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Allometric scaling of skin thickness, 
elasticity, viscoelasticity to mass for 
micro-medical device translation: 
from mice, rats, rabbits, pigs to 
humans
Jonathan C. J. Wei1, Grant A. Edwards2, Darren J. Martin2, Han Huang3, Michael L. Crichton1,4 

& Mark A. F. Kendall1,5,6

Emerging micro-scale medical devices are showing promise, whether in delivering drugs or extracting 

diagnostic biomarkers from skin. In progressing these devices through animal models towards 

clinical products, understanding the mechanical properties and skin tissue structure with which 

they interact will be important. Here, through measurement and analytical modelling, we advanced 

knowledge of these properties for commonly used laboratory animals and humans (~30 g to ~150 kg). 
We hypothesised that skin’s stiffness is a function of the thickness of its layers through allometric 
scaling, which could be estimated from knowing a species’ body mass. Results suggest that skin layer 

thicknesses are proportional to body mass with similar composition ratios, inter- and intra-species. 

Experimental trends showed elastic moduli increased with body mass, except for human skin. To 

interpret the relationship between species, we developed a simple analytical model for the bulk elastic 

moduli of skin, which correlated well with experimental data. Our model suggest that layer thicknesses 

may be a key driver of structural stiffness, as the skin layer constituents are physically and therefore 
mechanically similar between species. Our findings help advance the knowledge of mammalian skin 
mechanical properties, providing a route towards streamlined micro-device research and development 

onto clinical use.

With its highly accessible and abundant biological environment, the skin is an attractive site for a range of ther-
apeutic applications for medical devices designed to improve healthcare. �ese include devices delivering drugs 
and vaccines into the skin1,2 and, alternatively, extracting skin biomarkers and electrical signals for diagnosis 
of disease3. In recent decades, the �eld has progressed beyond the needle and syringe towards more precise, 
minimally-invasive, micro-devices that exploit the mechanical properties of skin.

However, many existing and emerging micro-devices4,5 target the skin at scales and strain-rates distinct to the 
needle and syringe, exposing gaps in the knowledge of key mechanical properties. �ese knowledge gaps are fur-
ther exacerbated as the path of medical device development progresses through typical animal models (e.g. mice, 
rats, rabbits and pigs) through to human clinical testing. To put simply, how do the key structural and mechanical 
properties of skin relate between di�erent species? Identifying these properties would not only �ll fundamental 
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knowledge gaps, but could also streamline medical device research and development with reduced usage of ani-
mals and potentially smaller clinical trials.

Looking more closely at the challenge: it is well-established that skin is a complex, viscoelastic, biological com-
posite structure, consisting of the epidermis (E), dermis (D) and hypodermis (H) or the subcutaneous tissue. �e 
epidermis is further divided into stratum corneum (SC), a tough, physical and elastic barrier, comprised of kera-
tinised dead skin cells, which makes accessing the layers beneath di�cult6. �is is made even more challenging by 
the strain-rate dependent, viscoelastic viable epidermis (VE) – the uppermost living layer of the skin and dermis, 
where collagen, blood capillaries, antigen presenting cells (APCs) and biomarkers are located, o�en important for 
drug delivery and diagnostics7. It is clear that the composition of skin is fundamental to its mechanical properties. 
However, because of strain-rate dependency, it is di�cult to compare data directly with di�erent experimentation 
protocols. Moreover, these skin layers di�er in thickness between species, as shown in Table 1 (and a further table 
by Hirschberg et al.), where various measuring techniques and skin sites were used8.

One particular example of emerging micro-devices susceptible to skin di�erences is the microneedle class of 
devices for drug/vaccine delivery and wearable diagnostics. �e therapeutic attributes of many types of micronee-
dles have been established in di�erent animal models – including mice (e.g.9,10), rats (e.g.11,12), rabbits (e.g.13,14), 
and pigs (e.g.15,16). However, how these therapeutic attributes are translated to widespread human testing (e.g.17,18) 
is reliant upon understanding how the key skin mechanical properties change between the species. Indeed, so far, 
microneedle utility in humans is limited, with extrapolated designs empirically derived for humans with varying 
degrees of success19. For example, Li et al. reported di�culty in penetrating through human skin, compared with 
rat skin, using the same application conditions12. A reason for this may be the lack of data to aid design translation 
to humans. Another reason may be that skin thicknesses vary greatly between the size of species, e.g. the SC is 
~5 µm in mice to ~10–20 µm in humans, and also between sites within the same species20. �is is despite almost 
all species possessing the same distinct epidermal, dermal and hypodermal layers21.

A challenge in tissue mechanical property characterisation (such as elastic moduli) is that they o�en depend 
on test methods – orientation of loading conditions22, state of the sample (e.g. in vivo, ex vivo)23, testing rate24 and 
contact area25. As a result, for human skin, the reported elastic modulus can vary from 0.4–0.8 MPa for torsion 
tests, 4.6–20 MPa for tensile tests and 0.05–0.15 MPa for suction tests, according to Pailler-Mattei et al.26 Because 
of these factors, results from various skin studies are di�cult to compare.

