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Abstract

We analyze the problem of allocating cost savings from sharing demand information in a three-level

supply chain with a manufacturer, a distributor and a retailer. To �nd a unique allocation scheme

we use concepts from cooperative game theory. First, we compute analytically the expected cost

incurred by the manufacturer and then use simulation to obtain expected costs for the distributor

and the retailer. We construct a three-person cooperative game in characteristic-function form, and

derive necessary conditions for the stability of each of �ve possible coalitions. To divide the cost

savings between two members, or among three supply chain members, we use various allocation

schemes. We present numerical analyses to investigate the impacts of demand autocorrelation

coe¢ cient, �, and the unit holding and shortage costs on the allocation scheme.

Key words: Supply chain management, information sharing, cooperative game theory, Nash ar-

bitration scheme, constrained core, Shapley value, constrained nucleolus solution, simulation.



1 Introduction

In recent years, academics and practitioners have begun paying considerable attention to e¢ cient

management of supply chains involving material, information and �nancial �ows. As Chopra and

Meindl [7, p. 36] have indicated, the primary goal of an e¢ cient supply chain is to meet customers�

demands at the lowest cost. Hence, in order to achieve supply chain e¢ ciency, each channel mem-

ber is expected to pay attention to cost savings by, for example, collaborating on supply chain

integration (SCI). As shown by Lee [16], information sharing plays a signi�cant role in integrating

a supply chain. Information shared by supply chain members mainly consists of demand infor-

mation, inventory-related data, order status and production schedules (Lee and Whang [15]). As

demonstrated in many articles, supply chain-wide information sharing can result in lower overall

costs, whereas the lack of information sharing may have a negative impact on the supply chain

performance. For example, the well-known phenomenon known as the �bullwhip e¤ect� usually

appears in a supply chain as a result of information distortion and can result in higher inventory

levels, longer lead times and consequently lower supply chain pro�tability.

Many industries have experienced or hope to experience demonstrable bene�ts from information

sharing. In a report on potential impacts of the e-commerce on the U.S. healthcare supply chain

(HSC) prepared by the accounting and consulting �rm Ernst and Young, it was indicated that cost

savings generated by e¢ cient information sharing could amount to US$2.6 billion; see, Hankin [11].

Another accounting and consulting �rm Andersen also presented an industrial report [14] concerned

with the value of e-commerce in HSC. In this study, Andersen obtained the same conclusion as Ernst

and Young, and further estimated that information sharing could yield cost savings of US$3.9

billion. As discussed in Chopra and Meindl [7], Wal-Mart and Proctor & Gamble (P&G) also

gained considerable bene�ts from sharing information on the point-of-sale (POS) data.

Demand data from ultimate customers, i.e., POS, is a most important piece of information that

is worth sharing. As reported in [1], Dan DiMaggio, president of the UPS Supply Chain Solutions,

has indicated that sharing sales data can help reduce inventories and accelerate ful�llment. Lee, So

and Tang [17] (hereafter, LST) quanti�ed the bene�ts of sharing demand information in a two-level

supply chain involving a manufacturer and a retailer. LST assumed that customer demands faced
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by the retailer follow the one-period autoregressive model AR(1), i.e.,

Dt = d+ �Dt�1 + "t, (1)

where Dt represents the customer demand in period t, d is a positive constant, � is the autocorre-

lation parameter with j�j � 1, and "t is the error term that is i.i.d. with a symmetric distribution

(e.g., normal) having mean 0 and variance �2. The demand process (1) for studying the bullwhip

e¤ect was adopted as early as 1987 by Kahn [12], and in recent years it has been frequently applied

to the analysis of the bullwhip e¤ect and information sharing. For example, Chen et al. [5] quanti-

�ed the bullwhip e¤ect, caused by demand forecasting and order lead times, in a two-stage supply

chain with a manufacturer and a retailer who faces the demand process AR(1). These authors

also extended their analysis to multiple-stage supply chains with and without demand informa-

tion sharing between the retailer and his upstream members, and they showed that the bullwhip

e¤ect can be reduced but cannot be completely eliminated by information sharing. Chen, Ryan

and Simchi-Levi [6] considered two demand processes, AR(1) and a demand process with a linear

trend, and they quantitatively analyzed the bullwhip e¤ect for two-stage supply chains consisting

of a manufacturer and a retailer. In [6], the retailer was assumed to use the exponential smoothing

and moving average forecasting techniques to update the mean and standard deviation of demand

and thus the retailer�s order-up-to point for each period. The authors demonstrated that using

exponential smoothing results in a larger bullwhip e¤ect than using the moving average, and also

discussed several important managerial insights drawn from this research.

In our paper, we use (1) to model the demand process faced by the retailer, compute cost savings

generated by information sharing and conduct a cooperative game analysis for the fair allocation

of cost savings in a three-level supply chain. LST [17] provided empirical evidence to show that

for most products the autocorrelation coe¢ cient � is positive. When � = 0, the AR(1) process

is reduced to Dt = d + "t which does not depend on the past demand information owned by the

retailer. In this case, end-demand information sharing does not change the distributor�s and the

manufacturer�s ordering decisions and does not reduce their costs. Thus, for our analysis we let

0 < � � 1.

A number of papers have focused on the impact of information sharing on cost reduction in sup-

2



ply chains. For example, in two recent publications Simchi-Levi and Zhao ([29] and [30]) investigated

the value of demand information sharing in a two-stage supply chain (including a manufacturer and

a retailer) with production capacity constraints over a �nite and an in�nite time horizon, respec-

tively. More speci�cally, in [29], the authors analyzed the value of information sharing between a

retailer facing the i.i.d. demand and a manufacturer with a �nite production capacity over a �nite

time horizon. Simchi-Levi and Zhao considered three strategies, i.e., no information sharing, infor-

mation sharing with optimal policy, and information sharing with greedy policy, and studied the

impact of information sharing on the manufacturer and found the optimal timing for information

sharing. The authors concluded that by sharing demand information, the manufacturer can achieve

a considerable reduction of inventory cost while assuring the same service level to the retailer. In

[30], the authors examined the impact of information sharing on the manufacturer�s cost and service

level for the in�nite horizon case. Allowing for time-varying cost functions, the paper characterized

the manufacturer�s optimal production-inventory policy with information sharing under both the

discounted and average cost criteria, and identi�ed situations under which information sharing is

most bene�cial.

There appear to be very few papers that have analyzed the information sharing problem from

a game-theoretic point-of-view and investigated the problem of allocating cost savings generated

by information sharing among channel members. Furthermore, the existing papers emphasizing

allocation schemes only studied two-echelon supply chains; see, e.g., Raghunathan [26]. In this

paper, we consider a three-level supply chain involving a manufacturer (M), a distributor (D)

and a retailer (R), and we restrict our attention to allocating cost savings among supply chain

members when they form a coalition for information sharing. In particular, when some supply

chain members collaborate for demand information sharing and jointly achieve cost savings, we

consider the question of fairly dividing the cost savings in order to keep them in the coalition.

Under a fair allocation scheme, all members in a coalition are better o¤ than before joining the

coalition; otherwise, one or more supply chain members could leave the coalition. One may note

that in the real business world, lack of trust between supply chain members could also prevent the

members from joining the coalition. Since our paper focuses on the fair allocation of cost savings

between supply chain members, we are assuming that all supply chain members trust one another.

Under this assumption, once a fair allocation is made to all members in a coalition, these members
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would be willing to stay with the coalition and allocate total cost savings according to the fair

scheme.

In the supply chain under study, the distributor procures �nal products from the manufacturer,

and distributes the products to satisfy the orders placed by the retailer who then meets the de-

mands of ultimate customers. We compute cost savings achieved through information sharing and

construct a three-person cooperative game in characteristic-function form. In order to simplify the

analysis, we assume that a single product is delivered down the supply chain to satisfy the end-

demand. Moreover, we assume that the lead time between the manufacturer and the distributor

and the lead time between the distributor and the retailer are both one period. During any time

period, each channel member determines an order-up-to level to minimize his expected holding and

shortage costs for the next period.

The paper is organized as follows. In Section 2 we discuss the information sharing and cost

savings for di¤erent coalitional structures. Section 3 formulates a three-person information sharing

game in characteristic-function form where we �nd necessary conditions for stability of every coali-

tion, and discuss allocation schemes when a two-player coalition or the grand coalition is stable. In

Section 4, we consider the implementation of the allocation schemes analyzed in the preceding sec-

tion, and compute the side payments transferred between two players (when a two-player coalition

is stable) and among three players (when the grand coalition is stable). In Section 5, we provide

two numerical examples to �nd unique allocation schemes, and present sensitivity analyses to ex-

plore the impacts of the autocorrelation coe¢ cient �, and the unit holding and shortage costs on

the allocation schemes. The paper concludes in Section 6 with a brief summary and some remarks

regarding future research.

2 Information Sharing and Cost Savings for Di¤erent Coalitional

Structures

We de�ne the demand information shared by a coalition as the demand data faced by the down-

stream member in the coalition. For example, the distributor and the manufacturer could form a

two-player coalition, where the distributor is the immediate downstream member of the manufac-

turer. The distributor receives the orders placed by his immediate downstream, i.e., the retailer.
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Hence, in this coalition the demand information shared by the distributor and the manufacturer

is de�ned as the retailer�s order quantity. When three players (i.e., all supply chain members)

form a grand coalition, the information shared by them is the sales data at the retailer�s level, i.e.,

the information on ultimate customers�demands, which is obtained by the retailer from the POS

information.

In this paper we develop a cooperative game in characteristic-function form and analyze it to

�nd the appropriate allocation scheme for �fairly� allocating expected cost savings. In order to

�nd the characteristic-function values of various coalitions, we compute total cost savings for each

possible coalition in which the participants share demand information faced by their downstream

members. The joint cost savings of a coalition are equal to the sum of cost reductions incurred by

all members in the coalition. In the supply chain under study, since the manufacturer is the most

upstream member, we assume that any production quantity determined by the manufacturer will

be realized by his own production schedule. This allows us to compute exactly the manufacturer�s

expected cost in closed-form.

However, the distributor�s and the retailer�s orders may not be completely ful�lled by the

manufacturer and the distributor, respectively. Speci�cally, whether or not the order placed by the

distributor for period t can be satis�ed by the manufacturer depends on the order-up-to level chosen

by the manufacturer at the end of the period t�1. For the retailer, the process would be much more

complex, since the ful�llment of the retailer�s order for the period t+ 1 relies on the actual order-

up-to level at the distributor at the end of the period t, which also depends on the manufacturer�s

order-up-to level at the end of the period t�1. Although it may be possible to formulate our models

with the (more realistic) assumption of less than 100% �ll-rates, the resulting expressions become

too intractable to analyze. For our game modeling and analysis, we use simulation to estimate

expected costs of the retailer and the distributor.

In order to �nd a proper scheme of allocating the expected cost savings achieved by an information-

sharing coalition, we follow the procedure below:

Step 1 Identify all possible information-sharing coalitional structures for the supply chain;

Step 2 Compute expected costs incurred by the manufacturer in di¤erent information-sharing

coalitions;

Step 3 Use simulation to �nd expected costs incurred by the distributor and the retailer in di¤erent
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information-sharing coalitions;

Step 4 Develop a cooperative game in characteristic-function form in terms of the cost savings for

all possible information-sharing coalitions;

Step 5 Analyze the cooperative game to �nd an appropriate solution representing an allocation

scheme for the supply chain.

In the remainder of this section we consider Steps 1, 2 and 3, and in Section 3 we implement

Steps 4 and 5. To illustrate Step 1, we refer to Figure 1 that depicts �ve di¤erent possible coalitional

structures for information sharing between and among supply chain members. For example, Figure

1(1) corresponds to the coalitional structure fM;D;Rg where the supply chain members do not

share end-demand information. For this case, the expected costs of the manufacturer, the distrib-

utor and the retailer are �M1, �D1 and �R1, respectively. Similarly, Figure 1(2) corresponds to the

coalitional structure fM; (DR)g where the distributor receives end-demand information from the

retailer. (The fact that the demand information is sent from one supply chain member to another

is indicated by the symbol k on the arrows in Figure 1.) For this case, the expected costs of the

manufacturer, the distributor and the retailer are �M2, �D2 and �R2, respectively. The remaining

parts (3)�(5) in Figure 1 have a similar interpretation.

