of frequencies of keywords are available,
the oracle can be designed to compute the optimal solution given these frequencies by solving a linear program,
in which case our algorithm provides a performance guarantee of γa with respect to the optimal solutions on
inputs conforming with the predicted frequencies.

We propose a family of algorithms parameterized by a value α ≥ 1. This parameter, roughly speaking, reflects
our trust in the estimates. If α = 1, our algorithm ignores the oracle and will have the same performance
of 1 − 1/e. If α = ∞, the algorithm will always follow the recommendations of the oracle. We give a tight
analysis of our algorithm for all values of α. Our analysis is based on using a factor-revealing program [11, 12].
For deriving γw, the structure of this program is similar to the one used by Mehta et al. [17], and can be solved
in a similar fashion. However, the structure of the factor revealing LP for computing γa becomes much more
complex and more challenging to analyze. Even though in a certain range, the competitive ratio γa can only
be described as the solution of an algebraic equation, we can still produce examples to show that our analysis
is tight.

We believe that the framework introduced in this paper can be useful in other online computing problems,
when the decision maker has unreliable information about the future. In the last section, we show how this
framework can be applied to two textbook examples of online algorithms, namely the lost cow problem and
the ski rental problem.

Related work. Mehta et al. [17] build their results upon the work of Karp, Vazirani, and Vazirani [13] on
the online matching problem, and the work of Kalyanasundaram and Pruhs [10] on the online b-matching
problem. Recently, Buchbinder, Jain, and Naor [8] gave a simple and intuitive primal-dual interpretation
of the algorithm of Mehta et al. [17], and provide several generalizations, including one that claims to take
advantage of stochastic information. However, their model and the type of the stochastic information they use
is entirely different from ours. Both our results and the results in [17, 8] deal with the algorithmic, rather than
the mechanism design aspect of the allocation problem. Designing a revenue-competitive incentive compatible
mechanism for this problem seems to be a difficult task, and is only solved for the case of multi-unit auctions
(i.e., when each advertiser bids on only one keyword) by Mahdian and Saberi [16].

Ad auctions have inspired several interesting algorithmic and game theoretic questions [5, 1, ?]. For a study
of the equilibria of these games in a static setting without budgets see [9]. See [15] for a survey of results in
this area.

2 The query allocation problem

In this section, we define the query allocation problem (first posed by Mehta et al. [17]), and our framework
for incorporating unreliable estimates. In this model, the search engine receives the bids of advertisers for
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each keyword and their total budget for a certain period (e.g. a day). During the day, as a search query for a
keyword arrives, the search engine assigns one advertiser to this query, and charges this advertiser an amount
equal to their bid for the corresponding keyword. Note that, as in [17], we make the simplifying assumption
that there is only one ad slot on each search results page. As Mehta et al. [17] point out, their result (and
similarly ours) can be easily extended to more realistic settings where there are several slots on each page,
and the search engine charges the advertisers per click instead of per impression.

Let A be the set of advertisers, K be the set of keywords, and Q be the sequence of queries, which is given to
the algorithm in an online fashion. Each query in Q is for a keyword in K. Denote the budget of advertiser
i by Bi, and the bid of advertiser i for keyword j by bij . As in [17], we assume that bids are small compared
to the budgets. The goal is to maximize the revenue, i.e., the sum of bi(q),j(q) over all queries q in Q, where
i(q) denotes the advertiser assigned to this query, and j(q) denotes the keyword corresponding to this query.
Therefore, if we know the number of times nj a query for keyword j occurs in Q, the solution of this problem
can be computed by solving the following maximization program with integrality constraints on xij ’s:

maximize
∑

i∈A,j∈K
bijxij (1)

subject to ∀j ∈ K :
∑
i∈A

xij ≤ nj

∀i ∈ A :
∑
j∈K

bijxij ≤ Bi

∀i ∈ A,∀j ∈ K : xij ≥ 0

Note that the assumption that bids are small compared to budgets implies that relaxing the integrality
constraints in the above program does not change the solution of the program by a significant amount.

When frequencies nj are unknown, Mehta et al. [17] give a (1− 1/e)-competitive algorithm for this problem,
and show that this is the best ratio an online algorithm can achieve.