Nevertheless, within given species, the knowledge of relevant skin mechanical properties has been advanced 
– for example on elasticity27,28, fracture energy29 and percutaneous absorption30. However, in terms of mechanical 
properties of biological tissues, we are not aware of allometric investigations (the study of physiological charac-
teristics relating to body size) of key mechanical properties of skin, ranging across body masses spanning orders 
of magnitudes (from ~30 g to ~150 kg), using a consistent approach. In this paper, we measured key skin physical 
and mechanical properties at relevant sites – thickness and elastic moduli at the microscale interface – using 
micro-indentation across �ve mammalian species of regular use in medical device research and development. 

Species Site

SC VE D

Sourceµm SD/SE* µm SD/SE* µm SD

Mouse Dorsum 9 — 29 — 662 — 48

Mouse
Buttock, ear, shoulder, back, 
abdomen (para�n)

3.38 ±0.30* 11.50 ±1.24* — — 48

Mouse
Buttock, ear, shoulder, back, 
abdomen (frozen)

6.69 ±0.96* 9.24 ±0.96* — — 48

Mouse Back ~5 — ~21–22 — ~275–280 73

Rat Dorsum 18 — 32 — 2040 — 48

Rat
Buttock, ear, shoulder, back, 
abdomen (para�n)

4.04 ± 0.47* 15.34 ± 1.21* — — 48

Rat
Buttock, ear, shoulder, back, 
abdomen (frozen)

9.91 ±1.14* 10.70 ±1.73* — — 74

Rabbit Lumbar dorsum 11.7 ±3.6 20.6 ±4.0 2174.0 ±486.7 74

Rabbit Lumbar dorsum 9.5 ±1.6 19.4 ±4.8 1719.3 ±258.5 74

Rabbit
Buttock, ear, shoulder, back, 
abdomen (para�n)

6.89 ±0.88* 13.83 ±1.23* — — 48

Rabbit
Buttock, ear, shoulder, back, 
abdomen (frozen)

10.91 ±1.48* 9.39 ±1.25* — — 48

Pig
Buttock, ear, shoulder, back, 
abdomen (para�n)

12.85 ±1.19* 53.17 ±3.19* — — 48

Pig
Buttock, ear, shoulder, back, 
abdomen (frozen)

41.33 ±3.73* 15.37 ±1.51* — — 48

Pig Ear 17–28 60–85 1440–2210 (incl. H) 75

Human Abdomen 17 — 47 — 2906 — 48

Human — 10 — 50–120 — 2.28 — 76

Human Various sites — — 31–637 (incl. SC) 521–1977 (E+D) 41

Table 1. Selection of mean skin thicknesses of selected species reported in literature for non-weight bearing 
sites (mean ± SD/SE*).
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Namely: mice, rats, rabbits, pigs (small and large) and humans (in vivo and ex vivo). Past indentation studies has 
shown the importance of accounting for tip-sample contact size for viscoelastic materials31 however, �at tips have 
been used for the bene�t of analysis simpli�cation28. Stress distribution on cartilage tissue was compared for �at 
and spherical tips with a cell death model32 and that while higher local stresses were experienced around the �at 
tip circumference, �at tips still provided comparable elastic moduli between the two tip pro�les.

Our hypothesis is that skin of common laboratory animals – and humans – is mechanically a function of 
the layer thicknesses of each skin layer, and also related to body mass. To test this hypothesis, we �rst measured 
the SC, VE and dermis layer thicknesses. We then measured elasticity and viscoelasticity of full thickness skin. 
Finally, we aggregated these data to develop a simple model for estimating the elastic modulus of skin by knowing 
a basic parameter – the skin’s layer thicknesses (relating to body mass). �is relationship could be applied to more 
streamlined testing of mechanical micro-devices and other related work spanning from small to large animal 
models and indeed humans.

Results
To characterise the skin of di�erent species, we �rst measured the thicknesses of the key skin layers – the SC, VE 
and dermis of mice, rats, rabbits, pigs and humans. We then indented the skin using a range of probes to meas-
ure the elastic moduli with consideration for viscoelastic e�ects, and used an analytical spring model to test the 
hypothesis that the elastic modulus is mainly dependent on skin thickness. We de�ned elasticity, modulus and 
material sti�ness as the elastic modulus E, whereas the structural, axial or layer sti�ness, dependent on the geom-
etry of the material, k. �e full skin thickness comprising the SC, VE and dermis was measured as a full thickness 
material interfacing medical devices, and analysed as a composite material with the three distinct layers33. Values 
reported herein are mean ± standard deviation.

Morphology. Skin layers and thicknesses. Skin layer thicknesses measured using histology sectioning are 
shown in Fig. 1. Stained sections show structure, i.e. skin layers and cells residing within the skin strata, which 
were used as a guide to identify the skin layers. �e SC is the top, strati�ed, corneocyte layer that is pink in colour 
visible in the 40x images Fig. 1(a–e iii). �e VE is the layer beneath the SC in dark purple, which appears undulat-
ing at the lower boundary. Individual cells and nuclei (dark purple) can also be seen in higher magni�cations. �e 
dermis is the light purple region below the VE, which is the thickest of the three. Hair follicles/sha�s (circular/
oval white spaces in the dermis) can also be identi�ed in all species apart from human skin.

