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Abstract

Previous allocation rules for network games, such as the Myerson Value, implicitly or
explicitly take the network structure as �xed. In many situations, however, the network
structure can be altered by players. This means that the value of alternative network
structures (not just sub-networks) can and should in
uence the allocation of value among
players on any given network structure. I present a family of allocation rules that incor-
porate information about alternative network structures when allocating value.

JEL classi�cation numbers: C71, C72, A14
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Allocation Rules for Network Games

Matthew O. Jackson�

1 Introduction

Consider a situation where a number of individuals or players are connected in some net-
work relationship. The applications are quite wide and varied, ranging from friendships
and social relationships, to communicating information about job openings, to business
partnerships, to international trade agreements, and political alliances. What is in com-
mon to these situations is that the way in which players are connected to each other (for
instance who talks to whom, or which countries have free-trade agreements) is important
in determining the total productivity or value generated by the group.1

This paper examines the allocation of value among players connected by a network.
How the fruits of the total productive value are allocated or transferred among players
turns out to be important, not only in terms of fairness considerations, but also because
it determines players' incentives to form various networks.

The allocation of value among a set of players has a rich axiomatic history in the
cooperative game theory literature. There, the primitive information is what productive
value is generated by each possible group of agents or coalition. Well-known rules such
as the Shapley Value and Nucleolus provide natural ways of allocating the value among
players. However, as mentioned above, in many applications the value generated by
some group of players depends not only on their identities but also on how they are
connected to each other. That is, alternative network structures (e.g., communication
lines, alliances, friendships, etc.) connecting the same set of players might lead to very
di�erent costs and bene�ts. Thus, in many situations it will be important to account for
network structure and not just coalition structure.

Myerson (1977) made a seminal contribution in adapting the cooperative game theory
structure to accommodate information about the network connecting players. The way
in which he did this was by augmenting a cooperative game by a network structure which

�I thank Jernej Copic, Sergio Currarini, and Gabrielle Demange for helpful discussions and com-
ments on earlier drafts. Financial support from the Lee Center for Advanced Networking is gratefully
acknowledged.

1See Jackson (2003) for a recent survey of some of the literature on network games.



might be viewed as the lines of communication open to players. Once the network is �xed,
such a communication game may be viewed as a cooperative game where the role of the
network is to de�ne which coalitions can function. The feasible coalitions are the ones
whose members can freely communicate via the given network (so that any two players
in the coalition are path connected in the network via players in the coalition). In a
sense, each network structure and characteristic function (indicating how much value a
given coalition can generate) induces a particular cooperative game. I will refer to this
class as the class of communication games.2 Myerson (1977) showed that there exists a
nice extension of the Shapley Value to communication games, and that it has a simple
and intuitive characterization. This allocation rule has come to be called the Myerson
Value in the subsequent literature.3

While such communication games are a useful augmentation of cooperative games,
they fail to be rich enough to capture most applications where network structures are
important. The shortcoming is easily seen. Consider a group of players f1; 2; 3g. Under
this sort of communication game, this group generates the same productive value whether
(i) they are each connected to each other via a complete network (a link between 1 and
2, a link between 2 and 3, and a link between 1 and 3); or (ii) they are connected via
a less complete network such as one with a link between 1 and 2 and a link between 2
and 3, but no link between 1 and 3. To the extent that there are any costs to links, or
bene�ts from shortened paths, etc., it will generally be the case that the value generated
in these two scenarios di�ers.

Jackson and Wolinsky (1996) introduced a class of games where the value generated
depends directly on the network structure. This allows the value generated by the three
players f1; 2; 3g to depend on the network structure so it can di�er between cases (i) and
(ii) above. I will refer to this class as the class of network games. Network games include
cooperative games and communication games as special cases, but generally allow for
costs and bene�ts to accrue di�erently to di�erent sets of links, and allow for externalities
and such across players and networks. Jackson and Wolinsky (1996) showed that the
Myerson Value has a direct extension from communication games to network games.

While network games are richer than communication games and readily apply to
a wide class of situations, the extension of the Myerson value to network games still
inherits much of its perspective from communication games. Most importantly, under
the Myerson value the network is implicitly viewed as �xed when value is being allocated.
In particular, while the Myerson Value involves Shapley Value style calculations that
account for how the network is built up, it does not account for the value of alternative
network structures that might have formed. I shall return to illustrate and discuss this
in more detail below.

Here, I take the view that the network is not a permanent �xture, but is something

2Myerson (1977) referred to the networks as cooperation structures. Much of the literature that
followed Myerson has used the term communication structures, and so I will call those communication
games.

3See Aumann and Myerson (1988).
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that is either being formed or might change in the future. From this point of view the
allocation of value at a given network can and should depend on the value that might
accrue to alternative potential networks. In particular, evaluating the contribution to
value of a given link or player depends on the contribution of that link or player to
various networks, and perhaps more importantly, which to what extent other links or
players might serve as a substitute.

To understand why this issue arises in network games, but not in either cooperative
games or communication games, it is important to recognize that in a cooperative game
or communication game it is generally assumed that it is eÆcient for the grand coalition
to form.4 The idea is that the grand coalition can always do whatever smaller coalitions
can do, and possibly more. Once one moves to network games, however, larger networks
might have higher costs associated with them than some smaller networks. For instance,
the value generated by the complete network might be much less than the value generated
by some sub-network network. This means that generally, the most eÆcient network (in
a value maximizing sense) might not be the complete network. This introduces some
important new considerations in the allocation of value that did not arise in the context
of cooperative or communication games.

The considerations that are important in network games but did not arise in cooper-
ative and communication games are most easily seen through some examples that I will
present shortly. But to get some preview of what is going on, let me discuss it brie
y now.
In order to �gure out how to allocate value across players, a rule such as the Shapley
Value decomposes the grand coalition in various ways in evaluating players' contribu-
tions. However, given that the grand coalition is the ultimate one that forms, the issue
of what other coalitions might have formed, or what other players might have played the
role of a given player never really arise. In contrast, in the context of a network game, it
is often (perhaps even generally) the case given any implicit or explicit costs to links that
the set of eÆcient networks will not include the complete network. This means that we
must care about how to allocate value to some networks that are not complete networks.
In such cases, the allocation of value may depend on information about the roles of given
players that involve calculations based on networks that are not subnetworks of a given
network. For instance, if we consider a player at the center of a star network (where all
players are connected to this center player but not directly to each other), how much
value accrues to this player might depend on whether this player is the only one who
can serve this function, or whether it is the case than any player could equally well have
served as the center in a productive way.