M

D R

(1) : {M, D, R}

M

D R

(2) : {M, (DR)}

M1π

D1π R1π

M2π

D2π R2π

M

D R

(5) : {(MDR)}

M

D R

(3) : {R, (MD)}

M3π

D3π R3π

M5π
M

D R

(4) : {D, (MR)}

M4π

D4π R4π D5π R5π

Figure 1: Information sharing possibilities for the three supply chain members M, D and R and the corre-
sponding expected costs.

It is important to note here that in most supply chain collaboration cases, demand information

is shared among consecutive echelons in a supply chain. Thus, a coalition such as between the

retailer and the manufacturer (which are separated by the distributor in the echelon structure)
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is not commonly observed. However, such a coalitional structure can still be justi�ed by consid-

ering the following example: The Seven-Eleven Japan�s success originates from the fact that the

stores transmit their POS transactions data to not only the headquarters but also wholesalers and

manufacturers for better production schedule and new product development; see Lee and Whang

[15]. Today�s information technology (e.g., RFID1) enables the information sharing among all

members in a supply chain. Thus, the retailer and the manufacturer may decide to collaborate for

end-demand information sharing.

For Step 2, we compute the manufacturer�s expected costs (i.e., �M1; : : : ; �M5) for all �ve

coalitional structures shown in Figure 1. Calculation of these expected costs requires a knowledge

of the distributor�s ordering process faced by the manufacturer. Recall that the distributor makes

his ordering decisions according to the order process of the retailer who uses the demand process (1)

to calculate her optimal order quantities. Hence, to compute the manufacturer�s expected costs, we

identify the ordering processes of the distributor and the retailer. Our results for the manufacturer�s

expected costs are provided in Table 1. For detailed computations, see Appendix A where the

retailer�s ordering process is given in Lemma 1, the distributor�s ordering process is given in Lemmas

2 and 3, and the manufacturer�s expected costs are computed in Proposition 10.

Coalition The Manufacturer�s Expected Costs

fM;D;Rg �M1 = �

r
(1 + �)

2
h
(1 + �)

2
+ 4�2

i
+ �4

�
hMkM +

�
hM + pM

�
I
�
kM
��

fM; (DR)g �M2 = �

q
(1 + �+ �2)

2
+ �2 (1 + �)

2 �
hMkM +

�
hM + pM

�
I
�
kM
��

fR; (MD)g �M3 = � (1 + �)

q
�2 + (1 + �)

2 �
hMkM +

�
hM + pM

�
I
�
kM
��

fD; (MR)g �M4 = � (1 + �)
2 �
hMkM +

�
hM + pM

�
I
�
kM
��

f(MDR)g �M5 = �
�
1 + �+ �2

� �
hMkM +

�
hM + pM

�
I
�
kM
��

Notations kM = ~��1
�
pM=

�
pM + hM

��
; ~� (�) is the distribution function of the standard normal r.v.;

hM and pM denote the unit holding cost and the unit shortage cost of the manufacturer;

I(z) =
R1
z
(x� z)d~� (x) is the unit normal loss function (see Porteus [25]).

Table 1: The minimum expected cost of the manufacturer for each coalitional structure.

Proposition 1 The manufacturer�s expected costs �Mi, i = 1; : : : ; 5, have the property that �M5 <

�M2 < �M4 < �M3 < �M1.
1See the VeriSign, Inc.�s report entitled �The EPCglobal Network: Enhancing the Supply Chain�at http://www.

verisign.com/stellent/groups/public/documents/white_paper/002109.pdf. (URL last accessed in November
2007).
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Proof. For a proof of this proposition and proofs of all subsequent Propositions 2 to 7, and

Theorem 1, see Appendix C.

In Step 3, we use simulation to estimate expected costs for the distributor and the retailer. In

particular, given a set of parameter values, we simulate each coalition in the three-stage supply

chain for 30 runs with N = 5,000 periods in each run to estimate the inventory-related costs at

the distributor�s and the retailer�s levels.

We compute the distributor�s cost for each period according to the product quantity received

by him, which depends on the comparison between the distributor�s desired order quantity and the

manufacturer�s available stock. Similarly, for each period, our computation of the retailer�s cost is

based on actual quantity received by the retailer, which is determined by identifying whether or not

an order placed by the retailer can be fully satis�ed by the distributor. This analysis is repeated for

of the �ve coalitional structures fM;D;Rg, fR; (MD)g, fD; (MR)g, fM; (DR)g and f(MDR)g.

As an illustration, consider the coalitional structure fM;D;Rg. To estimate expected costs for

this coalition over N periods, we initialize the simulation at the end of period 0 and use the formulas

(in Appendix A) to compute order-up-to levels for all three supply chain members under 100% �ll-

rate as SM1
0 , SD10 and SR0 . We also assume thatD�1 = d, which givesD0 = d+�d+"0 = (1+�)d+"0.

In each period we randomly generate the error term "t of (1) to simulate the demandDt and compute

the costs of the retailer and the distributor, and �nd their realized order-up-to levels. For example,

for the retailer, at the end of period t, the remaining inventory is RIRt = max(0; S
R
t�1 �Dt), and

shortfall is SFRt = max(0; Dt � SRt�1). This gives the cost incurred by the retailer in coalition

fM;D;Rg as �R1t = hRRIRt + p
RSFRt . A similar calculation is performed for the distributor

to �nd her cost as �D1t = hDRID1t + pDSFD1t . This is repeated for all periods to compute the

retailer�s and the distributor�s costs �R1t and �D1t , t = 1; : : : ; N . The above calculations give

the average (expected) costs for the retailer and the distributor (�R1 and �D1, respectively) as

�R1 =
�PN

t=1 �
R1
t

�
=N and �D1 =

�PN
t=1 �

D1
t

�
=N .

3 Modeling and Analysis of the Cooperative Game

In our game model, we consider the problem of �fairly�allocating cost savings between two players

(if a two-player coalition is stable) or among three players (if the grand coalition is stable). In this
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paper, the de�nition of �fair allocation�is given as follows:

De�nition 1 In the information-sharing cooperative game, a scheme for allocating cost savings

among all supply chain members in a coalition is fair only if all members in the coalition accept

the allocation scheme and are willing to stay in the coalition. �

3.1 An Information Sharing Cooperative Game in Characteristic-Function Form

Von Neumann and Morgenstern [32, Ch. VI] were the �rst to construct a theory of multi-person

games where they assumed that various subgroups of players might join together to form coalitions.

As we are considering a three-person game where the supply chain members can form coalitions

in the process of sharing demand information, we construct our information sharing game in the

characteristic value form. That is, we compute the characteristic values of all possible coalitions,

i.e., v(?), v(M), v(D), v(R), v(MD), v(MR), v(DR), v(MDR).

In the theory of cooperative games, the �characteristic value� is the minimum amount that

the coalition can attain using its own e¤orts only. In our paper the characteristic value of a

coalition is de�ned as the cost savings that all players in the coalition could achieve under the

worst conditions. We compute the characteristic values of all possible coalitions in Appendix B.

Note that the characteristic value of an empty coalition is naturally zero, i.e., v(?) = 0. Our

information-sharing cooperative game is thus presented as follows:

v(?) = 0, v(M) = 0, v(D) = min(0; �D1 � �D4), v(R) = min(0; �R1 � �R3),

v(MD) = (�D1 � �D3) + (�M1 � �M3), v(MR) = (�R1 � �R4) + (�M1 � �M4),

v(DR) = (�R1 � �R2) + (�D1 � �D2), v(MDR) = (�R1 � �R5) + (�D1 � �D5) +
�
�M1 � �M5

�
.

3.2 Analysis of the Information-Sharing Cooperative Game

We now analyze the cooperative game to investigate the stability of each coalition and to allocate

cost savings among players in a stable coalition. A coalition is called �stable�if its members have

no incentive to leave the coalition. Naturally, if a coalition is unstable, then the coalition would

disperse, so we focus our attention on the allocation schemes that assure stable coalitions. Since
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the characteristic values for all possible coalitions depend on expected costs, each coalition could be

stable under di¤erent conditions. Next, we �nd necessary conditions for stability of every coalition.

Proposition 2 The necessary conditions for stability of each coalition in the cooperative game are

given as follows:

1. The coalition f(MDR)g is stable only if v(MDR) � max(v(M)+v(D)+v(R), (�R1��R3)+

v(MD), (�D1��D4)+v(MR), (�M1��M2)+v(DR)) and v(MDR) � !M +!D+!R, where

!M �

8><>: �M1 � �M2 if v(DR) � v(D) + v(R),

0, if v(DR) < v(D) + v(R),

!D �

8><>: �D1 � �D4, if v(MR) � v(R),

0, if v(MR) < v(R),
and !R �

8><>: �R1 � �R3, if v(MD) � v(D),

0, if v(MD) < v(D).

2. The coalition fR; (MD)g is stable only if (�R1 � �R3) + v(MD) � v(MDR) and v(MD) �

v(D).

3. The coalition fD; (MR)g is stable only if (�D1 � �D4) + v(MR) � v(MDR) and v(MR) �

v(R).

4. The coalition fM; (DR)g is stable only if (�M2 � �M2) + v(DR) � v(MDR) and v(DR) �

v(D) + v(R).

5. The coalition fM;D;Rg is stable only if any other coalition is unstable. �

3.2.1 Major Solution Concepts in the Theory of Cooperative Games

Since we don�t need to consider the allocation problem when the coalition fM;D;Rg is stable, we

next discuss the commonly-used solution concepts for the two-player games and the three-player

games.

Solution Concepts in Two-Player Games When the necessary conditions for stability of a

two-player coalition are satis�ed, the coalition is stable if an allocation scheme is �fair� to each

player. To assure fairness, we consider the scheme of allocating extra cost savings between two

players. Here, the extra cost savings is de�ned as the di¤erence between total cost savings generated

by all members in a coalition and the sum of cost savings achieved by these members when they leave
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the coalition. In the theory of cooperative games, there are several commonly-used game concepts,

e.g., egalitarian proposal, negotiation set, Nash arbitration scheme and Shapley value; see Cachon

and Netessine [4], Leng and Parlar [18] and Stra¢ n [31]. The egalitarian proposal suggests that two

players in a cooperative game split extra cost savings equally. For our game model we can easily

show that when the necessary conditions for a two-player coalition are satis�ed, the negotiation

set is non-empty and it includes many �fair�allocation schemes for two players. However, in our

paper we are more interested in �nding a unique allocation scheme. In addition to the egalitarian

proposal discussed above, we use Nash arbitration scheme and Shapley value to investigate if any

other �fair�unique allocation scheme can be found for our cooperative game.

The concept of Nash arbitration scheme was introduced by Nash [22]. Consider a two-player

game with the status quo (x0; y0). This scheme suggests a unique solution (x; y) by solving the

constrained nonlinear problem: max (x � x0)(y � y0), subject to x � x0 and y � y0. Shapley

value, developed by Shapley [28], is a solution concept for cooperative games, which provides a

unique imputation and represents the payo¤s distributed �fairly� by an outside arbitrator. For

our game, Shapley value is interpreted as a scheme for allocating cost savings between two players

or among three players. The unique Shapley values ' = ('1; : : : ; 'n) are determined by 'i =P
i2T (jT j � 1)!(n� jT j)![v(T )� v(T � i)]=n! where T denotes an information sharing coalition and

jT j is the size of T .