�ickness measurement are collated in Table 2 and shown on a logarithmic scale vs. mass (Supplementary 
Table S1) in Fig. 1(f). While the three skin layers possess comparable thickness ratios between species (mean of 
~1:4:95 of SC:VE:D), di�erent features are observed between the species, which include:

•	 Rabbit dermis contains large numbers of hair follicles at ~4–5 mm−2, in contrast to pig dermis at <1 mm−2.
•	 Hair follicle sha�s of pig skin are larger than that of smaller species.
•	 Hair follicles were not observed on human skin sections.
•	 �e rabbit skin features a relatively thick epidermal layer, closer to pigs than mice.
•	 Pigs of higher body mass (~130–150 kg) appear to have thicker VE than smaller pigs (~20 kg). �e overall 

dermis thickness between both groups remain close (P = 0.6806).

Calculated P-values of layer thickness comparisons are provided in Supplementary Table S2. Notably, mice 
and rat skin are alike at ~20 µm in the VE, as well as that of rabbits and small pigs despite the large di�erences in 
mass (~20 x and ~6 x respectively). From the measurements of skin layer thicknesses, allometric scaling relation-
ships �tted to experimental trends are presented as power law curves in Table 3(i) for skin thickness interpolation, 
if the mass of an animal is known.

Skin mechanical properties. Viscoelastic properties. Viscoelastic properties provide information on skin 
deformability at di�erent strain rates and were required to obtain the elastic properties independent of the inden-
tation rate. Figure 2(a) shows examples of the typical �t of Prony series to a subset group of raw data (human 
skin, indentation rate v = 0.1 mm s−1, tip radius R = 0.18 mm). Prony series goodness of �t (R2) are presented in 
Supplementary Table S3. Higher noise and spread can be seen in human skin experiments due to the lower than 
expected load measured (hence higher relative noise from the load cell and lower R2). Small body movements and 
breathing from volunteers from in vivo human skin group were detectable and an example is shown in Fig. 2(b). 
Because of this, it was more di�cult to �t curves to the human in vivo tests and more optimisation had to be per-
formed by adjusting the initial �tting parameters for the results to converge, which could suggest that the relax-
ation pro�les are noticeably di�erent to the rest of the species in Fig. 2(b). Raw force-time data of every replicate 
for each species is plotted in Supplementary Fig. S1.

Immediately a�er a step load application, we observed a transient, rapid drop of resistance force against the 
tip over the �rst second for all skin, followed by a steady-state, plateauing decrease for the remainder of the exper-
iment. �e �rst ten seconds (transient and some steady state phases) that are most applicable to skin-targeting 
devices are shown in Fig. 2(c,d). �is behaviour was observed throughout the experiments for all skin types. �e 
�gure shows the force decreasing over ten seconds immediately a�er a 100 µm s−1 step load when the tip is held 
at constant (maximum) displacement of approximately 10% of the skin thickness. We observed that the skin of 
smaller species (e.g. mice, rats) show more viscoelastic e�ects than larger species (e.g. humans), i.e. the force 
decreases more over the same period (mean residual force a�er ten seconds is ~40% for mouse skin but ~80% for 
in vivo human skin). �e in vivo human skin appeared not to relax as much compared to the other groups initially, 
but the at ten seconds it appears to continue decreasing more than the ex vivo human skin. Comparing between 
small and large pigs, the larger showed higher relaxation compared with the smaller. �e Prony series parameters 
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τ1, τ2, g1, g2 are produced in Table 4 and their resulting g(t) coe�cient at 100 mm s−1 are given in Supplementary 
Table S4 for reference.

Elastic properties. �e elastic moduli of skin were calculated as per Materials and methods - indentation pro-
cedure, accounting for the viscoelastic e�ects quanti�ed previously. Figure 3(a) shows a typical �t of the Ogden 
model to raw data and Fig. 3(b) shows an in vivo human skin example. Greater data spread and noise were 

Figure 1. Representative cryo histological cross sections of upper skin specimens: (a) mouse – �ank, (b) rat – 
�ank, (c) rabbit – �ank, (d) large pig – ear (e) human – abdomen, at three magni�cation levels (i) 4x, (ii) 10x 
and (iii) 40x. (f) Measured skin strata thicknesses based on histology plotted against species mass. Horizontal 
error bars show SD of mass and vertical error bars show SD of measured thicknesses.
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captured during the indentation because of volunteer movements. Oscillations were likely caused by breathing, as 
observed that each inhalation corresponded to a slight rise of the load (and vice versa with exhalation and slight 
drop), increasing the di�culty in the Ogden �t. Despite this, both Prony and Ogden curves were still able to be 
�tted to the mean of the sinusoidal heart beat to obtain mechanical properties. Summaries of the goodness of �t 
and the α coe�cients are shown in Supplementary Tables S5 and S6 respectively. Raw force-displacement curves 
of every replicate for each species are shown in Supplementary Fig. S2.

Figure 3(c) shows mean and standard deviation force-displacement curves for all indents of all species. Curves 
followed behaviour typical of hyperelastic materials – linearly increasing for initial small displacements, then 
increasing more rapidly at large strains. Curves did not show a sudden drop in force during loading, which would 
have suggested puncturing of the skin. While all skin types followed the same loading path for the initial 0–5 µm 
indent, the human skin curves (both in vivo and ex vivo) had lower modulus compared with the other species. �e 
maximum load at ~10% strain (maximum displacement) for human skin in vivo is 8.3 ± 5.7 mN and 2.24 ± 1.17 
mN for human skin ex vivo, compared to 25.9 ± 33.3 mN for large pigs, 11.9 ± 12.2 mN for small pigs, 11.3 ± 12.5 
mN for rabbit, 0.694 ± 0.348 mN for rat and 0.497 ± 0.164 mN for mouse.