The paper proceeds as follows. Section 2 provides de�nitions for network games.
Section 3 provides an example illustrating some of the issues. Section 4 introduces two
new allocation rules and characterizes them. Section 5 provides a de�nition of the core for
network games and two other new allocation rules. Section 6 provides a general method
of de�ning allocation rules. Section 7 concludes with a comparison of the properties

4An exception are cooperative games in partition function form, as introduced by Lucas and Thrall
(195?). However, that literature has not developed methods of allocating value that would help here.
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satis�ed by various allocation rules.

2 Network Games and Allocation Functions

Players

N = f1; : : : ; ng is a set of players who are connected in some network relationship.

The set N will generally be �xed in what follows.

Networks

A network is a list of which pairs of players are linked to each other and is modeled as
a non-directed graph. A network is thus a list of unordered pairs of players fi; jg, where
fi; jg 2 g indicates that i and j are linked under the network g.

For simplicity, write ij to represent the link fi; jg, and so ij 2 g indicates that i and
j are linked under the network g.

More formally, let gN be the set of all subsets of N of size 2. G = fg � gNg denotes
the set of all possible networks or graphs on N .

For instance, if N = f1; 2; 3g then g = f12; 23g is the network where there is a link
between players 1 and 2, a link between players 2 and 3, but no link between players 1
and 3.

The network obtained by adding link ij to an existing network g is denoted g+ ij and
the network obtained by deleting link ij from an existing network g is denoted g � ij.

Let N(g) be the set of players who have at least one link in g. That is,

N(g) = fij9j s:t: ij 2 gg:

Let n(g) = #N(g) be the number of players involved in g.

Let Li(g) be the set of links that player i is involved in, so that

Li(g) = fijj9j s:t: ij 2 gg;

and let `i(g) = #Li(g).

Let `(g) =
P

i `i(g) be the number of links in g.

Networks on Subsets of Players

4



Given any S � N , let gS be the set of all subsets of S of size 2, so that gS is the
complete network among the players in S.

Let
gjS = fij : ij 2 g and i 2 S; j 2 Sg:

Thus gjS is the network found deleting all links except those that are between players in
S.

Note the important distinction between the notation gS which is the complete network
among players in S, and gjS which is the network found by starting with some g and
then eliminating links involving players outside of S.

Paths

A path in a network g 2 G between players i and j is a sequence of players i1; : : : ; iK
such that ikik+1 2 g for each k 2 f1; : : : ; K � 1g, with i1 = i and iK = j.

Components

Looking at the path relationships in a network naturally partitions a network into
di�erent connected subgraphs that are commonly referred to as components.

A component of a network g, is a nonempty subnetwork g0 � g, such that

� if i 2 N(g0) and j 2 N(g0) where j 6= i, then there exists a path in g0 between i
and j, and

� if i 2 N(g0) and j =2 N(g0) then there does not exist a path in g between i and j.

Thus, the components of a network are the distinct connected subgraphs of a network.

The set of components of g is denoted C(g). Note that g = [g02C(g) g
0.

Under this de�nition of component, a completely isolated player who has no links is
not considered a component.

Value Functions

A value function is a function v : G! IR.

The set of all possible value functions is denoted V .

A value function speci�es the total value that is generated by a given network struc-
ture. The calculation of value may involve both costs and bene�ts and is a richer object
than a characteristic function of a cooperative game, or that induced in a communication
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game, as it allows the value that accrues to depend on the network structure and not
only on the coalition of players involved (or who can communicate).

An interesting sub-class of value functions are those where the value to a given compo-
nent of a network does not depend on the structure of other components. This precludes
externalities across (but not within) components of a network. While the characteri-
zations below will apply more broadly, understanding behavior on component additive
value functions is useful in characterizing the Myerson Value.

A value function v is component additive if v(g) =
P

g02C(g) v(g
0) for any g 2 G and

g0 2 C(g).

EÆcient Networks

A network g 2 G is eÆcient relative to a value function v if v(g) � v(g0) for all g0 2 G.

Thus, eÆcient networks are value-maximizing networks.

Monotonic Covers

When we begin to think about the possibilities available to a set of links when there is
still some possibility of altering the network, it will useful to consider the value generated
by the maximum over possible networks that could be formed using the given set of links
links. This is captured by its monotonic cover.

Given a value function v, its monotonic cover bv is de�ned by

bv(g) = max
g0�g

v(g0):

Monotonicity

A value function v is monotonic if v(g0) � v(g) whenever g � g0.

Note that a value function is monotonic if and only if v = bv.
In general the value functions that are natural in network games will not be monotonic.

Nevertheless, information about how allocation rules perform on monotonic games will
be useful.

A Basis for Value Functions

It will be useful to de�ne a basis for the set of value functions.
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Let vg denote the value function that satis�es

vg(g
0) =

�
1 if g � g0 and
0 otherwise.

Call such a vg a basic value function.

Note that any v can be written as a linear combination of basic value functions vg's.
That is, for any v we can write v =

P
g cgvg for some collection of scalars cg. This follows

from viewing the v's as vectors in IR2n(n�1)=2
and noting that the 2n(n�1)=2 di�erent vg's

are linearly independent and so form a basis for IR2n(n�1)=2
.

Network Games

A network game is a pair, (N; v), of a set of players and a value function.

Allocation Rules

How the value generated by a network is allocated among the players, either through
their decisions or perhaps even by some outside intervention, is described by an allocation
rule.

An allocation rule is a function Y : G� V ! IRn such that
P

i Yi(g; v) = v(g) for all
v and g.

Note that balance (
P

i Yi(g; v) = v(g)) is built into the de�nition of an allocation rule.