Solution Concepts in Three-Player Games We now discuss the allocation scheme when the

necessary conditions for stability of the grand coalition f(MDR)g are satis�ed. In particular, if the

necessary conditions given in Proposition 2 are satis�ed, then for any other coalition we can always

�nd a scheme of allocating cost savings generated by the grand coalition, so that all members would

be better o¤ if they form the grand coalition. Thus, starting from any coalition, three supply chain

members ultimately decide to join the grand coalition under a fair allocation scheme. However,

prior to �nding a fair allocation scheme, they would not stay with the grand coalition. In order to

make the grand coalition stable, we need to �nd the fair allocation scheme. The analysis for this

case is much more complicated. Similar to our analysis for two-player coalitions, we de�ne xi as the

allocated cost savings (i.e., payo¤s) to the supply chain member i = M;D;R. A suitable solution

representing the payo¤s is the triple (xM ; xD; xR) with the following two properties: (i) individual
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rationality, i.e., xi > v(i) for all i; (ii) collective rationality, i.e., xM+xD+xR = v(MDR). The triple

(xM ; xD; xR) satisfying these two properties is called an imputation for the game G = ([M;D;R]; v);

see Stra¢ n [31].

From De�nition 1, under a fair allocation scheme (imputation) none of the members should have

any incentive to deviate from the grand coalition, which implies that the fair allocation scheme

is undominated by any other possible scheme. Next, we discuss some commonly-used solution

concepts in cooperative game theory, which can be classi�ed into two categories� set-valued and

unique-valued solution concepts.

Since we are interested in a unique allocation scheme, we shall brie�y mention the set-valued

solution concepts to show if the space of all possible fair allocation schemes is non-empty. In this

category, each set-valued solution concept provides a set of fair allocation schemes that would make

the grand coalition stable. For the imputation set, several solution concepts have been suggested,

such as Aumann�Maschler bargaining set [2], kernel [9], the core [10] and the stable set [32]. Davis

and Maschler [9] and Peleg [24] showed that Aumann�Maschler bargaining set is non-empty for all

games, and the kernel is a subset of Aumann�Maschler bargaining set.

The stable set (a.k.a. von Neumann-Morgenstern solution) was introduced by von Neumann

and Morgenstern [32]. This solution concept can suggest an allocation scheme that makes the

grand coalition stable, but it is used only for essential games where
P
i2N v(i) 6= v(N) for the

coalition N . For inessential games, we cannot apply the concept to �nd an allocation scheme.

Thus, for our paper, we don�t consider the stable set. The core was �rst introduced by Gillies

[10]. The core of an n-person cooperative game in characteristic form is de�ned as the set of all

undominated imputations (x1; x2; : : : ; xn) such that for all coalitions T � N = f1; 2; : : : ; ng, we

have
P
i2T xi > v(T ); see also Owen [23] for a description of the core. Davis and Maschler [9] also

demonstrated that if the core for a game is non-empty, then it must be contained in Aumann�

Maschler bargaining set. Although allocation schemes suggested by the core assure the stability

of the grand coalition, the core could be empty for some games, thus making it impossible to �nd

an allocation scheme by using this concept. Even if the core is non-empty, we face the question of

which allocation scheme should be used for dividing total cost savings among three players (supply

chain members).

We now discuss the solution concepts of Shapley value and the nucleolus, each suggesting a
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unique allocation scheme. Shapley value can be computed easily by using a formula regardless of

whether or not the core is empty. However, when the core is non-empty, Shapley value may not be

in the core. Moreover, if the stability of the grand coalition depends on some conditions, then the

allocation scheme in terms of Shapley value may make the grand coalition unstable.

An alternative solution concept known as the �nucleolus�, which was proposed by Schmeidler

[27], also de�nes an allocation scheme that minimizes the �unhappiness� of the most unhappy

information sharing coalition. More speci�cally, let eT (x) = v(T ) �
P
i2T xi denote the excess

(unhappiness) of a coalition T with an imputation x. This de�nition implies that the nucleolus

can be found as follows: (i) First consider those coalitions T whose excess eT (x) is the largest for

a given imputation x. (ii) If possible, vary x to make this largest excess smaller. (iii) When the

largest excess is made as small as possible, consider the next largest excess and vary x to make it

as small as possible, etc. A commonly-used method of �nding the nucleolus solution is to solve a

series of linear programming (LP) problems; see Wang [33].

Compared with other concepts (e.g., the core and Shapley value), the nucleolus has several

desirable properties: (1) A unique nucleolus solution always exists so that an allocation scheme can

be devised for any game; (2) unlike Shapley value, if the core of a game is non-empty, the nucleolus

solution is always in the core; (3) the solution always exists in Aumann-Maschler bargaining set

for the grand coalition. For a discussion on these properties of the nucleolus solution, see Stra¢ n

[31, p. 150]. However, since the nucleolus solution is normally found by solving a series of linear

programming problems, in general, it may be di¢ cult to compute it analytically.

3.2.2 Solution of the Information-Sharing Cooperative Game

We now apply some of the relevant major solution concepts discussed in Section 3.2.1 to our game

analysis. In particular, if a two-player coalition is stable, we use the Nash arbitration scheme and

the Shapley value to �nd a unique allocation scheme; if the grand coalition is stable, we use the

core to examine if a set of fair allocation schemes exists, and then use the concepts of Shapley value

and the nucleolus to �nd a unique allocation solution.

Proposition 3 If a two-player coalition is stable, both Nash arbitration scheme and Shapley value

suggest equal allocation of extra cost savings between two players, as given by the egalitarian

proposal. As a result, a unique allocation scheme for each coalition is given as follows: If the
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coalition fi; (jk)g (i, j, k = M , D, R, and i 6= j 6= k) is stable, then a unique allocation scheme

for splitting the cost savings v(jk) between players j and k is (xj ; xk) = ([v(jk) + v(j) � v(k)]=2,

[v(jk)� v(j) + v(k)]=2). �

When the grand coalition is stable, we �rst investigate whether or not the core is empty. As

Proposition 1 implies, cooperation between the distributor and the retailer under the coalition

structure fM; (DR)g reduces the bullwhip e¤ect and generates the cost savings of �M1 � �M2

for the manufacturer. On the other hand, under the grand coalition f(MDR)g, the manufacturer

receives an allocation of xM . If the manufacturer joins the grand coalition and receives an allocation

less than �M1 � �M2, then the manufacturer could have an incentive to leave the grand coalition,

which results in the coalition structure fM; (DR)g. Under coalition fM; (DR)g, the manufacturer

has cost savings of �M1 � �M2, and the distributor and the retailer share the cost savings v(DR).

If v(DR) � v(D) + v(R), then the distributor and the retailer would prefer to stay in the two-

player coalition (DR), and the manufacturer can thus enjoy cost savings of �M1��M2. Otherwise,

the distributor and the retailer could further deviate from the two-player coalition (DR), and the

coalition structure fM;D;Rg forms and all members have zero cost savings. In conclusion, if

v(DR) � v(D)+ v(R), then we must consider the constraint xM � �M1��M2. However, we don�t

need to involve this constraint if v(DR) < v(D) + v(R), since fM; (DR)g is unstable so that the

manufacturer cannot obtain �M1 � �M2 by leaving the grand coalition. Thus, whether or not the

constraint xM � �M1��M2 should be considered depends on the condition v(DR) � v(D)+ v(R).

For simplicity, we write the constraint as xM � !M , where !M was de�ned in Proposition 2. When

the constraint is not satis�ed, then the grand coalition f(MDR)g would be unstable.

Similarly, since the distributor receives the savings !D when leaving the grand coalition, we

must also consider the constraint for the stability of f(MDR)g as xD � !D. If the retailer leaves

the grand coalition, he receives the savings !R. The other constraint for the stability of f(MDR)g

is xR � !R.

McKelvey and Scho�eld [20] introduced the concept of constrained core to ensure stability of

all coalitions in the constrained core. In our paper, we incorporate three constraints xM � !M ,

xD � !D and xR � !R to guarantee the coalitional stability in the three-level supply chain. As

a result, for our cooperative game, the constrained core is de�ned as a set of all undominated

imputations (xM ; xD; xR) such that, for all coalitions T � N = fM;D;Rg,
P
i2T xi > v(T ),
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xM � !M , xD � !D and xR � !R. This concept has been widely used in the economics, business

and management �elds; see, for example, Boyd, Prescott and Smith [3], Ligon and Thistle [19] and

Montesano [21].

We now apply the constrained core to our game and obtain the following important result.

Theorem 1 The constrained core of the information sharing game in characteristic-function form

is non-empty if and only if 2v(MDR) � v(MD) + v(DR) + v(MR). �

Even though a non-empty core can suggest some fair allocation schemes, the following question

still arises: Which allocation scheme should be used for the supply chain under study? The concept

of constrained core cannot provide us with further help in our search for a unique imputation which

also results in the stability of the grand coalition. Next, we search for a unique allocation scheme

in terms of shapley value and the nucleolus.

Proposition 4 The allocation scheme in terms of Shapley value is given as follows: 'i = f2v(MDR)+

v(ij) + v(ik) � 2[v(jk) + v(j) + v(k)]g=6, for i, j, k = M , D, R, and i 6= j 6= k. However, if any

one of the following conditions 'M � !M , 'D � !D and 'R � !R is not satis�ed, the allocation

scheme suggested by Shapley value makes the grand coalition unstable. �

Since Proposition 4 indicates that Shapley value may not assure the stability of the grand

coalition, we now use the nucleolus solution to suggest a fair allocation scheme. As we shall show

below, when the core of our game is empty, we can compute the nucleolus solution analytically

without resorting to linear programming. With the inclusion of three stability-assuring constraints

(i.e., 'M � !M , 'D � !D and 'R � !R), the result obtained is known as the constrained nucleolus

solution which was introduced by Montesano [21]. Conceptually, this solution is the same as that

of the (ordinary) nucleolus solution with the addition of constraints that assure stability of the

coalition.

Proposition 5 If 2v(MDR) < v(MD) + v(DR) + v(MR), the constrained core is empty and we

have the constrained nucleolus solution as �i = [v(ij) + v(ik) + v(MDR) � 2v(jk)]=3, for i, j,

k = M , D, R, and i 6= j 6= k, which satis�es three constraints �M � !M , �D � !D and �R � !R,

thus assuring the stability of the grand coalition. �
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If the constrained core is non-empty, then it would be very complicated to use the de�nition

of nucleolus solution to obtain a closed-form formula. A commonly-used method of �nding the

nucleolus solution is to solve a series of linear programming (LP) problems. The �rst LP model is

written as

min u,

s.t.
P
i2T xi + u � v(T ), for any T � fM;D;Rg;

xM � !M , xD � !D, xR � !R; and xM + xD + xR = v(MDR),

where u denotes the �unhappiness� of the most unhappy player. Solving the above LP, we can

�nd a solution where the most unhappy player�s allocation has reached a value which minimizes

the player�s unhappiness. For this case, substituting the value into the above LP problem, we solve

the resulting LP problem to minimize the �unhappiness�of the second most unhappy player. We

can �nd the constrained nucleolus solution after minimizing the unhappiness of all players. For a

detailed discussion of the LP approach, see Wang [33].

4 Implementation of Unique Allocation Schemes

When only two players share information in a stable coalition (i.e., fM; (DR)g, fR; (MD)g or

fD; (MR)g), Proposition 3 presents schemes for allocating cost savings between two players. To

implement these schemes, we employ the concept of side payment, which is de�ned as the amount

transferred between two players so that both players obtain their fair allocations suggested by

Proposition 3.