In Fig. 3(e), we observed elastic modulus decreased with increasing tip radius in a log-log relationship. �ese 
trends were �tted as power curves in Table 5(i). Elastic modulus also increased with respect to species size for a 
given tip contact area, except for human skin being lower than rabbit skin. Large pig skin has the highest modulus 
of all tested species, whereas the skin’s modulus of small pigs followed more closely to other species. Such spread 
and variation of the elastic moduli were also reported in the indentation work of Ranamukhaarachichi et al.33, 
for example. Supplementary Fig. S5 shows the individual pig skin elastic moduli that pigs 4–5 had elastic moduli 
approximately one order of magnitude higher than pigs 1–3.

Table 6 shows that ex vivo human skin group had very low elastic moduli compared to other species in 
Fig. 3(c). To verify these were not anomalous samples, two additional ex vivo samples were repeated. A further 
group of in vivo human skin also was tested. In vivo human skin did not follow typical viscoelastic behaviour, 
i.e. slower tests gave higher measured forces, despite most other cases showed higher modulus with the faster 
indentation rate. �e allometric scaling relationship to body mass is shown in Fig. 3(f), with curve �ts presented 
in Table 5(iii).

Linear analytical model. To further help interpret the experimental trends, a simple model was used to 
help express the skin as three springs in series, isolating the elastic component. Skin properties of mice from 
Crichton et al.33 were used for each skin layer to estimate the elastic moduli and displacement of each animal and 
human model to test our hypothesis that the main in�uence of skin elasticity is the skin layer thicknesses.

Figure 4(a) shows spring model elastic moduli was in similar orders of magnitude compared with Ogden 
�tted experimental data, matching more closely towards smaller tip contact areas. �is established a relationship 
where the species mass (which leads to skin thickness) could be used to determine the skin’s elastic modulus from 
experimental trends. Figure 4(b) shows that the amount of load taken up by the SC was approximately 65–90%, 
followed by the VE at 5–25% and the VE at 1–8%, where the modulus contribution to the full thickness skin can 
be seen. Increasing the tip radius reduced the modulus contribution by the dermis, but was the opposite for the 

Species Site

SC VE D
Approximate 
total

t (µm) SD t (µm) SD t (µm) SD t (µm)

Mouse Flank 4.19 ±1.79 17.50 ±4.98 182.4 ±46.72 204

Rat Flank 9.38 ±2.21 23.58 ± 9.79 382.42 ± 142.49 415

Rabbit Flank 12.32 ±3.52 84.34 ±38.28 1085.85 ±578.52 1183

Pig (small) Ear 17.01 ±3.96 89.60 ±26.70 1423.94 ±522.80 1531

Pig (large) Ear 20.02 ±3.55 131.50 ±41.29 1340.59 ±411.79 1492

Human Abdomen 17.07 ±4.56 99.80 ±49.29 2284.05 ±1161.64 2401

Table 2. Measured skin layer thicknesses for comparison with literature values in presented Table 1.

Parameter a b R2

(i) Skin layer (with large pigs)

Stratum corneum 10.01 0.143 0.96

Viable epidermis 47.7 0.202 0.91

Dermis 756 0.187 0.71

(ii) Skin layer (without large pigs)

Stratum corneum 9.98 0.147 0.97

Viable epidermis 48.1 0.194 0.85

Dermis 617 0.310 0.98

Table 3. Parameters for �tted power law curves ( =y axb) of measured skin layer thicknesses y (µm) with 
respect to species mass x (kg).
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epidermal skin layers. Finally, the analytical model also showed that the dermis of larger species made less con-
tribution to the overall modulus. For comparison Fig. 4(c) shows the analytical allmometric scaling estimates for 
elastic modulus by body mass.

Discussion
�e main purpose of this paper is to identify a way in which skin-interacting micro-devices can be translated 
easily between animal species to humans, and in the process, report on the physical, elastic and viscoelastic prop-
erties of skin across species. We hypothesised a relationship between species, so that their skin’s thickness and 
mechanical properties could be estimated simply by knowing the body mass of that species through interpreting 
the data using a simpli�ed analytical model.

Figure 2. (a) Representative examples of two-term Prony series �tted to raw data showing the spread of raw 
data and curve �ts. (b) Representative example of �tted two-term Prony series on one set of human in vivo 
data illustrating noticeable oscillations caused by heartbeats and small body movements of volunteers (�rst 
10 s shown). Curves were still able to �t to the raw data as shown. (c) Mean force-time response of skin during 
a step-load over the �rst ten seconds of all species. (d) Mean and SD of force-relaxation curves for each species 
shown individually.