Unreliable estimates. We assume that the search engine has access to an oracle EST which recommends
an advertiser for each query. We treat this oracle as a black box; it can be based on an algorithm that solves
the linear program 1 for given estimates nj of the frequencies (if such estimates are available), or even a more
complex algorithm that learns the distribution of the queries and the corresponding optimal allocation over
time.

As the following example shows, the naive approach of simply following the recommendations of EST can
produce very small revenue compared to the the optimal offline allocation, if EST is based on wrong estimates.

Example A naive approach is based on taking the given estimates of the frequencies nj , computing the
optimal solution S with respect to these frequencies, and allocating according to this optimal solution (or,
if a query arrives whose assignment is not predicted in S, assigning this query to the highest bidder with
enough remaining budget). Consider the following scenario: there are two advertisers, each with a budget of
100, and two keywords, each with the predicted frequency of 100 during a day. Advertiser 1 only bids 1 on
keyword 1, and nothing on keyword 2. The bid of advertiser 2 on keywords 1 and 2 are 10 and 1, respectively.
The optimal solution with our estimates of the frequencies is to assign all queries for keyword 1 to advertiser
1, and all queries for keyword 2 to advertiser 2. However, if instead, we get only 10 queries for keyword 1,
following the naive approach would give a revenue of 10, while the optimal revenue is 100 (assigning all queries
to advertiser 2).

The above example shows that the worst-case competitive ratio of the naive approach is zero. In fact, it is
easy to see from the above example that there is no algorithm that achieves the optimal solution when the
estimates are accurate and has a zero worst-case competitive ratio. The natural question is, if we allow a
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small decrease in revenue in cases where our estimates are accurate, would we be able to achieve a bounded
worst-case competitive ratio?

To make this precise, we define two parameters γw and γa for evaluating an algorithm. γa represents the
competitive ratio with respect to the solution we get if we follow the EST recommendation every time1. γw is
the competitive ratio with respect to the optimal offline solution.2

By this definition and the above example, an algorithm that always follows EST has γa = 1 and γw = 0. On
the other hand, an algorithm that always follows the online algorithm of Mehta et al. [17] has γa = γw = 1−1/e.
The goal is to design an algorithm that intelligently decides when to follow EST and when not, in order to
achieve a tradeoff between these two extreme points. A simplistic way to do this in expectation is by using
randomization:

Example A simple way for achieving non-zero γw and γa in expectation is the following: Toss a coin and
with probability p follow EST on every query. With probability (1− p) ignore EST and follow the (1− 1/e)-
competitive algorithm of Mehta et al. [17]. Clearly, in expectation, this algorithm achieves a p fraction of the
revenue of EST and a (1− p)(1− 1/e) fraction of the optimal offline revenue.

In the rest of this paper, we propose and analyze an algorithm that performs better than the above approach
(and in addition lacks the undesirable feature that the output is a random variable with high variance – in
fact, our algorithm will be deterministic).

3 The Algorithm

The main idea of the algorithm is to rely on EST’s recommendation only when it is, roughly speaking, “safe”.
To explain the intuition behind the algorithm, we need to quickly present the (1− 1/e)-competitive algorithm
of Mehta et al [17]. Their algorithm uses a function Φ(f) = 1 − ef−1 that takes as the input the fraction of
the budget of an advertiser that is spent, and outputs a factor by which the bid of the advertiser should be
discounted. As a new query arrives, the algorithm assigns it to the bidder with the maximum discounted bid.

Our algorithm is parameterized by a number α ≥ 1. This parameter controls the extent to which we want
to rely on the EST. For f ∈ [0, 1], define Φ(f) := 1 − eα·(f−1). Also, let fi be the fraction of the budget of
advertiser i that has been spent so far. As a new query for keyword j arrives, the algorithm finds the advertiser
d that maximizes Φ(fd)bdj over all d ∈ A. Also, suppose EST ’s recommendation is to allocate the query to
the advertiser e. The algorithm compares Φ(fe)bej with Φ(fd)bdj . If the latter is bigger than the former by
more than a factor of α, then the query is allocated to e; otherwise, it is allocated to d.

This algorithm is shown in Figure 1. In the next two sections, we analyze the performance guarantees γw and
γa of the algorithm. We start with the analysis of γw, which is simpler and follows the same line as in [17].