Proposition 6 The allocation schemes suggested by Proposition 3 to allocate cost savings between

two players are implemented as follows:

1. If the coalition fM; (DR)g is stable, then the side payment from the distributor to the retailer

is (�D1 � �D2)� [v(DR) + v(D)� v(R)]=2;

2. If the coalition fR; (MD)g is stable, then the side payment from the manufacturer to the

distributor is (�M1 � �M3)� [v(MD)� v(D)]=2;

3. If the coalition fD; (MR)g is stable, then the side payment from the manufacturer and the

retailer is (�M1 � �M4)� [v(MR)� v(R)]=2.
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When a side payment computed above is negative, the absolute side-payment amount is trans-

ferred in a reverse direction. �

Next, we calculate the side payments transferred between any two players, when the grand

coalition f(MDR)g is stable. To that end, we �rst de�ne �i as player i�s local cost savings after

player i joins the grand coalition, i = M;D;R. For our problem, we have �M = �M1 � �M5,

�D = �
D1��D5 and �R = �R1��R5. We also let xi (i =M;D;R) represent the allocation of total

cost savings v(MDR) to player i according to a fair allocation scheme. Note that �M +�D+�R =

xM + xD + xR = v(MDR).

Proposition 7 When the grand coalition f(MDR)g is stable, the side payments transferred be-

tween any two of three players are as follows:

1. If �i � �i � 0, �j � �j � 0 and �k � �k � 0, i, j, k = M , D, R, and i 6= j 6= k, then the

side payments are determined as follows: players i and j transfer the amount (�i � �i) and

(�j � �j) to player k, respectively;

2. If �i � �i � 0, �j � �j � 0 and �k � �k � 0, i, j, k =M , D, R, and i 6= j 6= k, then the side

payments are determined as follows: player i transfers the amount (�j � �j) to player j and

the amount (�k � �k) to player k. �

5 Numerical Examples and Sensitivity Analysis with Simulation

We �rst present two numerical examples and illustrate the application of cooperative game theory

in allocating cost savings among three players (when the grand coalition is stable) or between two

players (when a two player coalition is stable).

Example 1 In this example, we assume the following values for the parameters: For the end-

demand process (1), we let d = 100, � = 0:5 and � = 20. The �base�values of unit shortage penalty

costs and unit holding costs are (pR; pD; pM ) = (5; 3; 2) and (hR; hD; hM ) = (2; 1:5; 1), respectively.

We compute the manufacturer�s expected costs as �M1 = 22:71, �M2 = 22:27, �M3 = 22:70,

�M4 = 22:70, and �M5 = 22:26. For the distributor and the retailer, we simulate the system for 30

runs for a run length of N = 5,000 periods, take the average of the results obtained in all runs in

each coalition, and �nd the results as in Table 2.
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Coalition fM;D;Rg fM; (DR)g fR; (MD)g fD; (MR)g f(MDR)g
Retailer �R1 = 77:73 �R2 = 62:97 �R3 = 69:40 �R4 = 68:22 �R5 = 62:98

Distributor �D1 = 60:06 �D2 = 53:80 �D3 = 55:86 �D4 = 57:38 �D5 = 53:80
Table 2: Simulation results for Example 1.

Using the results in Section 3.1, and those in Table 2, a cooperative game is constructed as

follows: v(?) = v(M) = v(D) = v(R) = 0,v(MD) = 12:31, v(MR) = 19:67, v(DR) = 21:62, and

v(MDR) = 42:68. Now, following Proposition 2, we �nd that the grand coalition f(MDR)g is

stable; and using Theorem 1, we also �nd that the constrained core is non-empty. To �nd a unique

allocation scheme, we use the formula in Proposition 4 to compute Shapley value as 'M = $12:35;

'D = $13:32; 'R = $17:01. However, since 'M < !M = $17:71, the unique allocation scheme

suggested by Shapley value makes the grand coalition unstable. Hence, we use LP to compute the

constrained nucleolus solution as (�M ; �D; �R) = ($17:71; $11:505; $13:465), which results in the

stability of f(MDR)g. Next, we use Proposition 7 to implement the allocation scheme as follows:

The distributor should receive a side payment of $3:36 and $1:285 from the manufacturer and the

retailer, respectively. J

Under the 100% �ll-rate at the distributor and the retailer levels, the expected costs are com-

puted using the formulas in Appendix A as �̂D1 = $51:74, �̂R = $47:59 (for the coalitions fM;D;Rg,

fR; (MD)g and fD; (MR)g) and �̂D2 = $49:09 (for the coalitions fM; (DR)g and f(MDR)g). Com-

paring these expected costs under 100% �ll-rate assumption with those in Table 2, we �nd that

the errors generated by this assumption are large, e.g., the percentage error for the retailer in the

coalition fM;D;Rg is (�R1 � �̂R)=�̂R = 63:33%. (In our paper we de�ne an error as �large�when

the percentage error exceeds 5%.) Thus, we cannot use expected costs under the 100% �ll-rate

assumption to construct our cooperative game and �nd an allocation scheme.

We have performed 1,200 simulation experiments with di¤erent parameter values set as follows:

First, we �xed d = 100 and � = 20. Then, for each of 20 values of � (ranging from 0.01 to 0.1 in

increments of 0.01, and from 0.1 to 1 in increments of 0.1) we varied the other parameters one-at-

a-time while keeping the remaining ones at their base values given in Example 1. In particular,

the pR values were varied from 2 to 6.5 in increments of 0.5 [which we denote by pR = 2(0:5)6:5]

resulting in 10 values. Since � assumed 20 di¤erent values, the (�; pR) combination resulted in

20� 10 = 200 experiments. The other parameters were varied as pD = 1:5(0:5)6, pM = 1(0:5)5:5,
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hR = 0:5(0:5)5, hD = 0:5(0:25)2:75 and hM = 0:2(0:2)2, each resulting in 10 values. As a result of

these 1,200 experiments, we found that the grand coalition is stable in a large number of cases (i.e.,

when � > 0:03), but the coalition fM; (DR)g is stable only in a few cases (i.e., when � � 0:03).

This demonstrates that, information sharing can achieve cost savings and improve supply chain

performance. In order to illustrate the analysis for a stable two-player coalition, in the next example

we assign a very small value to the autocorrelation parameter, i.e., � = 0:02.

Example 2 For a three-level supply chain with demand information sharing, we change the value

of � from 0:5 to 0:02 but use the same values for the other parameters as in Example 1. Similar

to Example 1, we compute the manufacturer�s expected costs as �M1 = 22:71, �M2 = 22:27,

�M3 = 22:70, �M4 = 22:70, and �M5 = 22:26, and we simulate the system to estimate expected

costs for the retailer and the distributor; see the results in Table 3.

Coalition fM;D;Rg fM; (DR)g fR; (MD)g fD; (MR)g f(MDR)g
Retailer �R1 = 48:44 �R2 = 48:30 �R3 = 48:43 �R4 = 48:43 �R5 = 48:29

Distributor �D1 = 33:50 �D2 = 33:49 �D3 = 33:48 �D4 = 33:48 �D5 = 33:49
Table 3: Simulation results for Example 2.

For this example, we construct a cooperative game in characteristic form as

v(?) = v(M) = v(D) = v(R) = 0,

v(MD) = 0:03, v(MR) = 0:03, v(DR) = 0:16, v(MDR) = 0:60.

For this game, we �nd that the coalition fM; (DR)g is stable. Using Proposition 3, we allocate the

cost savings v(DR) between the distributor and the retailer as xD = xR = v(DR)=2 = $0:08. To

implement the allocation scheme, Proposition 6 suggests that the retailer transfers a side payment

$0:07 to the distributor. J

For Example 2, we compute the distributor�s and the retailer�s expected costs under 100% �ll-

rate as �̂D1 = 33:38, �̂D2 = 33:38, and �̂R = 47:59. For this example, the errors generated by the

100% �ll-rate assumption are small. However, after performing 1,200 simulation experiments with

the parameter values as explained above, we found that the errors are small (as in Example 2) when

� � 0:2 but they are large (as in Example 1) when � > 0:2. Since the value of � is in the range

(0; 1], we can conclude that the errors are often large; thus, in this section we only use simulation
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to �nd expected costs of the distributor and the retailer.

5.1 The Impact of � on the Coalition Stability and the Allocation Scheme

We perform a sensitivity analysis to examine the e¤ect of the autocorrelation coe¢ cient � on the

coalitional stability, total cost savings for the supply chain and allocations made to the members of

the chain. In this sensitivity analysis, we �rst increase the value of � from 0.01 to 0.1 in increments

of 0.01, and then increase � from 0.1 to 1.0 in increments of 0.1. The results are presented in Table

4 in Appendix D. Using the data in this table, we plot the allocations in Figure 2(a) and (b).

(a) Allocation when ρ is increased from 0.01 to 0.1

0

2.5

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
ρ

Distributor

Retailer

Manufacturer

A
llo

ca
tio

n

(b) Allocation when ρ is increased from 0.1 to 1.0

0

55

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Retailer

Distributor

Manufacturer

ρ

A
llo

ca
tio

n

Figure 2: The impact of � on the allocation schemes in the three-level supply chain.

As Table 4 indicates, we �nd that, for a constant � = 20, higher values of the parameter �

generate higher total cost savings enjoyed by the entire supply chain. This result is expected since

increasing � raises the value of historical data according to the end-demand model (1). However,

when � � 0:02, we �nd that the value of information is not substantial so that the three members

(especially, the manufacturer) would be unwilling to join the grand coalition f(MDR)g. But,

the end-demand information is still worth sharing between the distributor and the retailer, so the

coalition fM; (DR)g becomes stable when � assumes very small values. When the grand coalition is

stable for � > 0:02, we �nd that the core is always non-empty and the allocation scheme suggested

by Shapley value makes the grand coalition unstable. In order to obtain a unique allocation scheme

that achieves stability of f(MDR)g, we compute the constrained nucleolus solution, and use it to

split total cost savings among three members.

Figure 2(a) indicates the allocations to three members when � is increased from 0.01 to 0.1 in

increments of 0.01. We note that the allocations to the distributor and the retailer are equal when

� is in this range. For a small value of � (0.01 or 0.02), the distributor and the retailer stay in
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the two-player coalition (DR), since they can obtain savings that make these two members better

o¤ than leaving the coalition. Moreover, the distributor and the retailer receive equal allocated

savings, as suggested by Proposition 3. When � increases from 0.03 to 0.1, the grand coalition

f(MDR)g is stable, and the rise in the portion allocated to the manufacturer continues to be the

fastest among three supply chain members. This is due to the fact that, for a larger �, the supply

chain experiences larger cost savings; but, in order to entice the manufacturer to stay within the

grand coalition (i.e., to keep it stable), the manufacturer receives higher allocations. In Figure 2(b)

we plot the changes on the allocations to three members when � is increased from 0.1 to 1.0 in

increments of 0.1. The savings allocated to the manufacturer continues to increase, but are less

than those to the retailer when � � 0:9. This re�ects the fact that, according to (1), the retailer�s

end-demand information plays a more important role in improving supply chain performance when

the value of � is increased. Thus, increasing the value of � allocates higher values to the retailer.

Especially, for those values � that are set to 0.9 or higher, the retailer obtains a higher allocation

than other members. We �nd that, when � is greater than 0.4 but smaller than 0.9, the value

of end-demand information held by the retailer increases but adds signi�cant value to the grand

coalition, thus making this coalition stable. As a result, the allocation to the retailer is higher than

that to the distributor but is still lower than the allocation to the manufacturer.

5.2 The Impacts of Shortage and Holding Costs on the Coalition Stability and

the Allocation Scheme

We now investigate the coalition stability and allocation schemes when the shortage and holding

costs parameters of each supply chain member are varied around their base values of (pR; pD; pM ) =

(5; 3; 2) and (hR; hD; hM ) = (2; 1:5; 1) as used in Example 1. Our computations reveal that, for all

values of the parameters considered, the stable coalition is always f(MDR)g. This implies that

the supply chain members�unit shortage and holding costs do not impact stability of the grand

coalition. Additionally, we �nd that the allocation in terms of Shapley value also makes the grand

coalition f(MDR)g stable only when the manufacturer�s unit shortage cost pM is smaller than

1.2. Since, for most cases, only the constrained nucleolus solution results in stability of f(MDR)g,

in our analysis we only use this solution concept in order to ensure consistency in our sensitivity

analysis. We now present a discussion of the impact of each parameter on the allocation schemes
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as depicted in Figure 3.