Coe�cient ± SD g1 g2 τ1 τ2

Mouse 0.333 ± 0.73 0.355 ± 0.08 0.227 ± 0.19 8.394 ± 3.09

Rat 0.338 ± 0.50 0.307 ± 0.07 0.156 ± 0.07 8.206 ± 13.37

Rabbit 0.246 ± 0.06 0.263 ± 0.05 1.770 ± 3.28 8.457 ± 3.97

Pig (small) 0.378 ± 0.08 0.419 ± 0.05 0.853 ± 0.14 7.625 ± 3.81

Pig (large) 0.219 ± 0.06 0.376 ± 0.14 0.515 ± 0.15 6.496 ± 7.28

Human 0.142 ± 0.04 0.236 ± 0.08 0.423 ± 0.27 7.198 ± 5.55

Human in vivo 0.100 ± 0.07 0.713 ± 0.43 0.034 ± 0.12 12.053 ± 7.44

Table 4. Prony series parameters τ1-2, g1-2 (mean ± SD).
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Our results established – for the �rst time – experimentally-determined trends between these properties 
across four commonly used laboratory animal models to humans, spanning from micrometres to millimetres 
on skin thickness and body mass ranging from ~30 g to ~150 kg. We are not aware of such a broad study of this 
sort in present literature, on key properties with an allometry theme. Indeed, Wang et al.34, reported structural 
and mechanical properties (thickness, sti�ness and modulus over body weight and skin sites) of only one spe-
cies (mouse model) under compression. �e concept of allometry was introduced over a century ago, and more 
speci�cally, allometric scaling models for organisms’ body mass and metabolic rates were proposed in recent 
decades. �is concept was further discussed on the applicability of in vitro models by Ahluwalia35. We propose to 
extend this relationship further to other physiological parameters in this study, namely, correlating skin’s thick-
ness and its mechanical properties to body mass.

Figure 3. (a) Representative examples of raw data �tted to Ogden model. (b) Representative example of 
force-displacement curves when measuring human in vivo illustrating cyclical vibration caused by volunteers. 
(c) Mean force-displacement curves from all indents. (d) Mean force-displacement �tted to Ogden model 
normalised to 10% strain for all species with SD in shaded region. Note that y-axes have di�erent scales. (e) 
Elastic moduli experimental trends shown vs. indentation tip radii with individual data points. (f) Elastic 
moduli shown vs. body mass.
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In terms of variation in the spread of data observed (for example, in Fig. 3(d)) are commonly encountered with 
biological specimens36,37, when compared to standard engineering materials (e.g. steel, rubber). However, sub-
stantial replicate variation, heartrate and respiration were also apparent in the indentation works of Miller et al.45 
and Sridharan et al.38,39, consistent with our results. Ranamukhaarachchi et al. also reported higher scatter in elas-
tic modulus during indentation tests in porcine vs. human skin27. We propose this could be due to environmental 
factors and skin layer thickness ratios. To boost data con�dence, �ve specimens with �ve repeats per condition 
(indentation tip size and speed), with an additional two specimens for human ex vivo, were incorporated into 
the experimental design. Indeed, scatter of so� tissue data were also commented by Mattei and Ahluwalia40, who 
discussed potential sources for variation that could a�ect measured mechanical properties. �ey also presented 
guidelines on minimising this e�ect, such as using animals from controlled environments (e.g. same breeding 
facilities), using same test methods and minimising sample preservation period were implemented in this study 
ensuring reproducible data that is applicable and comparable across the scienti�c community.

In terms of the indentation method and the pre-load using the Instron, except for human skin, the pre-load 
(~1 mN) was much smaller (~20x) the peak loads experienced during indentation. �e pre-load was the smallest 
possible load used as a reference point to commence indentation and was unlikely to result in any signi�cant 
changes to the data. While the pre-load was relatively large for the case of human skin, the properties of the skin 
was still measured and that the elastic modulus was the lowest of all skins tested using the Instron. A signi�cant 
pre-load magnitude would however likely result in an increase in mechanical properties29, preventing compari-
sons with other skins.

On the relation between skin thickness and body mass, we observed a proportional trend, as shown in 
Fig. 1(f). An exception is the dermis of the larger pigs is thinner than the smaller pigs, although the overall skin 
thickness was observed to be relatively close to each other. One explanation is that skin thickens up to a certain 

Parameter a b

(i) Body mass for various tip radii (measured)

0.18 85704 0.1097

0.315 46881 0.1023

1 4375.2 0.1288

3.15 1380.4 −0.1179

(ii) Body mass for various tip radii (analytical model)

0.001 8.2985 × 106 0.0221

0.01 1.7701 × 106 0.0284

0.1 3.0903 × 105 0.0342

0.18 1.9275 × 105 0.0359

0.315 1.2134 × 105 0.0359

1 45920 0.0359

3.15 17061 0.0359

(iii) Tip radius for various species (measured)

Mouse 672.98 −1.900

Rat 2275.1 −1.186

Rabbit 7943.3 −1.441

Pig (small) 12618 −1.227

Pig (large) 39355 −1.152

Human 3311.3 −1.584

Human (in vivo) 3499.5 −2.002

Table 5. Parameters for �tted power law curves ( =y axb
) of elastic moduli y (Pa) (i) measured and (ii) 

analytically modelled with respect to body mass x (kg) or (iii) tip radii x (mm).

Tip radius (mm) 0.18 0.315 1 3.15

Species E (kPa) SD E (kPa) SD E (kPa) SD E (kPa) SD

Mouse 13.22 6.8 3.97 1.6 0.59 0.2

Rat 17.04 5.2 9.98 4.6 0.97 0.5

Rabbit 94.12 74.0 42.17 21.7 7.79 4.1 1.29 1.1

Pig (small) 102.52 47.2 55.09 38.9 9.70 6.4 0.43 0.4

Pig (large) 274.68 309.4 174.69 201.9 10.55 9.0 3.68 2.6

Human 50.26 19.3 19.83 7.1 4.74 1.9 1.99 1.1

Human (in vivo) 108.19 140.3 35.42 60.6 3.07 1.5 0.58 0.3

Table 6. Summary of mean elastic moduli for all species.
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age or mass and because these pigs were raised for consumption (hence signi�cantly increased body mass), their 
mass deviated away from their “normal” body mass over a relatively short period of time. For an experimental 
correlation of skin layer thicknesses relative to body mass, if we modify Table 3(i) to exclude larger pigs, we obtain 
a better-�tting allometric relationship (Table 3(ii)) plotted in Fig. 1(f).