It is important to note that an allocation rule depends on both g and v. This allows
an allocation rule to take full account of an player i's role in the network. This includes
not only what the network con�guration is, but also how the value generated depends
on the overall network structure. For instance, consider a network g = f12; 23g in a
situation where v(g) = 1. Player 2's allocation might be very di�erent depending on
what the values of other networks are. For instance, if v(f12; 23; 13g) = 0 = v(f13g),
then in a sense 2 is essential to the network and may receive a large allocation. If on
the other hand v(g0) = 1 for all networks, then 2's role is not particularly special. This
information might turn out to be relevant, which is why the allocation rule is allowed
(but not required) to depend on it.

3 The Myerson Value and some Examples

As mentioned in the introduction, Myerson (1977) developed a variation of the Shapley
value for communication games, which was subsequently referred to as the Myerson
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Value. The Myerson Value also has a corresponding allocation rule in the context of
network games which is a direct generalization of the version de�ned by Myerson for
communication games, as shown by Jackson and Wolinsky (1996). That allocation rule
is expressed as follows.

Y MV
i (g; v) =

X
S�Nnfig

(v(gjS[i)� v(gjS))

 
#S!(n�#S � 1)!

n!

!
(1)

The Myerson value is characterized by the following properties.

Component Balance

An allocation rule Y is component balanced if for any component additive v, g 2 G,
and g0 2 C(g) X

i2N(g0)

Yi(g; v) = v(g0):

Note that component balance only makes requirements on Y for v's that are com-
ponent additive, and Y can be arbitrary otherwise. If v is not component additive,
then requiring component balance of an allocation rule Y (�; v) would necessarily violate
balance.

Component balance requires that if a value function is component additive, then the
value generated by any component to be allocated to the players among that component.

Equal Bargaining Power

An allocation rule satis�es equal bargaining power5 if for any component additive v
and g 2 G

Yi(g; v)� Yi(g � ij; v) = Yj(g; v)� Yj(g � ij; v):

Note that equal bargaining power does not require that players split the marginal value of
a link. It just requires that they equally bene�t or su�er from its addition. It is possible
(and generally the case) that Yi(g)� Yi(g � ij) + Yj(g)� Yj(g � ij) 6= v(g)� v(g � ij).

A Characterization of the Myerson Value

The following characterization of the Myerson value is from Jackson and Wolinsky
(1996) and is an easy extension of a theorem of Myerson (1977).6

5This was called \fairness" by Myerson (1977).
6Dutta and Mutuswami (1997) extend the characterization to allow for weighted bargaining power,

and show that one obtains a version of a weighted Myerson Value.
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Theorem 1 Y satis�es component balance and equal bargaining power if and only if
Y (g; v) = Y MV (g; v) for all g 2 G and any component additive v.

Note that the above characterization only holds on component additive value func-
tions.7

Examples and Criticisms

Let us now examine a series of examples that I argue show shortcomings of the
Myerson Value in network games, and also provide insight into how those shortcomings
might be traced to the conditions of equal bargaining power and component balance.

Example 2 Insensitivity of the Myerson Value to Alternative Networks

Let v(f12g) = v(f23g) = 1, v(f12; 23g) = 1, and v(g) = 0 for all other networks.

Let v0(g) = 1 for all g 6= ;. That is, under v0 the value of any non-empty network is
1.

So, under v player 2 is need to generate any value, while under v0 all non-empty
networks generate the same value and so player 2's criticality is quite di�erent under the
two value functions.

Note, however, that the Myerson Value is insensitive to this information, as for in-
stance

Y MV (f12; 23g; v) = Y MV (f12; 23g; v0) =
�
1

6
;
2

3
;
1

6

�
:

7Myerson (1977) built component balance into his de�nition of an allocation rule, as the value that
accrues to the grand coalition in a communication game is by de�nition determined in a component
additive way. However, once one turns to network games one admits the possibility of externalities
across components and has to be explicit about the component additivity of the value function in order
to extend Myerson's result.
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Figure 1

Here, regardless of the distinction between v and v0, player 2 gets a larger allocation
in the network f12; 23g than the other players. This re
ects player 2's status in two links
in the network, and comes about through the Shapley value style calculations underlying
the Myerson value, where we can think of building up the network f12; 23g by adding
players one at a time.
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While player 2's role is special in the network f12; 23g in the sense that she is involved
in two links while the other players are only involved in one, player 2's status is not special
under the value function v0 in the sense that any player could serve the same role. If the
allocation of value is decided upon based at a stage where the network is not completely
permanent,8 the fact that any player can equally well serve the central role, should have
an impact on player 2's allocation. In fact, it seems natural that under v0 all players
should receive equal payments.

The insensitivity of the Myerson value to di�erences in value functions such as the
di�erence between v and v0 is the motivation for this paper, and I propose alternative
allocation rules that will account for such variations in value functions.

Before proceeding, let us examine some examples that provide a look at problems
with the axioms underlying the Myerson value. This will help us in understanding the
issues more deeply and in developing alternative allocation rules.

Example 3 A Criticism of Equal Bargaining Power

Let v(f12g) = v(f23g) = 1 and v(g) = 0 for all other networks.

Other networks have v = 0
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Y1 = Y2?? Y2 = Y3??

v=1 v=0 v=1

Figure 2

Any allocation rule, including the Myerson value, that satis�es equal bargaining
power (and allocates 0 to the players on the empty network) will satisfy Y1(f12g; v) =
Y2(f12g; v).

Here, there is a real asymmetry among the players and player 2 is more a critical
player than the others. It is not at all clear why we should require that the allocation to
players 1 and 2 be the same in the network f12g, as player 2 has a viable outside option
while player 1 does not.

8Even if the network is �xed, the full symmetry of players under v0 suggests that we should treat
them equally in allocating value.
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If we do want to impose some sort of fairness or equality in bargaining power, it
should only apply when the roles of the players in question are really comparable. There
is a clear sense in which player 2's bargaining power should be greater than that of the
other players, and so the title of \equal bargaining power" is in a sense a misnomer.

As a further note, consider v0 such that v0(f12g) = v0(f23g) = v0(f13g) = 1 and
v(g) = 0 for all other networks.