Figure 3: The impacts of pi and hi (i =M;D;R) on the allocation schemes in the three-level supply chain.

5.2.1 The Impact of Unit Shortage Costs

We �rst examine the impact of the retailer�s unit shortage cost pR on the allocation of total cost

savings and compute allocation schemes in terms of the constrained nucleolus solutions. While

other parameter values are unchanged, the value of pR is increased from 2 to 6.5 in increments of

0.5. Note that, since the unit shortage cost pR would be, in general, greater than the unit holding

cost hR = 2, we let the minimum value of pR equal to 2. From Figure 3(a), we �nd that the

cost savings allocated to the manufacturer are constant. This result is justi�ed as follows: As the

retailer�s unit shortage cost pR increases and the unit holding cost hR is constant, the retailer has

an incentive to increase his order quantity to minimize total inventory-related cost, which may raise

the distributor�s shortage cost if the quantity available to the distributor is not increased. However,

the manufacturer�s cost doesn�t change since he is located at the highest echelon in the three-level

supply chain. For any value of pR in the range [2; 6:5], we �nd that, if the manufacturer leaves the

grand coalition f(MDR)g, the coalition structure becomes fM; (DR)g and the manufacturer�s local

cost savings becomes �M1 � �M2 = $17:71. In order to keep the grand coalition f(MDR)g stable,

the allocation to the manufacturer should be no less than $17.71. However, if the manufacturer
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receives more than $17.71, the retailer and the distributor would obtain very low allocations and

consequently leave the grand coalition f(MDR)g. Thus, as the constrained nucleolus solution

suggests, the allocation to the manufacturer is equal to a constant $17.71 for all values of the

parameter pR.

As the value of pR increases, information sharing would generate more cost savings for this

supply chain. Since the allocation to the manufacturer is the constant $17.71, the allocations to

the distributor and the retailer increase in pR. However, when pR is smaller than 5, the distributor

and the retailer have equal allocations; when pR is equal to or greater than 5, the retailer�s end-

demand information is so signi�cant that the allocation to the retailer is greater than that made

to the distributor.

Similarly, we �nd that, as the value of the distributor�s unit shortage cost pD increases from

1.5 to 6 in increments of 0.5, the allocation of total cost savings to the manufacturer is still the

constant $17.71, and the allocations to the retailer and the distributor increase. Moreover, total

cost reduction is higher than that computed as the value of pR changes; and the end-demand

information sharing thus induces higher allocations of total cost savings to the retailer and the

distributor. Di¤erent from Figure 3(a), Figure 3(b) indicates that the allocation to the retailer is

always greater than that to the distributor when pD > 1:5. This re�ects the following fact: When

pD increases, the distributor intends to raise his order quantity, which leads to a larger possibility

that the retailer�s order can be satis�ed by the distributor. As a result, the retailer can bene�t

from increasing the value of pD.

To investigate the impact of the manufacturer�s unit shortage cost pM on the allocation, we

increase the value of pM from 1 to 5.5 in increments of 0.5. Figure 3(c) shows that as the value of pM

increases, the allocation to the manufacturer increases whereas the allocations to other members

decrease. In particular, increasing the value of pM entices the manufacturer to increase his order

quantity, and the end-demand information sharing largely increases the cost savings incurred by the

manufacturer. Since the distributor and the retailer bene�t from increasing the value of pM , they

agree upon the signi�cant allocation to the manufacturer to keep the coalition f(MDR)g stable.

However, even though the allocations to the retailer and the distributor decrease, these two members

are still better o¤ than leaving the grand coalition. Furthermore, when the value of pM is smaller

than 2, the retailer�s end-demand information adds a more signi�cant value to the grand coalition;
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thus, the allocation to the retailer is highest among three supply chain members. However, when

pM is equal to greater than 2, the cost savings �M1 � �M2 incurred by the manufacturer becomes

very large. In order to prevent the manufacturer from leaving the grand coalition, the allocation to

the manufacturer is increased to a high level, and the allocations to the retailer and the distributor

are equal to a small value.

5.2.2 The Impact of Unit Holding Costs

We increase the value of the retailer�s unit holding cost hR from 0.5 to 5 in increments of 0.5,

compute the allocation schemes in terms of constrained nucleolus solutions and plot Figure 3(d) to

show the impact of hR on the allocations of total cost savings. Similar to our analysis for Figure

3(a), we �nd that increasing the value of hR has no impact on the allocation to the manufacturer.

Additionally, when the retailer�s unit holding cost hR increases and the unit shortage cost is un-

changed at pR = 5, the retailer intends to decrease his order quantity, and the probability that

the retailer�s order can be satis�ed by the distributor is increased. This implies that increasing the

value of hR may reduce the shortage cost incurred by the distributor. Therefore, compared with

the increase of hR, the end-demand information released by the retailer to the distributor is less

important in improving the distributor�s local performance, and thus cost savings generated by the

information sharing is reduced, as shown by Figure 3(d).

When the value of hR is smaller than 3, the end-demand information of the retailer is signi�-

cantly important to supply chain improvement, so that the allocation of total cost savings to the

retailer is higher than that to the distributor. However, when hR � 3, the retailer�s end-demand

information becomes less important, and the distributor�s cost savings generated by increasing the

value of hR raises. Thus, the allocations to the retailer and the distributor are equal.

When the value of the parameter hD is increased from 0.5 to 2.75 in increments of 0.25, we

compute the allocations of total cost savings and plot Figure 3(e) to investigate the impact of hD on

the allocation scheme. Similar to our analysis on the impact of hR, increasing the value of hD has no

impact on the manufacturer. However, when the value of hD is close to the shortage cost pD = 3, the

importance of end-demand information is reduced. One may note that when hD = pD, information

sharing doesn�t impact the distributor�s ordering decision; so no cost savings can be generated at

the distributor level. Thus, when the value of hD increases, total cost savings generated by the
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information sharing decreases, and the allocations to the retailer and the distributor are reduced.

When hD < 1:75, the end-demand information from the retailer is important, and consequently

the allocation to the retailer is greater than that to the distributor. However, when the value of

hD is in the range [1:75; 2:75], the information sharing cannot generate signi�cant cost savings, so

that the allocations to the distributor and the retailer are equal.

Next, we examine the impact of hM on allocation schemes by increasing the value of hM from

0.2 to 2 in increments of 0.2. When the value of hM increases, the manufacturer intends to reduce

his order quantity, and the distributor�s order cannot be ful�lled with a larger probability, which

further reduces the possibility that the retailer�s order is satis�ed by the distributor. Therefore,

increasing the value of hM may increase the shortage cost at each supply chain member, and

thus, the information sharing among three supply chain members is more important to improving

supply chain performance. From Figure 3(f) we �nd that, when the value of hM increases in the

range [0:2; 1], the impact of hM is not signi�cant, so that the allocation to the manufacturer is

increasing to re�ect the fact that the retailer and the distributor entice the manufacturer to stay

in the grand coalition. For this case, the retailer and the distributor equally share the remaining

savings. However, when hM > 1, the impact of hM is so large that the end-demand information

sharing plays a more important role in supply chain improvement. In order to motivate the retailer

to release the demand information, the allocation to the retailer increases in a large magnitude.

Since the cost savings �M1 � �M2 (which is obtained by the manufacturer when leaving the grand

coalition) is decreasing, the allocation to the manufacturer is also correspondingly reduced.

6 Conclusion

This paper developed an information sharing cooperative game in characteristic form and found

an allocation scheme to share the cost savings arising from cooperation. More speci�cally, we

considered a three-level supply chain involving a manufacturer, a distributor and a retailer. The

three supply chain members cooperate with each other in sharing the demand information under

positive lead-times. Such a collaboration results in a cost reduction in the supply chain. We

investigated the scheme of splitting the cost savings among the supply chain members. In particular,

we computed analytically the expected holding and shortage costs incurred at the manufacturer
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level, and used simulation to �nd expected costs of the distributor and the retailer. By using

these costs, we found the characteristic values for all possible coalitions, and derived the necessary

conditions for stability of every coalition. If a two-player coalition is stable, we presented a unique

allocation scheme. When the grand coalition is stable, we showed that the constrained core of the

game could be non-empty provided that a condition is satis�ed. Next, we considered Shapley value

to determine a unique allocation of cost savings but found that this allocation scheme could result

in an unstable grand coalition (since at least one of three conditions required for stability is not

satis�ed). We then considered the nucleolus solution but in its computation we took into account

three constraints that would keep the coalition stable. An analytic expression for the case of empty

core was derived for solving the three-person game to �nd the constrained nucleolus solution. Our

numerical study presented two examples to illustrate the modeling approach and the computations

of allocation schemes, and also provided several sensitivity analyses to indicate the impacts of the

autocorrelation coe¢ cient � in model (1), the unit shortage and holding costs on the coalition

stability and allocation schemes.

In our paper, we used the constrained core to examine whether the set of fair allocations is

empty. However, a potential concern with using this concept as the stability criterion is that

it is a myopic measure. A myopic solution assumes that the players don�t consider the future;

that is, they don�t consider what might happen when they choose a solution. In addition, it is

assumed that, when the players move to a myopic solution, there is no further deviation. Due to

the limits of myopic solutions, two new concepts have been recently proposed to consider coalition

formation as an ongoing, dynamic process with payo¤s generated as the coalitions evolve. The

concept of �largest consistent set� introduced by Chwe [8] is a solution concept that is used to

analyze �farsighted�coalitions that consider the possibility of other coalitions forming in response

to its actions. Equilibrium process of coalition formation introduced by Konishi and Ray [13] allow

for the possibility of moving to another coalition by the expectation of a higher future payo¤ and

it is related to the largest consistent set of Chwe [8]. A future research direction could be the

applications of the farsighted solution concepts in supply chain analysis.
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Appendix A Computation of Each Supply Chain Member�s Ex-

pected Cost under 100% Fill Rate

We de�ne �end-demand�as the demand generated by the ultimate customer and assume that the

end-demand is forecasted by the AR(1) process de�ned by (1) as in LST [17]. We assume that the

parameter values and structure of (1) are known to all three members in the supply chain. As in

LST [17], � is assumed to be signi�cantly smaller than d. This assumption will help justify the

assumption that each supply chain member�s order-up-to level is always nonnegative. The end-

demand information that would be shared by the members is the deterministic value of "t; that

is, at the end of time period t, the retailer has already observed the end-demand realized in this

period, i.e., Dt. Since Dt�1 is also available, the retailer can �nd the exact value of the error term

"t by simply computing "t = [Dt� (d+ �Dt�1)]. Next, at the end of period t, the retailer forecasts
the end-demand Dt+1 and places an order with the distributor to increase the inventory position

to his order-up-to level SRt . Hence, when there is no sharing of the end-demand information, the

distributor and the manufacturer cannot compute "t exactly since they have no knowledge of Dt�1
and Dt. In this case, the distributor has to forecast the retailer�s order by using the end-demand

process (1), where "t is a normally-distributed random variable with mean 0 and variance �2.

A.1 Retailer�s Expected Cost �̂R under 100% Fill Rate

The demand process faced by the retailer is the AR(1) model (1). The retailer�s order-up-level at

the end of time period t, denoted by SRt , is found by minimizing total expected cost function for

period t + 1 as follows. The mean mR
t and the variance V

R
t of the demand Dt+1, conditional on

the realized demand Dt, are obtained as

mR
t = E(Dt+1 j Dt) = E(d+ �Dt + "t+1) = d+ �Dt, (2)

V Rt = Var(Dt+1 j Dt) = Var("t+1) = �2. (3)

Since "t+1 is normally distributed with mean 0 and variance �2, the demand process (1) implies

that demand Dt+1 is a normally distributed random variable with mean (d+ �Dt) and variance

�2.