4 Competitive ratio when the estimates are inaccurate

In this section, we find γw, the competitive ratio of our algorithm with respect to the optimal offline solution,
independent of the accuracy of the estimates. The analysis in this section is very similar to [17] and therefore
we will discuss it only briefly. Let us start by some definitions. Let k be a large number we use for discretizing
the budgets of the advertisers. Let

φ(s) = 1− (1− 1
k

)α(k−s). (2)

Note that when k tends to infinity we can approximate the function φ(s) with Φ( s
k ). We say that advertiser i

is of type t, 0 ≤ t ≤ k, if she has spent within ( t−1
k , t

k ] fraction of her budget so far. Let st be the total budget
1Notice that we do not assume that the solution of EST is necessarily optimum.
2Note that by this definition, we always have γw ≥ γa.
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Algorithm:

Upon the arrival of a new query for keyword j:

• Let e be the advertiser recommended by EST for receiving j;

• Let d be the advertiser with maximum Φ(fi)bij among all i ∈ A;

• If αΦ(fe)bej ≥ Φ(fd)bdj then

allocate j to e;
else

allocate j to d;

Figure 1: The algorithm

of these advertisers. We also define rt to be the total remaining budget of the advertisers of type t in the
optimal solution, OPT . Also, let S be total budget of the advertisers. For i = 0, 1, . . . , k, define wi to be the
amount of money spent by all the advertisers from the interval ( i−1

k , i
k ] fraction of their budgets. Using these

definitions we state lemmas below. The first lemma can be proved similarly to lemma 7 in [17]. Lemma 2 is
proved by simply summing up a geometric series. The proofs of these lemmas are omitted here.

Lemma 1 At the end of the algorithm, we have:

k∑
i=0

φ(i)(si − ri) ≤
k∑

i=0

αφ(i)wi (3)

Lemma 2

1
k

i∑
t=j

φ(t) =
i− j

k
+

1
α

(φ(i)− φ(j)) + O(1/k) (4)

Now, we are ready to prove the main result of this section.

Theorem 3 The competitive ratio of the algorithm with respect to optimum offline solution, γw, is 1
α (1− 1

eα ).

Proof : By definition wi is at most 1
k

∑k
j=i sj . Plugging in (3):

k∑
i=0

φ(i)(si − ri) ≤ α
k∑

j=0

φ(j)(
1
k

k∑
i=j

si) ≤
α

k

k∑
i=0

si

i∑
j=0

φ(i) (5)

Using Lemma 2 we get:

(φ(0)−O(1/k))S −
k∑

i=0

φ(i)ri ≤ α
k∑

i=0

i

k
si (6)

Note that
∑k

i=0
i
ksi is the revenue of our algorithm and S−

∑k
i=0 ri is the revenue of OPT, which is less than

or equal to φ(0)S −
∑k

i=0 φ(i)ri.
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Tight Example: We construct a scenario in which the revenue of the optimal solution is 1 and ours is γw.
Suppose that there are k advertisers with budget 1

k . The keywords show up in k phases. In the phase i, the
keywords of advertiser i arrive for which she bids αε and in the optimal solution these keywords are allocated
to i. But our algorithm, based on EST, distributes these keywords among advertisers i + 1 . . . k with bid ε. It
is easy to see that in this scenario the revenue of the algorithm matches the lower bound in the theorem. �

Example: For α equal to 1.5, 1.75 and 2, γw is equal to 0.52, 0.47 and 0.43.

5 Competitive ratio when the estimates are accurate

In this section, we evaluate γa, the competitive ratio of the algorithm with respect to the allocation defined
by the recommendation of EST. Similar to the previous section, we define ri to be the total remaining budget
of advertisers of type i in the solution of EST. Also, we assume that the budgets and the bids are normalized
so that S = 1.