Note that here again, equal bargaining power imposes the two agents having a link in
a one-link network each get an allocation of 1

2
. In fact, component balance and any sort of

anonymity condition imply the same conclusion. However, under v0 the full symmetry of
agents suggests that the more natural allocation is 1

3
to each player { including the player

who is disconnected. This points to some of the diÆculties with component balance. This
is more fully illustrated in the following example.

Example 4 A Look at Component Balance

Let v(g) = 5
4
if g is a one-link network, v(g) = 2 if if g is a two-link network, and

v(g) = 0 otherwise.

In this case, the Myerson Value allocates 5
8
to each player involved in the link in a

one link network; and 1
2
to players having one link in a two link network and 1 to the

player having two links in a two link network.
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Figure 3

Why might one criticize component balance here? It is based on noting that com-
ponent balance sits in a sort of \no-man's-land" here: it is not quite strong enough to
capture its normative arguments, but at the same time it is strong enough to rule out
other natural conditions.

To be more explicit, a natural and reasonable argument (and the best I can think of)
behind component balance is that it makes sure that components of a network receive
their due value which prevents their members from wanting to walk away and reallocate
their value among themselves. That is, in the absence of component balance, some
component is necessarily receiving less than the value it is generating. If that component
can choose to walk away and operate on their own, then they would bene�t by doing so,
which will upset the allocation rule.9

However, if one uses this type of argument to justify component balance, then it is
logical to worry about all coalitional deviations, not just those of components. This means
that the natural logical conclusion of the argument motivating component balance should
actually be a core property. Note however, that component balance does not guarantee
that an allocation lies in the core (for a formal de�nition see Section 5). For example,
under the Myerson value above, if the network is f12; 23g, then players 1 and 3 receive
1
2
each, and would bene�t by deviating and forming their own one link network where

they could receive 5
8
each.

On the other hand, while component balance stops short of dealing with all relevant
coalitional possibilities, it is already strong enough to be in con
ict with some fairness
and anonymity properties. In the above example, the v is completely anonymous and
all players are completely interchangeable. If we then think of the value being bargained
upon at a stage where the network is still 
exible, it is not clear why value is not split
equally among the players regardless of which of which network is formed. This strong
form of anonymity is precluded by component balance.

The criticisms of the two properties lie on di�erent levels. The criticism of equal
bargaining power is that it is a fundamentally 
awed property. The criticism of com-
ponent balance is that it is not strong enough to re
ect its real normative grounding,
and yet strong enough to con
ict with other properties. Thus, one might prefer to either
strengthen component balance if one really is concerned with what value is generated
by various coalitions and components, or abandon the property if one is more concerned
with other normative properties.

I suggest alternative approaches below. Both involve weakening the 
awed equal bar-
gaining power to only apply in situations where players are equal in some broader sense.

9Remember that component balance is always operating in the context of component additive value
functions, and so such walking away can occur without worry about what the remaining agents do.
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The di�erence in the two approaches depends on whether (i) one replaces component bal-
ance with some anonymity or equity properties, or (ii) strengthens component balance
to be a core property. Depending on the variation, one will end up with very di�erent
allocation rules.

4 Flexible Networks and Equal Treatment

In this section I provide two new allocation rules which are based on eliminating equal
bargaining power, and working with equity properties in place of component balance. The
two variations depend on whether one assesses value on a player by player basis, or on a
link by link basis.

It is not clear to me that either variation is clearly more pertinent than the other.
In one sense the link-based rule is richer in that it considers variations on a link-by-link
basis, and presumably players could choose to withhold certain links and not others. On
the other hand, it is really the players who control the links and not the links themselves
who accumulate value (as becomes clearer when dealing with a core de�nition). I �rst
present the player-based rule and then the link-based version.

Before providing the allocation rules, let us consider some conditions important in
characterizing them.

The �rst condition is one that captures the basic idea that the allocation of value is
taking place with the perspective that the network is something that can be varied.

Flexible-Network Rules

An allocation rule Y is a 
exible network rule if Y (g; v) = Y (gN ; bv) for all v and
eÆcient g (relative to v).

The idea that the allocation only depends on the monotonic cover of the value function
is one property that is implied from the perspective that the allocation is being decided
upon when the network is formed or can still be changed: at a time where there is still
some 
exibility in the network. With the idea that ineÆcient networks should not be
formed, the allocation of value should only depend on the value of eÆcient networks
given some set of available links, and so the monotonic cover is all that enters into the
calculations.

Note that this equivalence is only required on eÆcient networks, as the value on other
networks might not even be the same (i.e., v(g) 6= bv(g)) and so the condition would be
impossible to impose on ineÆcient networks.
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The next condition is a well-known foundation for Shapley-style calculations.

Additivity

An allocation rule Y is additive if for any v and v0, and scalars a � 0 and b � 0

Y (gN ; av + bv0) = aY (gN ; v) + bY (gN ; v0):

In a way, one can think of additivity as a consistency or decomposition condition.
The way in which value is allocated may be broken down so that one may separately
allocate the value on di�erent parts of the value function and then sum up. This requires
that same logic is imposed on each part of the value function.

In the context of network games is a bit too strong. It may be in con
ict with making
decisions from a 
exible network perspective. In particular, the monotonic cover of v+v0

is not necessarily the same as the sum of the monotonic covers.

This suggests a more limited version of additivity.

Weak Additivity

An allocation rule Y is weakly additive if for any monotonic v and v0, and scalars
a � 0 and b � 0

Y (gN ; av + bv0) = aY (gN ; v) + bY (gN ; v0):

and if av � bv0 is monotonic, then

Y (gN ; av � bv0) = aY (gN ; v)� bY (gN ; v0):

The weaker version of additivity is one that is adapted to hold together with the 
ex-
ible network perspective as it only applies in monotonic cases. While the value functions
that we are interested in will rarely be monotonic, this condition will still be useful as
we can apply the condition to monotonic covers.

The reasoning behind (weak) additivity is that if we are making calculations regarding
allocations based on what players or links contribute to various network possibilities, and
we increase or decrease those contributions, we should treat those increases or decreases
in the same way that we treat the original contributions.