Despite proposing this trend, it may not work well with species faraway from the boundaries of our chosen 
species, which could be a subject of further investigation. Nevertheless, all �ve species selected exhibited compa-
rable ratios of skin layer thicknesses, i.e. mean of ~1:4:95 of SC:VE:D. �is agrees with Lee and Hwang’s reported 
ratios (3.7–16.8% of epidermis within the entire human skin for most regions)41.

In terms of factors a�ecting skin thickness: previous studies have shown that skin site, age42; gender20, BMI43 
and SC hydration44 as possibilities, however, we propose that these di�erences are likely to be smaller than com-
paring across species (except weight-bearing extremities e.g. thicker SC around the palms and soles than the arms 
and abdomen)14. For instance, full-thickness human skin can decrease in thickness by ~300 µm between 20 to 90 
years of age45, which is only up to ~10% di�erence of its full thickness. In this study, human skin thickness data 
exhibited the highest coe�cient of variation of up to 50%; the highest among other species. �is high inter-donor 
dependency was also observed in Mattei et al.’s study on liver tissue structure46, who also commented that this 
was typical of human derived-samples. �is could be minimised by using animals from the same sources, as with 
this paper (apart from human skin). While we compared di�erent sites of animals, low intra-donor dependency 
was expected. �is is supported by Lee et al. who showed that skin of the abdomen region is similar in thickness 
to the forearm (1332 ± 254 µm, vs. 1133 ± 215 µm respectively) and most other parts of the body41. We con�rmed 
this in pigs to ensure this was the case with three sites on pig skin (data shown in Supplementary Fig. S6). �e 
closest body of work we are aware of comparing tissues cross-species was by Malda et al. investigating the rela-
tionship between articular cartilage thickness and body mass47 and Monteiro-Riviere comparing the epidermal 
thicknesses of various species48.

On viscoelasticity, the skins of the smaller animals (i.e. mice, rats) were found to be more viscoelastic than 
those of larger species (Fig. 2(c)), which we hypothesised this was likely due to considerably higher relative thick-
ness of the VE vs. dermis in smaller species (Table 2). Our relaxation pro�les cf. Crichton et al.28, both showed a 
rapid decrease in normalised force to approximately 0.7 of the original force, then a slow decrease towards ~0.4 
at 10 s and did not appear to be in�uenced by tip contact area. Furthermore, Crichton et al. showed that the VE 
is the most viscoelastic of all three skin layers33. Jee and Komvopoulos suggested time-dependent deformation of 
skin is mainly attributed by the cellular epidermis and dermis layers49. From our study, we suggest that the VE is 
likely the main contributor of viscoelasticity in full-thickness skin, as a more prominent viscoelastic behaviour is 
related to higher VE proportion in the skin composition (Table 2). An example would be the VE in full thickness 
skin of mice and rats were higher at ~4–9% and 6–9% for small and large pigs, whereas for rabbits and humans, 
this �gure was lower at ~2–2.5%.

Figure 4. (a) Analytical model estimation of the elastic moduli against tip radii. (b) Approximate share of 
structural modulus of SC, VE and dermis for each species and tip size estimated from the analytical model using 
Equation 14. (c) Elastic moduli shows vs. body mass, for tip sizes used experimentally in this study and also 
estimates down to the cellular scale.
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Furthermore, both the relaxation pro�les of small and large pigs resembled each other and appeared closer 
to mouse and rat skin rather than to humans (as seen in the normalised load a�er 10 s in Fig. 2(c)). Despite dif-
ferences in mass, we found relaxation pro�les of rabbit skin behaved similar to human skin. We interpret these 
as likely due to �uid within the living layers of the skin i.e. intercellular space, and to a lesser extent the presence 
of collagen within the dermis, also known to behave viscoelastically50. Age could be another factor, as while the 
VE of smaller pigs was lower than larger pigs, the relaxation curves appeared similar – younger skin may be more 
viscoelastic. Interestingly, Prony coe�cients did not appear to vary much between species (0.65–0.78), suggesting 
allometric scaling trends between species may not be prominent.

On elastic modulus, we anticipated the skin’s elastic modulus would increase with species mass, however, 
human skin was one of the most compliant. We propose that variations in skin layer thickness ratios of humans 
a�ected this (i.e. greater VE layer in�uence, which was found to be the most compliant of all three layers33), 
although other factors such as hair follicles, captive or environmental exposure di�erences and skin sites (to 
a lesser extent) may be relevant. Skin deformation contributed by the SC primarily was suggested by Jee and 
Komvopoulos49. Indeed, this agreed with Fig. 4(b) that the SC was the main layer for sti�ness contribution, 
and that thicker SC corresponded to higher elastic modulus (e.g. small vs. large pigs). Comparing our data with 
literature, Crichton et al.28 reported 860 kPa for mouse skin, using Equation 4, which was the trend �tted to the 
experimental data, we obtained a slightly lower estimate of 53 kPa. However, another example37 reported pig skin 
reduced modulus of 3.77 MPa (tip radius 20 µm), matching well with our estimate of 2.52 MPa (small pigs) and 
5.69 MPa (large pigs). Overall, we have shown that the composition of skin is an important factor in in�uencing 
the mechanical properties of full thickness skin. Regarding allometric scaling of elastic modulus to body mass 
presented in Fig. 3(f), the smallest three tips showed consistent logarithmic increase, while the largest tip exhib-
ited a decrease, although this was most likely due to limitations of testing very large tips on mouse and rat skins 
(Materials and methods - indentation tips).