Proposition 8 Assuming a 100% �ll-rate, the retailer�s optimal order-up-to level, SRt , at the end

of period t and minimum expected cost, �̂R, for period t+ 1 are

SRt = d+ �Dt + k
R� and �̂R = �

�
hRkR +

�
hR + pR

�
I
�
kR
��
, (4)

where kR = ~��1
�
pR=

�
pR + hR

��
; hR and pR denote unit holding cost and the unit shortage cost

per time period at the retailer level, respectively; ~� (�) is the distribution function of the standard
normal r.v., and

I(z) =

Z 1

z
(x� z) d~� (x) (5)
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is the unit normal loss function (see Porteus [25, Chapter 1]).

Proof. Under the assumption of 100% �ll-rate, the retailer�s order can be fully satis�ed by the

distributor, so total expected cost �̂R for period t+ 1 is given as

�̂R = hR
Z SRt

�1
(SRt �Dt+1)�(Dt+1) dDt+1 + pR

Z 1

SRt

(Dt+1 � SRt )�(Dt+1) dDt+1,

= hRE
h�
SRt �Dt+1

�+i
+ pRE

h�
Dt+1 � SRt

�+i
, (6)

where �(Dt+1) is probability density function (p.d.f.) of the conditional normal random variable

Dt+1 with mean mR
t and variance V

R
t . The optimal order-up-to level S

R
t that minimizes expected

cost (6) can be obtained as

SRt = m
R
t + k

R
q
V Rt = d+ �Dt + k

R�,

where kR = ~��1
�
pR=

�
pR + hR

��
, hR and pR respectively denote unit holding cost and the unit

shortage cost per time period at the retailer level and ~� (�) is the distribution function of the
standard normal r.v.; see LST [17]. Using the optimal value of the order-up-to level SRt , we �nd

the minimum expected cost as (4).

When the �ll-rate is 100%, the retailer�s order quantity Y Rt at the end of period t is the di¤erence

between the desired order-up-to level SRt and the starting inventory (S
R
t�1 �Dt), i.e.,

Y Rt = SRt � (SRt�1 �Dt) = Dt + � (Dt �Dt�1) . (7)

Under the assumption that � is signi�cantly smaller than d and as justi�ed by LST [17], one can

show that Pr(Y Rt < 0) is negligibly small; thus we assume that Y Rt � 0.
Next, we proceed with the analysis of the distributor�s ordering decisions.

A.2 Distributor�s Expected Cost under 100% Fill Rate

Since the distributor is located in the middle of the three-level supply chain he could form a two-

person coalition with the manufacturer to share his demand information (the retailer�s order), or

cooperate with the retailer to share end-demand information. We consider the following two cases

for analyzing the distributor�s ordering decisions and inventory-related costs under 100% �ll-rate:

(i) No information sharing with the retailer leading to �̂D1, and (ii) information sharing with the

retailer leading to �̂D2.

Prior to analyzing the two cases, we �rst develop the AR(1) model for characterizing the

�demand process�(the retailer�s order) faced by the distributor.

A.2.1 Retailer�s Order Process Faced by the Distributor

Since the retailer is the distributor�s immediate downstream �neighbor�, orders placed by the

retailer constitute the �demand� faced by the distributor. In order to analyze the distributor�s
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ordering decisions, we now derive the AR(1) model of the retailer�s order process.

Lemma 1 Assuming a 100% �ll-rate, the retailer�s order process faced by the distributor is a

one-period autocorrelated process

Y Rt+1 = d+ �Y
R
t + "Rt+1, (8)

where "Rt+1 = (1 + �) "t+1 � �"t.

Proof. The AR(1) model (1) implies Dt�1 = (Dt � d� "t) =�. Replacing Dt�1 in (7) with

(Dt � d� "t) =� gives Y Rt = Dt+ � (Dt �Dt�1) = d+ �Dt+ "t so that the retailer�s order quantity
at the end of t + 1 is Y Rt+1 = d + �Dt+1 + "t+1. Since, from (1), we have Dt+1 = d + �Dt + "t+1,

we can write Y Rt+1 as Y
R
t+1 = (1 + �) d + �2Dt + (1 + �) "t+1. In order to express Y Rt+1 in terms

of Y Rt , we combine the expressions for Y
R
t+1 and Y

R
t to obtain Y Rt+1 = d + �Y Rt + "Rt+1 where

"Rt+1 = (1 + �) "t+1 � �"t.
Since the error term is "Rt+1 = (1 + �) "t+1 � �"t, where "t is normally distributed with zero

mean and variance �2, we �nd that "Rt+1 is also a normally distributed random variable with the

mean

E
�
"Rt+1

�
= (1 + �)E ("t+1)� �E ("t) = 0,

and the variance

Var
�
"Rt+1

�
= (1 + �)2Var ("t+1) + �

2Var ("t) =
h
(1 + �)2 + �2

i
�2.

A.2.2 Distributor�s Expected Costs Under Di¤erent Coalitions

Assuming that the distributor�s order can be fully satis�ed by the manufacturer, we compute the

distributor�s expected costs for the following two cases: (i) no information sharing from the retailer

and (ii) information sharing from the retailer. The distributor now decides the order-up-to level

SDt at the end of the period t by forecasting the retailer�s order quantity for the period t + 1.

In particular, we �nd the conditional mean and the variance of Y Rt+1, and then compute S
D
t that

minimizes the distributor�s expected costs (i.e., the holding and shortage costs) for the period t+1.

Proposition 9 Assuming a 100% �ll-rate, the distributor�s optimal order-up-to level (SDt ) at the

end of period t and minimum expected cost (�̂D) for the period t+ 1 are

(SDt ; �̂
D) =

(
(SD1t ; �̂D1), under the coalitions fM;D;Rg, fR; (MD)g and fD; (MR)g,
(SD2t ; �̂D2), under the coalitions fM; (DR)g and f(MDR)g,
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where

SD1t = d+ �Y Rt + kD
q
V D1t , and �̂D1 =

q
V D1t

�
hDkD +

�
hD + pD

�
I
�
kD
��
,

SD2t = d+ �Y Rt � �"t + kD
q
V D2t , and �̂D2 =

q
V D2t

�
hDkD +

�
hD + pD

�
I
�
kD
��
,q

V D1t = �

q
(1 + �)2 + �2, and

q
V D2t = � (1 + �) ,

and kD, hD, pD are de�ned similarly to kR, hR and pR, respectively; "t is the realized value of the

error term in the AR(1) demand process (1), and Y Rt is the size of the order placed by the retailer

at the end of the period t.

Proof. Under the assumption of 100% �ll-rate, we �nd the distributor�s optimal solution and

compute the corresponding expected cost as follows:

1. When the distributor doesn�t share the demand information from the retailer under the

coalitions fM;D;Rg, fR; (MD)g and fD; (MR)g, we know from (8) that the retailer�s order

quantity is an AR(1) process such that Y Rt+1 = d + �Y Rt + (1 + �) "t+1 � �"t, where Y Rt is

known to the distributor but "t+1 and "t are unknown. Due to no information sharing with

the retailer, the distributor has to consider "t+1 and "t as two i.i.d. normal random variables

with mean zero and variance �2. We compute the conditional mean mM1
t and the conditional

variance VM1
t of the retailer�s order quantity Y Rt+1 as

mD1
t = E(Y Rt+1 j Y Rt ) = d+ �Y Rt ,

V D1t = Var(Y Rt+1 j Y Rt ) =
h
(1 + �)2 + �2

i
�2.

Thus, similar to the analysis in Section A.1, the distributor�s expected cost for t+ 1 is

�̂D1 = hDE
h�
SD1t � Y Rt+1

�+i
+ pDE

h�
Y Rt+1 � SD1t

�+i
.

The optimal order-up-to level that minimizes �̂D1 is found as SD1t = mD1
t + kD

p
V D1t . Sim-

plifying �̂D1 we obtain �̂D1 = �
q
[(1 + �)2 + �2]

�
hDkD +

�
hD + pD

�
I
�
kD
��
.

2. Under the coalitions fM; (DR)g and f(MDR)g, when the retailer discloses end-demand in-
formation (that is, the realized value of the error term "t) to the distributor, the conditional

mean mD2
t and the conditional variance V D2t of the retailer�s order quantity Y Rt+1 are found

as

mD2
t = E(Y Rt+1 j Y Rt ; "t) = d+ �Y Rt � �"t,

V D2t = Var(Y Rt+1 j Y Rt ; "t) = (1 + �)
2 �2.

In this case, the distributor�s total expected cost for period t+ 1 is

�̂D2 = hDE
h�
SD2t � Y Rt+1

�+i
+ pDE

h�
Y Rt+1 � SD2t

�+i
.
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As a consequence, the distributor�s optimal order-up-to level that minimizes �̂D2 becomes

SD2t = mD2
t + kD

p
V D2t . Finally, simplifying �̂D2 we have that

�̂D2 = � (1 + �)
�
hDkD +

�
hD + pD

�
I
�
kD
��
.

Next, we compute the order size of the distributor under the assumption of 100% �ll-rate. When

the distributor joins one of the coalitions fM;D;Rg, fR; (MD)g and fD; (MR)g, the size of order
that the distributor places with the manufacturer at the end of period t, denoted by Y D1t , is the

di¤erence between the desired order-up-to level SD1t and the starting inventory (SD1t�1 � Y Rt ), i.e.,

Y D1t = SD1t � (SD1t�1 � Y Rt ) = Y Rt + �
�
Y Rt � Y Rt�1

�
. (9)

When the distributor joins one of the coalitions fM; (DR)g and f(MDR)g, the order quantity
Y D2t is computed as the di¤erence between the desired order-up-to level SD2t and the starting

inventory (SD2t�1 � Y Rt ), i.e.,

Y D2t = SD2t � (SD2t�1 � Y Rt ) = Y Rt + �
�
Y Rt � Y Rt�1

�
� �("t � "t�1). (10)

A.3 Manufacturer�s Expected Cost

We now focus our attention on the ordering decisions at the manufacturer�s level. In the three-level

supply chain under study, the manufacturer is located at the highest echelon that is farthest from

the ultimate customer. We assume that since the manufacturer produces the �nal product in the

supply chain, the production quantity determined by him is fully realized. The demand faced by

the manufacturer is the order received from the distributor. But the manufacturer may also share

with the distributor the information regarding the orders received from the retailer, and/or share

with the retailer the information regarding the end-demand. This results in �ve possible cases

for sharing information between the manufacturer and the other members of the supply chain as

discussed previously and depicted in Figure 1 leading to �M1, �M2, �M3, �M4 and �M5. Thus, we

examine each situation to �nd the manufacturer�s ordering decisions and compute the corresponding

expected costs. Prior to analyzing the �ve cases, we investigate the distributor�s order process.

A.3.1 Distributor�s Order Process Faced by the Manufacturer

Based on whether or not the distributor receives end-demand information from the retailer, we

model two di¤erent order processes for the distributor.

No information sharing between the distributor and the retailer The results in this

subsection will be used later to compute �M1, �M3 and �M4. We know from (9) that the distrib-

utor�s order size is Y D1t = Y Rt + �
�
Y Rt � Y Rt�1

�
and from (8) that the retailer�s order process is
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Y Rt+1 = d+�Y
R
t +(1 + �) "t+1��"t. We will use these results to characterize the distributor�s order

process in the AR(1) form.

Lemma 2 Assuming a 100% �ll-rate, the distributor�s order process faced by the manufacturer,

when the distributor and the retailer don�t share end-demand information, is a one-period auto-

correlated process

Y D1t+1 = d+ �Y
D1
t + (1 + �)2 "t+1 � 2� (1 + �) "t + �2"t�1, (11)

where "t+1, "t and "t�1 are unknown to the distributor.

Proof. First, we write

Y D1t = Y Rt + �(Y Rt � Y Rt�1) = d+ �Y Rt + (1 + �) "t � �"t�1. (12)

For the case of no information sharing, the order size of the distributor for period t + 1 is thus

Y D1t+1 = d+ �Y
R
t+1 + (1 + �) "t+1 � �"t. By using the retailer�s order process, Y D1t+1 can be expressed

in terms of Y Rt , i.e.,

Y D1t+1 = d+ �
�
d+ �Y Rt + (1 + �) "t+1 � �"t

�
+ (1 + �) "t+1 � �"t

= (1 + �) d+ �2Y Rt + "D1t+1. (13)

where "D1t+1 = (1 + �)2 "t+1 � � (1 + �) "t. Combining (12) and (13) gives the AR (1) process of
distributor�s order in (11).