The key equity condition that I impose is the following.

Equal Treatment of Vital Players
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An allocation rule Y satis�es equal treatment of vital players if vg is a basic value
function for some g, then

Yi(g; vg) =
�

1
n(g)

if i 2 N(g), and
0 otherwise.

Recall that basic value functions are ones where the players involved in g are all vital
to the functioning of any network, in the sense that no value is generated without all the
players in g being present and that no other players contribute in any way.

In such a setting, the players in g are all in some sense \equals" and all others
contribute nothing. In this case, the equal treatment property allocates value equally to
each player in N(g).

This is a very weak equity condition and one that is satis�ed by most allocation rules,
with the exception of the egalitarian rules de�ned in Section 7.

The Player-Based Flexible Network Allocation Rule

First, let us de�ne a rule for allocating value on eÆcient networks, and then we will
come back to ineÆcient ones.

Consider any v (not necessarily component additive) and a g 2 G that is eÆcient
relative to v. Let

Y PBFN
i (g; v) =

X
S�Nnfig

(bv(gS[i)� bv(gS)) #S!(n�#S � 1)!

n!

!
(2)

On a super�cial level this rule bears some similarities to the Myerson Value because
we see Shapley Value-like calculations. However, it is a quite di�erent allocation rule. In
fact, it violates both equal bargaining power and component balance, and is characterized
by conditions that are violated by the Myerson Value. Most importantly it is a 
exible
network rule and thus accounts for the value of alternative possible networks. This is
seen in its 
exible network perspective, as it is relative to the monotonic cover bv.
Theorem 5 An allocation rule satis�es equal treatment of vital players, weak additivity,
and is a 
exible network rule if and only if it is de�ned by (2) for all v and g that are
eÆcient relative to v.

Proportionality

In order to have a full de�nition of an allocation rule, one needs also to de�ne it
for ineÆcient networks as well as eÆcient ones. When one takes a 
exible network
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perspective, the question of how value is allocated on ineÆcient networks becomes a bit
tricky, as it is not clear why ineÆcient networks should ever form. Nonetheless, we know
that there exist some con
icts between stability and eÆciency (e.g., see Jackson and
Wolinsky (1996)). Thus, it is important to have something to say about the allocation
of value on ineÆcient networks, both because such networks might end up forming, and
also because their allocations might end up being important \o�-the-equilibrium-path"
considerations.

Here, I take the perspective that the relative allocations are the same on eÆcient and
ineÆcient networks, so that the allocation is rescaled.

An allocation rule Y is proportional if for each i and v either Yi(g; v) = 0 for all g, or
for any g and g0 such that v(g0) 6== 0

Yi(g; v)

Yi(g0; v)
=
v(g)

v(g0)
:

The proportionality condition takes an obvious (but certainly not the only natural)
path to allocation of value on ineÆcient networks. Given the ex ante perspective, players
allocations can be determined on eÆcient networks and then rescaled for ineÆcient ones.
One might think of this as a way of saying that the eÆcient allocations have taken into
account all of the relevant bargaining and decision making that would go on in terms of
determining players' relative contributions or power due to a given value function.

This leads to the following extension of (2).

Y PBFN
i (g; v) =

v(g)bv(gN) X
S�Nnfig

(bv(gS[i)� bv(gS)) #S!(n�#S � 1)!

n!

!
(3)

Theorem 6 An allocation rule satis�es equal treatment of vital players, weak additivity,
and is a 
exible network and proportional rule if and only if it is Y PBFN (as de�ned in
(3)).

Now let us turn to link-based allocation rules.

Link-Based Allocation Rules

An allocation rule Y is link-based if there exists  : V � G ! IRn(n�1)=2 such thatP
ij2gN  ij(g; v) = v(g), and

Yi(g; v) =
X
j 6=i

 ij(g; v)

2
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When thinking about how we measure players' contributions or how they bargain over
their worth, this may be done directly in terms of adding or removing the players, or it
may be done in terms of the links that they control. That is, we may think of assigning
allocations to links and then this indirectly determines how value accrues to players.

The perspective of assigning values to links rather than players was �rst taken by
Meeson (1988) (see also Borm, Owen, and Tijs (1992)) in the context of communication
games and resulted in a variation on the Myerson Value called the Position Value (see
Slikker (2000) for a discussion). More generally, we may think of the alternatives of doing
player based or link based calculations when deriving any allocation rule in the context
of network games as well.

Equal Treatment of Vital Links

An allocation rule Y satis�es equal treatment of vital links if vg is a basic value function
for some g 6= ;, then

Yi(g; vg) =
`i(g)

2`(g)
:

This property is a variation on equal treatment of vital players, where it is links who
are viewed as being vital rather than players, and will correspond to a link-based version
of an allocation rule.

This also might be thought of as re
ecting the idea that it is not really the players that
are vital, but certain collections of links (i.e., those in g). As such from one perspective
it is the links which are all equal.

The Link-Based Flexible Network Allocation Rule

Y LBFN
i (g; v) =

v(g)bv(gN)Xj 6=i
24 X
g�gN�ij

1

2
(bv(g + ij)� bv(g)) #g!([n(n� 1)=2]�#g � 1)!

[n(n� 1)=2]!

!35 :

To see how this rule works, proceed as follows. First, one may think of value being
allocated to links, and so the allocation to a given player i is simply that value summed
across links. Note that value is allocated to a given link whether or not it is present in a
given network - which re
ects the 
exible network perspective. The allocation on a given
network is then rescaled in proportion to the value that would be allocated on an eÆcient
network. The 1

2
re
ects the fact that the value of a given link is controlled by two players.

The remaining part of the calculation is then based on a Shapley Value allocation of value
to links as to what they contribute to the overall value possible under v. This calculation
is from a 
exible network perspective, so it is relative to the monotonic cover bv.
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Theorem 7 An allocation rule satis�es equal treatment of vital links, weak additivity,
and is an 
exible network rule if and only if it agrees with Y LBFN on eÆcient networks.
It satis�es equal treatment of vital links, weak additivity, and is an 
exible network and
proporitional rule if and only if it is Y LBFN .