We find an upper bound on the value of the keywords we may miss by ignoring the EST’s recommendations. Let
C be the set of all keywords for which we made a different choice than EST. We define tij to be the total amount
of budget that advertisers of type i have spent from interval ( j−1

k , j
k ] fraction of their budget for the keywords

in Q−C, the set of keywords for which both algorithms made the same decision. Recall from the algorithm that
when the keyword j shows up, j is allocated to EST’s candidate, e, if αΦ(fe)bej ≥ Φ(fd)bdj = maxi∈A Φ(fi)bij .
An important observation here is for every keyword j ∈ C:

Φ(fe)bej <
1
α

Φ(fd)bdj

Now, summing up over all queries in C we get:

k∑
i=0

φ(i)(si − ri −
i∑

j=0

tij)≤
1
α

k∑
i=0

φ(i)(wi −
k∑

j=i

tji)

Plugging wi = 1
k

∑k
j=i sj and rearranging the terms we get the inequality below.

k∑
i=0

φ(i)(
1
α

k∑
j=i

tji −
i∑

j=1

tij)≤
1
α

k∑
i=0

φ(i)(
1
k

k∑
j=i

sj)−
k∑

i=0

φ(i)(si − ri) (7)

The inequality (7) is derived in the same way as inequality (5) except that α has been replaced by 1
α in the

right hand side. The big difference however, is made in the left hand side of in equality (7). The variables
tij may make the left hand side of (7) negative or positive, which dramatically changes the structure of the
worst-case examples.

To find the competitive ratio of the revenue of our algorithm with respect to EST, we use the factor revealing
LP technique [11, 12]. Consider the LP below. The objective function is the revenue of the algorithm and
the linear constraints are imposed by the algorithm and the structure of the problem. Therefore, any feasible
solution of this LP gives an upper bound on the competitive ratio of the algorithm.
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minimize
k∑

i=0

i

k
si (8)

subject to
k∑

i=0

si = S

k∑
i=0

φ(i)(
1
α

k∑
j=i

tji −
i∑

j=1

tij) ≤
k∑

i=0

φ(i)(
1

αk
(

k∑
j=i

sj)− si + ri) (9)

∀0 ≤ j ≤ i ≤ k :
1
k

si ≥ tij

k∑
i=0

ri = R

∀i : si ≥ ri

si, ri, tij ≥ 0

Using Lemma 2, we get the dual of this linear program:

maximize xS − vR (10)

subject to ∀0 ≤ j ≤ i ≤ k : (αφ(i)− φ(j))y ≤ zij

∀i : x + (
i

k
− 1

α
φ(0) + (

1
α
− α)φ(i))y +

1
k

i∑
j=0

zij + ui ≤
i

k
(11)

∀i : yαφ(i)− ui ≤ v

y, zij , ui ≥ 0

We formalize this in the theorem below:

Theorem 4 Let α∗ be the root of (α2 − 1/α)e−α + 1/α− 1 = 0 in [1, 2] 3. For α ≥ α∗, let

γa =
α(eα − 1)

(α− 1
α )(eα − 1) + eα

. (12)

Also, let f∗ be the solution for the equation (α(f − 1))2eα(f−1) = 1− 1
α (1− e−α). For α in (1, α∗), let

γa = 1−
1− 1

α (1− e−α)
α(1− (1 + α(f∗ − 1))eα(f∗−1))

(13)

Then on any input, our algorithm always produces a solution whose value is at least a γa fraction of the value
of the solution found by EST .

Proof : We start by constructing a feasible dual solution for (10). Set v = yαφ(0), ui = 0, zij =
max {(αφ(i) − φ(j))y, 0}, for all 1 ≤ j ≤ i ≤ k. Now, the only unsatisfied condition is (11). Let j∗ =
minj≥0{αφ(i)− φ(j) ≥ 0}. Taking sum over all inequalities for zij , by Lemma 2, we have:

1
k

i∑
j=0

zij ≥
1
k

i∑
j=j∗

(αφ(i)− φ(j))y

= ((α
i− j∗

k
− 1

α
)φ(i) +

1
α

φ(j∗)− i− j∗

k
)y

3α∗ is very close to 1.795
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Suppose k tends to infinity. Let f = i
k , recall Φ(f) = (1− eα(f−1)). If αΦ(f) ≥ Φ(0), then j∗ = 0, so by (11)

we have:

x ≤ f − α(f − 1)Φ(f)y (14)