Information sharing between the distributor and the retailer The results in this subsec-

tion will be used later to compute �M2 and �M5.

Lemma 3 Assuming a 100% �ll-rate, the distributor�s order process faced by the manufacturer,

when the distributor and the retailer share end-demand information, is a one-period autocorrelated

process

Y D2t+1 = d+ �Y
D2
t + "D2t+1, (14)

where "D2t+1 =
�
�2 + �+ 1

�
"t+1�� (1 + �) "t and the forecasting error "t is known to the distributor

but "t+1 is still unknown to both the retailer and distributor.

Proof. Similar to our analysis for the case of no information sharing, we re-write the distributor�s
order process in the setting of information sharing from (10) as Y D2t = Y Rt +�

�
Y Rt � Y Rt�1

�
��("t�

"t�1). Using (8) to replace Y Rt in the distributor�s order process results in Y D2t = d + �Y Rt + "t,

and analogously, Y D2t+1 = d+ �Y
R
t+1 + "t+1. In order to write the order process in the AR (1) form,

we express Y D2t+1 in terms of Y
D2
t and the forecasting errors and �nd (14).

With the AR (1) process of the distributor�s order, we can compute the manufacturer�s ordering

decisions and the corresponding costs for �ve cases mentioned previously.
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A.3.2 Manufacturer�s Expected Costs Under Di¤erent Coalitions

We now compute the manufacturer�s expected costs under �ve coalitions depicted in Figure 1.

Similar to the distributor and the retailer, the manufacturer now decides the order-up-to level

at the end of the period t by forecasting the distributor�s order quantity for the period t + 1.

Speci�cally, using the means and the variances of the quantity of order placed by the distributor,

the manufacturer computes optimal order-up-to level that minimizes his expected costs for the

period t+ 1.

Proposition 10 The manufacturer�s optimal order-up-to level (SMt ) at the end of period t and
minimum expected cost (�M ) for the period t+ 1 are

(SMt ; �
S) =

8>>>>>><>>>>>>:

(SM1
t ; �M1), under the coalition fM;D;Rg,

(SM2
t ; �M2), under the coalition fM; (DR)g,

(SM3
t ; �M3), under the coalition fR; (MD)g,

(SM4
t ; �M4), under the coalition fD; (MR)g,

(SM5
t ; �M5), under the coalition f(MDR)g,

where

SM1
t = d+ �Y D1t + kM

q
VM1
t , and �M1 =

q
VM1
t

�
hMkM +

�
hM + pM

�
I
�
kM
��
,

SM2
t = d+ �Y D2t + kM

q
VM2
t , and �M2 =

q
VM2
t

�
hMkM +

�
hM + pM

�
I
�
kM
��
,

SM3
t = d+ �Y D1t � � (1 + �) "t + �2"t�1 + kM

q
VM3
t , and �M3 =

q
VM3
t

�
hMkM +

�
hM + pM

�
I
�
kM
��
,

SM4
t = d+ �Y D1t � 2� (1 + �) "t + �2"t�1 + kM

q
VM4
t , and �M4 =

q
VM4
t

�
hMkM +

�
hM + pM

�
I
�
kM
��
,

SM5
t = d+ �Y D2t � � (1 + �) "t + kM

q
VM5
t , and �M5 =

q
VM5
t

�
hMkM +

�
hM + pM

�
I
�
kM
��
,

q
VM1
t = �

r
(1 + �)2

h
(1 + �)2 + 4�2

i
+ �4,

q
VM2
t = �

q
(1 + �+ �2)2 + �2 (1 + �)2,q

VM3
t = � (1 + �)

q
�2 + (1 + �)2,

q
VM4
t = � (1 + �)2 and

q
VM5
t = �

�
1 + �+ �2

�
,

and kM , hM , pM are de�ned similarly to kR, hR, pR, respectively.

Proof. Using the distributor�s ordering processes (11) and (14), we compute the manufacturer�s
expected costs under �ve di¤erent coalitions.

1. Under the coalition fM;D;Rg, the manufacturer�s expected cost in period t+ 1 is

�M1 = hME
h�
SM1
t � Y D1t+1

�+i
+ pME

h�
Y D1t+1 � SM1

t

�+i
.

The manufacturer�s optimal order-up-to level at the end of time period t is found by mini-
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mizing �M1 which gives SM1
t = mM1

t + kM
p
VM1
t , where,

mM1
t = E

�
Y D1t+1 j Y D1t

�
= d+ �Y D1t ,

VM1
t = Var

�
Y D1t+1 j Y D1t

�
= �2

n
(1 + �)2

h
(1 + �)2 + 4�2

i
+ �4

o
.

Simplifying �M1 we have

�M1 = �

r
(1 + �)2

h
(1 + �)2 + 4�2

i
+ �4

�
hMkM +

�
hM + pM

�
I
�
kM
��
.

2. Under the coalition fM; (DR)g, the manufacturer�s expected cost in period t+ 1 is

�M2 = hME
h�
SM2
t � Y D2t+1

�+i
+ pME

h�
Y D2t+1 � SM2

t

�+i
.

Using this expression we �nd the optimal order-up-to level at the end of period t as SM2
t =

mM2
t + kM

p
VM2
t , where

mM2
t = E

�
Y D2t+1 j Y D2t

�
= d+ �Y D2t ,

VM2
t = Var

�
Y D2t+1 j Y D2t

�
= �2

h�
1 + �+ �2

�2
+ �2 (1 + �)2

i
.

Simplifying �M2 we have

�M2 = �

q
(1 + �+ �2)2 + �2 (1 + �)2

�
hMkM +

�
hM + pM

�
I
�
kM
��
.

3. Under the coalition fR; (MD)g, the manufacturer�s expected cost for period t+ 1 is

�M3 = hME
h�
SM3
t � Y D1t+1

�+i
+ pME

h�
Y D1t+1 � SM3

t

�+i
.

Minimizing �M3 we �nd the optimal order-up-to level as SM3
t = mM3

t + kM
p
VM3
t , where

mM3
t = E(Y D1t+1 j Y D1t ; "Rt ) = d+ �Y

D1
t � �"Rt = (1 + �) d+ �Y D1t � �

�
Y Rt � �Y Rt�1

�
VM3
t = Var(Y D1t+1 j Y D1t ; "Rt ) = (1 + �)

4 �2 + �2 (1 + �)2 �2 = �2 (1 + �)2
h
(1 + �)2 + �2

i
.

Using SM3
t , the manufacturer�s minimum expected cost is found as

�M3 = � (1 + �)

q
�2 + (1 + �)2

�
hMkM +

�
hM + pM

�
I
�
kM
��
.

4. Under the coalition fD; (MR)g, the manufacturer�s expected cost is

�M4 = hME
h�
SM4
t � Y D1t+1

�+i
+ pME

h�
Y D1t+1 � SM4

t

�+i
.
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Minimizing �M4 we �nd the optimal order-up-to level as SM4
t = mM4

t + kM
p
VM4
t , where

mM4
t = E(Y D1t+1 j Y D1t ; "t; "t�1) = d+ �Y

D1
t � 2� (1 + �) "t + �2"t�1,

VM4
t = Var(Y D1t+1 j Y D1t ; "t; "t�1) = (1 + �)

4 �2.

Using SM4
t we obtain

�M4 = � (1 + �)2 [hMkM +
�
hM + pM

�
I
�
kM
�
].

5. Under the coalition f(MDR)g, the manufacturer�s expected cost for t+ 1 is

�M5 = hME
h�
SM5
t � Y D2t+1

�+i
+ pME

h�
Y D2t+1 � SM5

t

�+i
.

The distributor�s order process is now (14) rather than (11). In a manner analogous to

the previous analyses, we compute the manufacturer�s optimal order-up-to level as SM5
t =

mM5
t + kM

p
VM5
t where

mM5
t = E

�
Y D2t+1 j Y D2t ; "t

�
= d+ �Y D2t � � (1 + �) "t,

VM5
t = Var

�
Y D2t+1 j Y D2t ; "t

�
= �2

h�
1 + �+ �2

�2i
.

Using SM5
t , we have

�M5 = �
�
1 + �+ �2

�
[hMkM +

�
hM + pM

�
I
�
kM
�
].

Appendix B Computation of the Characteristic Values for All

Coalitions

We now compute the characteristic values of all possible coalitions, i.e., v(M), v(D), v(R), v(MD),

v(MR), v(DR) and v(MDR). First, the characteristic value of an empty coalition is naturally

zero, i.e., v(?) = 0. Next, consider the single-player coalitions. When the retailer does not share
demand information with other members of the supply chain, his characteristic value v(R) depends

on whether or not the distributor and manufacturer share demand information. If they don�t share

information, then the retailer receives no cost savings, i.e., v(R) = 0. Otherwise, the retailer�s cost

savings is v(R) = �R1 � �R2. Since the characteristic function value v(i), (i =M;D;R) represents
the amount (cost savings) that member i could achieve under the worst possible conditions (Stra¢ n

[31, p. 131]) if the retailer does not share demand information with any other member, we obtain

his characteristic value as v(R) = min(0; �R1��R2). Similarly, the distributor�s characteristic value
is obtained as v(D) = min(0; �D1��D4). However, the manufacturer the situation is di¤erent, since
the manufacturer is the most upstream member in the supply chain so that the �ll-rate faced the
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manufacturer is 100%. When the distributor and retailer share information, the bullwhip e¤ect is

reduced and the manufacturer experiences a cost savings of �M1��M2 which is positive according to

Proposition 1. On the other hand if the distributor and retailer do not share information, then the

manufacturer has no cost savings. As the characteristic function value v(M) is the cost savings that

the manufacturer could achieve under the worst possible conditions if he does not share demand

information with any other member, we obtain v(M) = 0.

Now, we consider the two-member coalitions and the grand coalition.

v(MD) : The value of the coalition (MD) The characteristic value of the coalition involving

only the manufacturer and the distributor is total expected cost that both members could save

when only they share information. Therefore, in order to compute v(MD), we calculate the

cost savings incurred at the manufacturer and the distributor levels. In this case, the retailer

doesn�t release end-demand information to any other member. When the distributor shares

his information with the manufacturer, the distributor achieves the expected cost savings of

�D1 � �D3. The manufacturer�s expected cost savings are computed as �M1 � �M3, thus we

have that v(MD) = (�D1 � �D3) + (�M1 � �M3).

v(MR) : The value of the coalition (MR) In this case, the retailer�s expected cost savings are
�R1��R4, and the manufacturer�s expected cost savings are computed as �M1��M4, so that

v(MR) = (�R1 � �R4) + (�M1 � �M4).

v(DR) : The value of the coalition (DR) Since the retailer�s expected cost savings are �R1 �
�R2, and the distributor�s expected cost savings are �D1 � �D2, we have v(DR) = (�R1 �
�R2) + (�D1 � �D2).

v(MDR) : The value of the grand coalition (MDR) In the grand coalition, all members can
enjoy cost savings from sharing the end-demand information. We obtain v(MDR) = (�R1 �
�R5) + (�D1 � �D5) +

�
�M1 � �M5

�
.