Again, note that the above characterization holds for all value functions, not just
component additive ones.

Let us now compare the allocation of value by these 
exible network bargaining rules
to that of the Myerson Value.

Example 8 Example 2 Revisited

This is a slight generalization of Example 2.

Consider value functions v and v0 are de�ned as follows.

v(f12g) = v(f23g) = 1, v(f12; 23g) = w � 1, and v(g) = 0 for all other networks.

v0(g) = w for all g with at least two links and v0(g) = 1 on g with one link.

The Myerson Value allocates as follows.

Y MV (f12; 23g; v) = Y MV (f12; 23g; v0) =
�
w

3
�

1

6
;
w

3
+

1

3
;
w

3
�

1

6

�
:

Here the link- and player-based 
exible network allocation rules provide di�erent
allocations depending on values of networks that are not subnetworks of f12; 23g.

Y LBFN(f12; 23g; v) =
�
w

4
;
w

2
;
w

4

�
:

Y PBFN(f12; 23g; v) =
�
w

3
�

1

6
;
w

3
+

1

3
;
w

3
�

1

6

�
:

Y LBFN(f12; 23g; v0) =
�
w

3
;
w

3
;
w

3

�
:

Y PBFN(f12; 23g; v0) =
�
w

3
;
w

3
;
w

3

�
:
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Figure 4

There are several things to note. Both allocation rules split values equally under v0

which is consistent with the 
exible network perspective and the equity conditions that
they both satisfy.

The player-based allocation rule coincides with the Myerson Value on v since under v
only subnetworks of f12; 23g generate any value. This di�ers from the link-based version.
The link-based 
exible network rule is easy to see here as only the links f12g and f23g
generate value, but not the link f13g, and so the links split the value equally on f12; 23g.
Player 2 being involved in twice as many links as the others ends up with twice the value.

5 The Core of a Network Game and the Networkolus

While the 
exible network allocation rules proposed in the previous section have nice
properties in terms of their 
exible network perspective, there is a shortcoming that they
inherit from their Shapley Value origins. Namely, they are not always in the core of a
network game. In situations where players are deciding on the allocation of the value
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of a network at the same time that they are forming the network there is a natural
core de�nition that captures some constraints on the allocation of value that would be
required to avoid certain forms of instability.

Requiring that an allocation rule be core consistent can be thought of as a strength-
ening of the component balance condition.

The Core of a Network Game

A network-allocation pair g � gN and y 2 IRn is in the core of the network game
(N; v) if

P
i yi � v(g) and

P
i2S yi � bv(gS) for all S � N .

The core of a network game provides a natural look at how the allocation of value of
a network can be taken together with the formation of a network, especially regarding
accounting for coalitional incentives.

Most of the literature on network games takes the allocation rule as given and then
examines some non-cooperative formation procedure.10 There are some papers that have
analyzed the allocation of value at the same time as the formation of a network.11 Those
papers examine speci�c demand-based noncooperative network formation games. The
core provides a protocol-free way analyzing the simultaneous allocation of value and
formation of a network.

Core Consistency

An allocation rule Y is core consistent, if for any v such that the core is nonempty,
there exists at least one g such that (g; Y (g; v)) is in the core.

Example 9 The Core

Consider the value function v from Example 8 except allowing w to be any number,
de�ned by v(f12g) = v(f23g) = 1, v(f12; 23g) = w, and v(g) = 0 for all other networks.

Note that the core is always non-empty, regardless of the value of w. If w � 1, then
the networks f12g and f23g together with an allocation of (0; 1; 0) are in the core. If
w > 1, then the network f12; 23g together with any allocations such that y1 + y2 � 1
and y2 + y3 � 1 are in the core. For instance, the allocation (w�1

2
; 1; w�1

2
) is in the core

together with the network f12; 23g.

10For instance, see Jackson (2003) for a discussion of network formation games, as well as Goyal (2003)
for discussion of dynamics and Page (2003) for discussion of farsightness.

11For instance, see Slikker and van den Nouweland (2000), Currarini and Morelli (2000), and Mu-
tuswami and Winter (2000).
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Note, however, that when w = 7
6
, then the allocations of the Myerson, Player-Based

Flexible Network, and Link-Based Flexible Network allocation rules are not in the core
and thus fail core consistency.
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Figure 5

The failure of Shapley Value style calculations to turn up core allocations is well-
known from the cooperative game theory literature and it appears here too.

The 
exible network approach that I have proposed here can also be combined with
other ways of dividing up value among a group of players (or links). Thus, there is a
natural variation of the Nucleolus that can be de�ned for network games.

The Nucleolus de�ned by Schmeidler (1969) has the very desirable property that it
always lies in the core of a cooperative game whenever that object is non- empty, among
some other nice properties. There is a natural analog of the nucleolus that can be de�ned
from a 
exible network perspective in network games. I will refer to that allocation rule
as the networkolus. There are two versions, depending on whether the de�nition is link-
based or player-based.

I will begin with the player-based version as that always lies in the core of a network
game when it is non-empty.
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The Player-Based Networkolus

Let B(g; v) = fy 2 IRnj
P

i yi = v(g)g be the balanced allocations for g under v.

Let eS(y) =
P

i2S yi � bv(gS) be the excess allocated to coalition S relative to their
monotonic value under v, and let e(y) denote the vector with entries for each nonempty
S � N .

Let Y PN(gN ; bv) = y be the unique allocation such that e(y) leximin dominates e(y0)

for all y0 2 B(gN ; bv). Then de�ne Y PN(g; v) = v(g)bv(g)Y PN(gN ; bv).
We can also consider a link-based version of the networkolus.

The Link-Based Networkolus

Let B`(g; v) = fx 2 IRn(n�1)=2j
P

i xi = v(g)g be the balanced allocations to links for
g under v.

Let e`g(x) =
P

ij2g xij � bv(g) be the excess allocated to set of links g relative to their
monotonic value under v, and let e`(x) denote the vector with entries for each nonempty
g � g � N .