If αΦ(f) < Φ(0) , then j∗

k = 1
α ln(1− α(1− eα(f−1))) + 1. Plugging into (11) we get:

x≤ i

k
− (α(

i− j∗

k
− 1)φ(i) +

1
α

φ(j∗)− 1
α

φ(0) +
j∗

k
)y

= f − ((α(f − 1) + 1)Φ(f)− 1
α

Φ(0) + (
1
α

ln(1− αΦ(f)) + 1)(1− αΦ(f)))y (15)

We find the values of f for which r.h.s in (14) and (15) take their minimums. Taking the first and second
derivatives of the f −α(f − 1)Φ(f)y, the function is concave for f ≤ 1− 2

α and it is strictly convex after that.
Also, the r.h.s in (15) is a concave function of f . For α∗ ≤ α this function is increasing at 0. So for α ≥ α∗, we
can choose the value of y such that the r.h.s takes its minimum at f = 0 and f = 1. Hence, the corresponding
inequalities hold as equalities. This leads to following feasible solution:

x = αΦ(0)y = 1− (1− 1
α

Φ(0))y ⇒


y = 1

(α− 1
α )Φ(0)+1

x = αΦ(0)

(α− 1
α )Φ(0)+1

The case for 1 < α < α∗ is different because the function f − α(f − 1)Φ(f)y in r.h.s of inequality (14), is
strictly convex in for 0 ≤ f ≤ 1, and it is decreasing at point 0. So the function takes it minimum at the point
f∗ 6= 0 which satisfies the first order conditions:

1− α(1− (1 + α(f∗ − 1))eα(f∗−1))y = 0

So we choose the value of y that makes the minimum in r.h.s. of (14) (for f∗) and r.h.s (15) (for 1) equal.
The solution of this equation gives the value of x for 1 < α < α∗.

Tight Example: Now we give a tight example for this analysis where α > α∗. Suppose there are two
advertisers with budgets B1 = 1

αΦ(0) (1−
1
αΦ(0)) and B2 = 1. First, the keywords of advertiser 1 arrive and in

the solution proposed by EST they are allocated to 1. Suppose when keyword j in this set shows up, b1j = ε
and b2j is slightly more than α

Φ(f2)
ε. So the algorithm allocates j to 2. This continues up to the time advertiser

2 runs out of budget. After that, a set of keywords show up that only 2 is interested but she has no budget
to take them. In this case γa = B2

B1+B2
which matches the lower bound. Also, this corresponds to a feasible

primal solution with s0 = B1 and sk = B2 and tij = 0 for all 1 ≤ j ≤ i ≤ k. For the case α < α∗, the optimal
primal solution has a similar structure except that Sf∗ = B1 and tij = 1

kB1 for i = bkf∗c, j ≤ i. �

Example: For α equal to 1.5, 2 and 5, γa is 0.71, 0.75 and 0.86.

6 Extensions of the Framework

A common criticism of the framework of online competitive analysis is that it is too pessimistic: it assumes
that we have no knowledge of the sequence of events in the future, whereas in practice we often have a good
estimate of events that might happen in the future. The notion we introduced in this paper is an attempt
to answer this problem. The idea is to give algorithms with a considerably better competitive ratio if the
future events are actually close to our estimates, while still maintaining a reasonable competitive ratio, in
case an unpredicted event changes the sequence of events drastically. This concept can be applied to many
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online problems. One prominent example was the advertisement allocation problem that was presented in
the previous sections. In this section, we present two other examples - the well-known lost-cow and ski-rental
problems - to further illustrate the concept.

Ski-Rental problem: the parents of a teenager are taking her skiing. Every time they go skiing, they are
faced with the decision of buying or renting the ski equipments. Buying ski equipments costs a times as much
as renting them. The problem is that the parents do not know how many times their child will come for skiing
before she loses interest. There is a simple 2-competitive algorithm to solve this problem that is usually given
as the classical classroom example for online algorithms: rent ski equipments for a day, and then buy them.
It is not hard to show that this is the best deterministic algorithm for this problem.

Now, assume that the parents have an estimate, b, of the number of times their child will go skiing. They
would like to follow an algorithm that is close to optimal if their estimate turns out to be accurate, while still
not costing them too much if the estimate is wrong. The following theorem answers this question.