Appendix C Proofs

Proof of Proposition 1. A straightforward comparison of �Mi, i = 1; : : : ; 5 in Table 1 yields

the property for the manufacturer�s expected costs. For example, it is easy to see from Table 1

that since � 6= 0, �M5 < �M2, i.e., the manufacturer incurs a smaller cost when he is a partner in

the grand coalition f(MDR)g than under the coalitional structure fM; (DR)g.
Proof of Proposition 2. In the three-player cooperative game there are �ve possible coalitions,

i.e., fM;D;Rg, fR; (MD)g, fD; (MR)g, fM; (DR)g and f(MDR)g. A coalition will be stable if
leaving the coalition makes a player worse o¤. We begin by analyzing the stability of the grand

coalition f(MDR)g.
1. The grand coalition f(MDR)g would be stable only if the following two criteria are satis�ed:

(a) The total cost savings incurred by all members in the grand coalition are no less than

those achieved in any other coalitions. Speci�cally, the following conditions must be sat-

is�ed for stability of the grand coalition: v(MDR) � (�R1��R3)+v(MD), v(MDR) �
(�D1��D4)+v(MR), v(MDR) � (�M1��M2)+v(DR); v(MDR) � v(M)+v(D)+v(R).
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Otherwise, if a coalition generates higher cost savings, we cannot �nd an allocation

scheme to make the grand coalition stable.

(b) None of the players in the grand coalition has an incentive to leave the coalition. When

the manufacturer leaves the coalition, he has two possible cost savings. If v(DR) �
v(D)+ v(R), then the distributor and the retailer would prefer to stay in the two-player

coalition (DR), so the manufacturer incurs the savings (�M1��M2); otherwise, the two-

player coalition (DR) is changed to two single-player coalitions, and the manufacturer�s

cost savings is reduced to zero. Summarizing the above gives the manufacturer�s cost

savings (after leaving the grand coalition) as

!M =

(
�M1 � �M2 if v(DR) � v(D) + v(R),
0, if v(DR) < v(D) + v(R).

Similarly, we can write !D and !R as

!D =

(
�D1 � �D4, if v(MR) � v(R),
0, if v(MR) < v(R),

and !R =

(
�R1 � �R3, if v(MD) � v(D),
0, if v(MD) < v(D).

Thus, the second condition for the stability of the grand coalition is v(MDR) � !M +

!D + !R, which assures that no player has an incentive to leave the coalition.

2. The coalition fR; (MD)g would be stable only if the following two criteria are satis�ed:
(a) Similar to our analysis for the stability of grand coalition, total cost savings incurred

by all members in this coalition are no less than those achieved in the grand coalition.

Speci�cally, the following conditions must be satis�ed: (�R1��R3)+v(MD) � v(MDR).
(b) Each player in the two-player coalition (MD) will be worse o¤ if s/he leaves the coalition.

When a player leaves, the manufacturer and the distributor would have the cost savings

v(M) and v(D). In order to keep the two players in the coalition, we must have the

condition v(MD) � v(M) + v(D) = v(D).
The analysis for the coalitions fD; (MR)g and fM; (DR)g is similar.

3. Obviously, the coalition fM;D;Rg is stable if any other coalition is unstable.

Proof of Proposition 3. We �rst use Nash arbitration scheme to compute the allocation

scheme. If the coalition fM; (DR)g is stable, the Nash arbitration scheme of allocating the cost
savings between the distributor and the retailer is computed by solving

max [xD � v(D)][xR � v(R)], s.t. xD � v(D), xR � v(R).

Since xD + xR = v(DR), the problem can be reduced to max [xD � v(D)][�xD + v(DR)� v(R)],
s.t. xD � v(D) and xR � v(R). Ignoring the constraints, we �nd the �rst-order derivative of the
objective function w.r.t xD as �2xD + v(DR)� v(R) + v(D). Equating it to zero and solving the
resulting equation for xD, we have that xD = [v(DR)+v(D)�v(R)]=2. The value of xR is obtained
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as v(DR)�xD = [v(DR)�v(D)+v(R)]=2. Note that the constraints (xD � v(D), xR � v(R)) are
satis�ed by the solution. As a result, the Nash arbitration scheme is the same as the egalitarian

proposal. Similarly, we can �nd the Nash arbitration scheme for the other two-player coalitions.

Next, when the coalition fM; (DR)g is stable, we use Shapley value to allocate the cost savings
v(DR) between the distributor and the retailer. Using the above formula, we have

'D =
0!1![v(D)� v(�)]

2!
+
1!0![v(DR)� v(R)]

2!
=
v(DR) + v(D)� v(R)

2
,

'R =
0!1![v(R)� v(�)]

2!
+
1!0![v(DR)� v(D)]

2!
=
v(DR)� v(D) + v(R)

2
.

Thus, the allocation in terms of Shapley value is also the same as that suggested by the egali-

tarian proposal. When we consider all stable two-player coalitions (i.e., fi; (jk)g, i, j, k = M , D,
R, and i 6= j 6= k), we reach the allocation scheme.

Proof of Theorem 1. In a non-empty constrained core, an imputation (xM ; xD; xR) exists such

that for all T � fM;D;Rg,
P
i2T xi � v(T ), xM � !M , xD � !D and xR � !R. Proposition

2 indicates that xM + xD + xR = v(MDR) � !M + !D + !R, which assures that we can always

�nd an allocation satisfying the three constraints. Since xM + xD + xR = v(MDR), the inequality

xM + xD � v(MD) is equivalent to the inequality xR � v(MDR) � v(MD). Similarly, xM �
v(MDR)� v(DR) and xD � v(MDR)� v(MR). Summing the three inequalities, we obtain that
xM + xD + xR � 3v(MDR) � [v(MD) + v(DR) + v(MR)]. Using xM + xD + xR = v(MDR),

we �nd the condition 2v(MDR) � v(MD) + v(DR) + v(MR) under which the constrained core is
non-empty. For example, under the condition we examine an arbitrary imputation (x̂M ; x̂D; x̂R),

where x̂M = !M + �M (in which 0 � �M � v(MDR) � v(DR) � !M ), x̂D = !D + �D (in which

0 � �D � v(MDR)�v(MR)�!D), x̂R = !R+�R (in which 0 � �R � v(MDR)�v(MD)�!R) andP
� = v(MDR) �

P
!i. According to Proposition 2, the imputation (x̂M ; x̂D; x̂R) always exists

and the constrained core is non-empty if the condition 2v(MDR) � v(MD) + v(DR) + v(MR) is
satis�ed.

Proof of Proposition 4. The ('M ; 'D; 'R) values easily follow by using the formula 'i =P
i2T (jT j � 1)!(3� jT j)![v(T )� v(T � i)]=3! where T denotes an information sharing coalition, jT j

is the size of T and i = M;D;R. To assure stability of the grand coalition f(MDR)g, the three
conditions 'M � !M , 'D � !D and 'R � !R must be satis�ed. Otherwise, the grand coalition is
unstable.

Proof of Proposition 5. Theorem 1 indicates that the constrained core is empty if 2v(MDR) <

v(MD) + v(DR) + v(MR). We now obtain the solution for the game with an empty core. As we

described above, to �nd the nucleolus solution, we should make the excesses for all coalitions as
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small as possible. These excesses are given as follows:

e(R)(x) = v(R)� xR = min(0; �R1 � �R3)� xR,

e(D)(x) = v(D)� xD = min(0; �D1 � �D4)� xD,

e(M)(x) = v(M)� xM = �xM ,

e(DR)(x) = v(DR)� (xD + xR) = (�R1 � �R2) + (�D1 � �D2)� (xD + xR),

e(MR)(x) = v(MR)� (xM + xR) = (�
R1 � �R4) + (�M1 � �M4)� (xM + xR),

e(MD)(x) = v(MD)� (xM + xD) = (�
D1 � �D3) + (�M1 � �M3)� (xM + xD),

e(MDR)(x) = v(MDR)� (xM + xD + xR) = 0.

Since 2v(MDR) < v(MD) + v(DR) + v(MR) and xM + xD + xR = v(MDR), we have

[v(DR)� (xD + xR)] + [v(MR)� (xM + xR)] + [v(MD)� (xM + xD)]

= e(DR)(x) + e(MR)(x) + e(MD)(x) > 0,

which implies that at least one of the three excesses (e(DR)(x), e(MR)(x) and e(MD)(x)) is posi-

tive. Since min(0; �R1 � �R3) � 0 and min(0; �D1 � �D4) � 0, e(R)(x), e(D)(x) and e(M)(x) are

non-positive. In order to reach the nucleolus solution, we �rst minimize the largest excess (�unhap-

piness�). Thus, for this case we minimize the largest excess of e(DR)(x), e(MR)(x) and e(MD)(x). If

e(DR)(x) is the maximum excess, we raise imputation xD and/or xR. This lowers the imputation

xM and increases the excesses e(MR)(x) and e(MD)(x). A similar analysis is followed when e(MR)(x)

or e(MD)(x) is the largest. When we ignore the constraints �M � !M , �D � !D and �R � !R,

we reach the nucleolus solution once e(DR)(x), e(MR)(x) and e(MD)(x) are equal. Thus, solving

e(DR)(x) = e(MR)(x) = e(MD)(x) gives

�M =
v(MD) + v(MR) + v(MDR)� 2v(DR)

3
, �D =

v(MD) + v(DR) + v(MDR)� 2v(MR)
3

,

�R =
v(DR) + v(MR) + v(MDR)� 2v(MD)

3
.

Since 2v(MDR) < v(MD) + v(DR) + v(MR), we have

�M > v(MDR)� v(DR) � �M1 � �M2 = !M (in the coalition fM; (DR)g),

�D > v(MDR)� v(MR) � �D1 � �D4 = !D (in the coalition fD; (MR)g),

�R > v(MDR)� v(MD) � �R1 � �R3 = !R (in the coalition fR; (MD)g).

Thus, (�M ; �D; �R) is the constrained nucleolus solution when the constrained core is empty.

Proof of Proposition 6. When the coalition fM; (DR)g is stable, the distributor and the retailer
jointly have the cost savings of v(DR) = (�R1��R2)+ (�D1��D2), where the manufacturer�s and
the retailer�s local savings are (�R1��R2) and (�D1��D2), respectively. From Proposition 3, these

13



two players have the allocations as xD = [v(DR)+v(D)�v(R)]=2 and xR = [v(DR)�v(D)+v(R)]=2.
Since the distributor achieves the savings �D1 � �D2 before the allocation and has the savings xD
after the allocation, the side payment transferred from the distributor to the retailer is computed

as (�D1 � �D2)� xD. After such a transfer, the distributor has the allocation xD, and the retailer
has the allocation (�R1 � �R2) + (�D1 � �D2) � xD = v(DR) � xD = xR. Note that, if the side

payment is negative, the retailer transfers the amount
��(�D1 � �D2)� xD�� to the distributor. The

side payments for the other two situations can be found in a similar manner.

Proof of Proposition 7. Since �M + �D + �R = xM + xD + xR, we have (�M � xM ) + (�D �
xD) + (�R � xR) = 0, where each term in the LHS of the last equality represents the di¤erence

between the cost savings obtained by a player before and after the allocation. Among these three

di¤erences, at least one is non-positive and at least one is non-negative. There are two possibilities

as follows:

1. If two di¤erences are non-negative and one di¤erence is non-positive, then the players with

non-negative di¤erences transfer their di¤erences to the player with a non-positive di¤erence.

For example, if the manufacturer and the distributor have the non-negative di¤erences (�M �
xM ) and (�D � xD), respectively, then they transfer the amounts (�M � xM ) and (�D � xD)
to the retailer, so that the retailer receives total side payment amounting to (�M � xM ) +
(�D � xD).

2. If two di¤erences are non-positive and one di¤erence is non-negative, then the player with

a non-negative di¤erence transfers the di¤erence to the other two players. For example, if

the manufacturer has the non-negative di¤erence (�M � xM ), the manufacturer transfers the
amount of (xD � �D) to the distributor, and the amount of to (xR � �R) the retailer. Note
that �M � xM = [v(MDR)� �D � �R]� [v(MDR)� xD � xR] = (xD � �D) + (xR � �R).

The proposition follows after considering all six possibilities.

Appendix D Sensitivity Analysis of the Parameter �

When the value of � is increased from 0:01 to 1:0, we �nd the stable coalition and compute Shapley

value and the constrained nucleolus solution, as shown in Table 4.
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