Let Y LN
i (gN ; bv) = P

j 6=i yij be the unique allocation such that e`(y) leximin dominates

e`(x) for all x 2 B`(gN ; bv). Then de�ne Y LN(g; v) = v(g)bv(g)Y LN(gN ; bv).
Example 10 The Networkolus and the Core

Consider the value function v from Example 9 de�ned by v(f12g) = v(f23g) = 1,
v(f12; 23g) = w, and v(g) = 0 for all other networks.

Recall that the Myerson Value, Link-Based Flexible Network Bargaining Allocation
Rule and the Player-Based Flexible Network Bargaining Allocation Rule failed to be core
consistent in this example.

Let us examine the networkolus in this example, and consider the case where 3 �
w � 1.12

Y PN(f12; 23g; v) = (w�1
2
; 1; w�1

2
) which indeed is in the core.

Note however, that the link-based version of the networkolus is not in the core. In
this particular example it actually coincides with Y LBFN . That is,

12The same conclusions hold in other cases, but involve di�erent calculations.
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Y LN(f12; 23g; v) = (w
4
; w
2
; w
4
) which is not in the core.

See Figure 5.

The diÆculty with the link-based networkolus is that it is making allocations based
on links rather than players, while it is the players who are critical in core calculations.
This actually suggests a re�nement of the core, which is a link-based core.

The Link-Core of a Network Game

A network-allocation pair g � gN and y 2 IRn(n�1)=2 is in the link-core of the network
game (N; v) if

P
ij yij � v(g) and

P
ij2g0 yij � bv(g0) for all g0 � gN .

The link-core of a network game provides a re�nement of the core where it is links
that are being allocated value. When the link-core is nonempty, it is straightforward to
see that the core is nonempty.13 However, there are many situations (such as under the
v in Example 10) where the link-core is empty.

An allocation rule Y is link-core consistent, if for any v such that the link-core is
nonempty, there exists at least one g and y 2 IRn(n�1)=2 such that (g; y) is in the link-core
and

P
j 6=i yij = Yi(g; v) for each i.

Interestingly, the link-based networkolus is link-core consistent but not core consis-
tent, while the player-based networkolus is core consistent but not link-core consistent.

Although I have not provided a characterization of the networkolus, there should be
a straightforward variation on Peleg's (1986) reduced game property to derive a charac-
terization of the networkolus that is an analog of that for the nucleolus.

6 A General Approach to Importing Allocation Rules

As should be clear by now, there is a general approach to de�ning allocation rules for
network games that take a 
exible-network perspective. For instance, one might want to
de�ne per-capita versions of the networkolus.

In general, let � be your favorite allocation rule (a.k.a. imputation rule, solution, or
value operator) from cooperative game theory. Noting that bv(gS) de�nes a characteristic
function as we vary S, we can apply � directly and denote the resulting allocations by
�(bv).

To de�ne a player-based rule, set Y �(g; v) = v(g)bv(g)�(bv).
13Let g; by be in the link-core. Let y 2 IRn be de�ned by yi =

P
j 6=i byij . Then (g; y) lies in the core.
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To de�ne a link-based rule, we can apply � to groups of links rather than players (so
on bv(g), viewing g as a coalition of links) and denote the resulting allocations to links by

�`. Next, set Y �`

i (g; v) = v(g)bv(g) 12 Pj �
`
ij(bv).

7 Properties and Comparisons

Let us consider some other properties that are of interest, and then make some compar-
isons across allocation rules.

Anonymity

Given a permutation of players � (a bijection from N to N) and any g 2 G, let
g� = f�(i)�(j)jij 2 gg. Thus, g� is a network that shares the same architecture as g but
with the speci�c players permuted.

Given a permutation �, let v� be de�ned by v�(g) = v(g�
�1
) for each g 2 G.

An allocation rule Y is anonymous if for any v, g 2 G, and permutation �, Y�(i)(g
�; v�) =

Yi(g; v).

Anonymity of an allocation rule requires that if all that has changed is the labels of
the players and the value generated by networks has changed in an exactly corresponding
fashion, then the allocation only change according to the relabeling. Of course, anonymity
is a type of fairness condition that has a rich axiomatic history, and also naturally arises
in situations where Y represents the utility or productive value coming directly from
some social network.

Note that anonymity allows for asymmetries in the ways that allocation rules operate
even in completely symmetric networks. For instance, anonymity does not require that
each player in a complete network get the same allocation. That would be true only in
the case where v was in fact anonymous. Generally, an allocation rule can respond to
di�erent roles or powers of players and still be anonymous.

Most allocation rules that one can think of satisfy this version of anonymity.

Equal Treatment of Equals

Given any two players i and j de�ne a permutation �ij such that �ij(i) = j and
�ij(j) = i and �(k) = k for all k =2 fi; jg. Say that i and j are equals under v if
v(g�

ij
) = v(g) for all g.

An allocation rule Y satis�es equal treatment of equals if for any v 2 V , players i and
j who are equals under v, and g 2 G such that g�

ij
= g, Yj(g; v) = Yi(g; v).
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Equal treatment of equals says that all allocation rule should give the same payo�
to players who play exactly the same role in terms of symmetric position in a network
under a value function that depends on them in exactly the same way.14

Equal treatment of equals is implied by anonymity and might be thought of as more of
a symmetry condition than anonymity, and is also a condition that has a rich background
in the axiomatic literature that will be satis�ed by most allocation rules.

Strong Anonymity

A value function v is anonymous if v(g�) = v(g) for any g 2 G and permutation �.

Anonymous value functions are those for which the architecture of a network matters,
but not the labels of players.

An allocation rule Y is strongly anonymous if Yj(g; v) = Yi(g; v) for any anonymous
v, g 2 G, and players i and j.

Strong anonymity states that if v is anonymous, then the allocation be independent
of players' positions in the network.

If the allocation is agreed upon at the same time (or before) the network is being
formed, then the strong version of anonymity makes sense. From an ex ante point of
view, when a given network g is formed and the value function is anonymous, then any
permutation of g would have resulted in the same value and so in a sense the particu-
lar positions of the players become irrelevant. While players' ex post positions in the
network may be asymmetric, their 
exible network potential roles and contributions are
completely identical.

Note that strong anonymity is in con
ict with component balance. Note also that it
implies that the allocation is completely egalitarian whenever v is anonymous.