Theorem 5 For any value 1 < α ≤ 2, there is an algorithm for the ski-rental problem that achieves an
approximation ratio of α if the estimate b is correct, and a competitive ratio of α/(α− 1) if it is not correct.
Moreover, this is the best competitive ratio a deterministic algorithm can achieve.

The lost cow problem A smart shortsighted cow, is standing in front of a fence and does not know where
the gate is located. At each time, the cow can goes one step to the right or to the left and see if it is in front
of the gate. The cow wants to find the gates in the minimum number of steps.

Suppose the cow has a guess about the place of the gate but it is not sure. Based on this estimation, we
can design a family of algorithm. This idea is formalized in the proposition bellow, the proof is appeared in
appendix B

Proposition 6 For every α ≥ 2, there is an algorithm for the lost-cow problem that has competitive ratio of
2 α2

α−1 + 1 in the worst-case. If the estimate is correct, the competitive ratio is 1 + 2
α−1 .

7 Conclusion

In this paper, we have presented a family of online algorithms for allocating online advertisement with unre-
liable estimates. We have used trade off revealing LP technique for designing and analyzing these algorithm
in both cases for the wrong and accurate estimates. We have also provided examples which show that our
analysis is tight.

The tight examples for the worst case and best case scenarios are essentially different, which suggests that
choosing α randomly, in average, will improve the performance of the algorithm.

We have simulated the performance of our algorithm in a setting with 20 advertisers and about 5000 queries,
with uniform distribution over the bids and the frequency of the keywords. The experimental results are
significantly better than the worst-case examples we came up with in our tight analysis. As an example, for α
equal to 2, with accurate estimates we almost have the same revenue as the optimal solution. Also, γw turned
out to be more than 0.75.

Acknowledgment. We would like to thank Rajat Bhattacharjee, Nicole Immorlica, Bobby Kleinberg and
an anonymous referee for very helpful comments. The second and the third authors were supported by a gift
from Google.
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A Proof of Proposition 5

.

Proof : There is a simple 2-competitive algorithm to solve this problem that is usually given as the classical
classroom example for online algorithms: rent ski equipments for a day, and then buy them. It is not hard to
show that this is the best deterministic algorithm for this problem.

Let β = α/(α − 1). Any deterministic algorithm for this problem must decide on the number of times x the
parents must rent the ski equipments before they buy them. The competitive ratio of such an algorithm is
given by

x + a

min(x + 1, a)
.

Using the above expression, it is easy to see that in order to get a competitive ratio of β, it is necessary and
sufficient to pick the value x in the interval [(a−β)/(β−1), (β−1)a]. It only remains to decide which point of
this interval to pick, in order to achieve a factor of at most α when the estimate b is accurate. To do so, first
notice that if b ≤ a, one can easily pick x = a, since in this case the 2-competitive algorithm for ski-rental is
actually optimal when the estimates are accurate. Therefore, assume b > a. Now, notice that the algorithm
that always picks x = (a−β)/(β−1) has an approximation factor of at most α when the estimates are correct.
This follows from the fact that the approximation factor of the algorithm when the estimates are correct can
be given by {

b
a if x ≥ b
x+a

a if x < b.

Finally, considering the case that b is a large number, and using the above expression and the fact that x must
be selected from the interval [(a − β)/(β − 1), (β − 1)a], one can easily see that no algorithm can achieve an
approximation ratio (for the case the estimates are correct) better than β/(β − 1) = α.

�

B Proof of Proposition 6

Proof : Baeza-Yates et. al [4], present a deterministic optimal algorithm for this problem. There is a series
of phases, at phase 1, the cow takes one of the left or right direction and go 1 step through that direction, if
it finds the gate then it is done, other wise it comes back to its initial place and goes 2 step in other direction,
and will continue doubling movement till it finds the gate.

Our solution for the problem is the following: Let d be the claimed distance to the gate, similar to [4], at
each phase multiply the number of steps by α, but choose the direction in the first phase such that in phase i
where αi ≤ d < αi+1 our direction be the same direction as suggested by the estimations.

It is easy to see the worst case ratio is 2 α2

α−1 + 1, but with accurate estimation, γa = 1 + 2
α−1 . For α = 2 these

ratios are 9 and 3. �
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