In terms of scale e�ects, we found increasing tip contact area correlated with decreasing tissue elastic moduli 
shown in Fig. 3(e). �is tip to modulus trend plotted as log-log gradients for each species showed similar slopes. 
Previous studies showing this trend proposed that corneocytes of the SC were distributing loads more e�ectively 
at smaller contact areas due to corneocyte-to-tip scales28,33. Smaller pigs were found to have lower elastic mod-
ulus than larger pigs, despite similar overall skin thickness, suggesting scale e�ects could be more pronounced 
with certain skin layers, cell structure at di�erent ages, or simply due to higher biological variation in large pig 
skin specimens, as shown in Supplementary Fig. S5 (with di�erences between specimens at approximately 1–1.5 
orders of magnitude).

On the analytical model (Results - linear analytical model), it provided fresh insights into the skin’s elastic 
modulus as a function of animal mass across the species tested. For example, by knowing the elastic modulus 
of a mouse, we could approximate for humans with the mass. �e purpose to develop the model was to help 
interpret our results; to understand the contribution of tissue layers, rather than to provide accurate solutions 
to solve for the skin properties (for this approach, alternative methods such as �nite element analysis would be 
employed). As such, this model was purely elastic and did not account for viscoelastic and other e�ects, but still 
gave reasonable correlation between species. By normalising the data of tip radius and skin thickness, a clearer 
relationship between elastic modulus and species could be observed, supporting our hypothesis that the main 
driver of skin’s elastic modulus is the thickness of the skin layers. Other more complex skin modelling approaches 
utilise �nite element analysis (e.g.51) which is time consuming and expensive. For many purposes, this model 
serves as an engineering tool that can provide estimates of the skin’s mechanical properties. Limitations to this 
model may include inapplicability of species from harsher habitats or outside the scales herein. For example, an 
elephant weighing ~4 tons, has a skin thickness of ~17.5 mm52, but Equations 5–7 suggests a full skin thickness 
of approximately half at 9.7 mm. However, other species within the mass range investigated, such as sheep, which 
typically weighs ~40 kg at adulthood, has a skin thickness of 1.83–2.15 mm53. �is compares well with the same 
formulae, which estimated a full skin thickness at ~2.3 mm. Based on this information, if we use our estimated 
mean SC:VE:D ratio of 1:4:95, using Equations 15–17, we could estimate that indenting using a tip radius of 
0.18 mm would give a bulk elastic modulus of sheep skin of 422 kPa, which is comparable to Manan & Mahmud’s 
study who reported a tensile modulus of 369–539 kPa54.

In terms of freshness of skin and its mechanics, we endeavoured to work with freshly excised skin. However, 
ex vivo human skin samples obtained were not able to be tested immediately a�er surgical excision and were 
refrigerated for up to 24 hours before indentation. Some studies show di�erences in tissue mechanical properties 
a�er storage in refrigerated conditions55, and changes to Young’s modulus a�er storage in freezing conditions27. 
However, studies such as Banga showed minimal changes to tissue quality stored under refrigeration that were 
used within a few days a�er excision56. Regardless, we did not observe any visual degradation to sample quality 
between obtaining the skin and completing the experiment, and that current protocols obtaining and processing 
skin are unlikely to have in�uenced tissue mechanics. Further, to demonstrate data applicability to in vivo human 
conditions, we compared ex vivo skin with in vivo conditions with volunteers. In force-relaxation experiments, 
in vivo human skin showed less decrease in force over the initial 2–3 seconds vs. ex vivo conditions. We hypothe-
sised additional pressure from blood circulation and skin in its original tension and state could contribute to this 
di�erence. Previous porcine studies on brain tissue also showed discrepancies in material sti�ness between tissue 
states57,58. �is is particularly relevant where development of new devices is performed on excised tissue, with 
the expectation that translation to live humans will be simple. Despite this, we propose they are unlikely to a�ect 
most tests of micro-scale devices, as the di�erences are small; ex vivo skin could still provide valuable data when 
emulating in vivo conditions for certain purposes, such as mechanical testing.

Mechanical testing of medical devices o�en commences on small animal models during pre-clinical stages. 
Our data can help enable rapid translation from laboratory conditions by streamlining and reducing animal usage 
before human testing with improvements being made to devices more e�ectively. Based on date presented here, 
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we highlight that ex vivo human skin, in combination with rabbit and/or small pig skins may be suitable for test-
ing micro-medical devices in developmental stages to obtain a translatable elastic and viscoelastic result. Indeed, 
the ability to relate animal model experiments to human clinical applications is applicable to several medical 
interventions, such as in surgery and so� tissue cutting, impact and puncture of skin, and skin based diagnostic 
and sensing devices, which can be optimised to target the skin at a more precise and e�ective level.