Before comparing a few allocation rules in terms of some of the conditions discussed
here, a let us recall two other allocation rules. These were both de�ned by Jackson and
Wolinsky (1996).

The Egalitarian Allocation Rule The egalitarian allocation rule Y e is de�ned by

Y E
i (g; v) =

v(g)

n
14There are various versions of this property. One might slightly strengthen the condition to require

that Yj(g
�ij

; v) = Yi(g; v) for any g. This condition would also be satis�ed by almost any natural
allocation rule.
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for all i and g.

The egalitarian allocation rule splits the value of a network equally among all members
of a society regardless of what their role in the network is. It is clear that the egalitarian
allocation rule will have very nice properties in terms of aligning player incentives with
eÆciency.

The Component-Wise Egalitarian Allocation Rule

The egalitarian rule violates component balance. The following modi�cation of the
egalitarian rule respects component balance.

The component-wise egalitarian allocation rule Y ce is de�ned as follows for component
additive v's and any g.

Y CE
i (g; v) =

�
v(h)
jN(h)j

if there exists h 2 C(g) such that i 2 h,
0 otherwise.

For any v that is not component additive, set Y ce(�; v) = Y e(�; v).

The component-wise egalitarian splits the value of a component network equally
among all members of that component, but makes no transfers across components.

The component-wise egalitarian rule has some nice properties in terms of aligning
player incentives with eÆciency, although not quite to the extent that the egalitarian
rule does.15

15See Jackson and Wolinsky (1996) Section 4 for some detailed analysis of the properties of the
egalitarian and component-wise egalitarian rules.
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Y MV Y LBFN Y LBFN Y LN Y PN Y E Y CE

anonymity + + + + + + +
strong
anonymity - + + + + + -
equal treatment
of vital links - + - + - - -
equal treatment
of vital players + - + - + - -

additivity + - - - - + +
weak
additivity + + + - - + +


exible - + + + + + -
network
proportional - + + + + + -
equal bargaining
power + - - - - + -
component
balance + - - - - - +
core
consistency - - - - + - -
link-core
consistency - - - + + - -

8 Endogenously Arising Allocation Rules

Just as in cooperative game theory, providing an axiomatic foundation for an allocation
rule leaves one agnostic on where allocation rules come from. From a normative per-
spective, these might be rules that we wish to impose, or that agents would naturally be
led to by their own volition. It might also be that these naturally arise from some non-
cooperative bargaining procedure. For instance, one sees solutions such as the Shapley
Value or the Nash Bargaining Solution popping up as the outcome or limit of outcomes
of a variety of simple bargaining games.

Here one can also �nd such allocations arising as the outcomes of various non-
cooperative network formation and bargaining models. Mutuswami and Winter (2000)
provide a non-cooperative game for network formation and the allocation of value, and
it results in a Shapley Value-based allocation that di�ers from the Myerson Value.16 In

16See also, for instance, Navarro and Perea (2002) as well as Perez-Castrillo and Wettstein (2001),
which provide for an implementation of the Myerson and Shapley Values, respectively, in di�erent
settings.
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fact, one can see that the allocation that Mutuswami and Winter obtain is the Player-
Based Flexible Network Allocation on the class of games that they consider. It would
be interesting to further understand the connections between allocation rules and the
possible network bargaining games that lead to them.
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Appendix

I prove Theorem 7, as the proofs of Theorems 5 and 6 are straightforward analogs of
this proof.

Proof of Theorem 7: It is easily checked that Y LBFN satis�es equal treatment of vital
links and is an 
exible network (and proportional) rule. Let us show that it satis�es weak
additivity.

Consider any monotonic v and v0, and scalars a � 0 and b � 0. Then av + bv0 is
monotonic and the same as its monotonic cover. So,

Y LBFN
i (gN ; av + bv0)

=
X
j 6=i

24 X
g�gN�ij

1

2
(av(g + ij) + bv0(g + ij)� av(g)� bv0(g))

 
#g!([n(n� 1)=2]�#g � 1)!

[n(n� 1)=2]!

!35 :
Given the monotonicity of v and v0, the right hand side can be rewritten as aY LBFN

i (gN ; v)+
bY LBFN

i (gN ; v0) which is the desired conclusion. Next, suppose that av�bv0 is monotonic.
Then we can write

Y LBFN
i (gN ; av � bv0)

=
X
j 6=i

24 X
g�gN�ij

1

2
(av(g + ij)� bv0(g + ij)� av(g) + bv0(g))

 
#g!([n(n� 1)=2]�#g � 1)!

[n(n� 1)=2]!

!35 :
Given the monotonicity of v and v0, the right hand side can be rewritten as aY LBFN

i (gN ; v)�
bY LBFN

i (gN ; v0) which is again the desired conclusion.

Next, let us verify that any allocation rule satisfying equal treatment of vital links,
weak additivity, and 
exible network must coincide with Y LBFN on eÆcient networks.
Proportionality then easily completes the second part of the theorem.

Consider an allocation rule satisfying the given properties. It is enough to show that
it is uniquely determined on eÆcient networks.

The fact that Y is a 
exible network allocation rule implies that Y (g; v) = Y (gN ; bv)
for an eÆcient network g, and so we need only show that Y (gN ; bv) is uniquely determined
on an eÆcient network.

By the monotonicity of bv, we can write

bv = X
g02G

cg0vg0 ;

for a set of scalars cg0 's.
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Let G� = fg0 : cg0 < 0g and let G+ = G nG�. So we can write

bv = X
g02G+

cg0vg0 �
X

g02G�

jcg0jvg0 :

Thus, by weak additivity

Y (gN ; bv) = Y (gN ;
X

g02G+

cg0vg0)� Y (gN ;
X

g02G�

jcg0jvg0):

Applying weak additivity again allows us to write

Y (gN ; bv) =X
g0
cg0Y (g

N ; vg0):

Since Y is a 
exible network rule and both gN and g0 are eÆcient for the monotonic vg0 ,
Y (gN ; vg0) = Y (g0; vg0). By equal treatment of vital links, this (and thus the right hand
side of the equation above) is uniquely determined.
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