Conclusions
To address the need for e�ective and rapid translation of micro-scale medical devices from laboratory to clinics, 
we investigated the morphology and the mechanical properties of the skin of mice, rats, rabbits, pigs and humans; 
with histology and indentation. We hypothesised that we could identify a relationship between these species 
for elastic modulus and skin thickness using a simple allometric correlation to species mass. We reported this 
relationship using experimental trends, which correlated well with reported literature. Our data suggest that the 
thickness of each layer of skin increased with species mass, together with the elastic modulus (except for human 
skin). We extended this to humans and observed a reduction in material sti�ness from ex vivo skin to in vivo skin. 
Using indentation, our measured elastic moduli of the selected species is between 102–106 Pa with indenter tip 
radii between 0.18–3.15 mm. From our study, we recommend that ex vivo human skin, rabbit skin and small pig 
skin would be suitable for pre-clinical testing of medical devices. By establishing the relationships between animal 
models and humans, we can help translate devices more rapidly through the knowledge of understanding the 
mechanical properties of the skin and its reaction to a micro-scale like device acting on its surface.

Materials and Methods
In this paper, we used indentation to measure elastic and viscoelastic properties of skin specimens from mice, 
rats, rabbits, pigs and humans. We then �tted the Ogden hyperelastic model and two-term Prony series to the 
loading and force-relaxation curves, to obtain these properties respectively.

Skin tissue preparation for indentation. Skin was collected from �ve species: mouse (�ank), rat (�ank), 
rabbit (�ank), pig (ear) and human (abdomen) spanning four orders of magnitude in mass: mouse ~30 g, rat 
~300 g, rabbit ~3 kg, pig ~30 kg, and humans at ~70 kg. In addition, larger, abattoir sourced pigs ~130–150 kg were 
compared (i.e. from animal experiments and commercial abattoir). �is provided comparison between the same 
species but at two body masses. �e mass of the �rst four species were measured directly from the animals (large 
pigs were quoted directly from the abattoir), and humans for ex vivo skin were estimated from Walpole et al.59. 
�e mass of the human (in vivo) was collected directly from volunteers.

Mice (CD1, female, 10 ± 1 weeks old), rats (Wistar, female, 12 ± 1 weeks old), rabbits (New Zealand white, 
female, 12 ± 2 weeks old) and small pigs (~20 kg) (Large White, female, 9 ± 1 week old) were obtained from the 
University of Queensland Biological Resources (St Lucia QLD, Australia). Skin sites selected were from large, 
uniform areas of the body and avoided weight-bearing regions with thicker SC thicknesses41. Flank (mouse, rat, 
rabbit) or dorsal ear (pig) skin tissue was excised for testing immediately post euthanasia (mouse/rat with CO2 
chamber, rabbits and pigs with overdose of ketamine/xylazine). Ear skin of large pigs (Large White female, >1 
year old) was purchased from Highchester Meats Ltd (Gleneagle QLD, Australia) with skin excised from dorsal 
ear cartilage without post-cull treatment i.e. hot water dip. Human skin was sourced from the Princess Alexandria 
Hospital (Herston QLD, Australia) from female abdominoplasty patients aged 36 ± 7.8 years old (mean ± SD). 
Animal hair was removed with hair clippers (Pet grooming kit, Wahl, Stirling IL, USA) followed by a razor blade 
shave (Xtreme3, Schick, St Louis MO, USA). Fat was removed from the skin by scalpel. In vivo volunteer human 
skin (dorsal forearm with no visible scarring or defects) was also compared against ex vivo human skin (healthy 3 
males and 2 females, 24 ± 1.5 years old, mean body mass 63 ± 7.6 kg).

Mechanical testing of skin was completed within three hours post euthanasia, except for pig and ex vivo 
human skin, where supplies were not available on demand – testing was completed within 48 hours of obtaining 
skin samples. In this situation, skin samples were excised with hydration and viability maintained, similar to Jee 
and Komvopoulos37, except placing the bottom side of skin on cell culture media (RPMI 1640 Medium, Gibco, 
�ermo Fisher Scienti�c, Waltham MA, USA) (not submerged) with antibiotics (Ampicillin, Gibco, �ermo 
Fisher Scienti�c, Waltham MA, USA) refrigerated at 4 °C. It was ensured the surface was dry to avoid potential 
changes to the epidermal mechanical properties29,60. Skin was returned to room temperature before testing.

All animal work carried out has been approved by the University of Queensland Animal Ethics Committee 
(ethics number ANRFA/AIBN/473/15). All human work carried out has been approved by the University of 
Queensland Human Research Ethics Committee (ethics numbers 2008001342 and 2017000693). Written 
informed consent was obtained from all participants. All experiments were carried out in accordance with the 
University of Queensland guidelines and regulations.

Histology. Five individual skin samples of each species were collected for skin thickness measurement. 
Frozen-section method was selected over para�n due to less exposure to processing and faster turnaround time. 
Subcutaneous layer was removed during the dissection. Skin was cut to ~1 cm2 size and submerged in 10% neutral 
bu�ered formalin (NBF) (HT501128, Sigma Aldrich, St Louis MI, USA) following standard histology protocol59 
immediately a�er harvest. Samples were embedded in moulds (Peel-A-Way, Polysciences, Warrington PA, USA) 
with sectioning matrix (Tissue-Tek OCT, Sakura Finetek, Alphen aan den Rijn, the Netherlands) and frozen by 
liquid nitrogen. Samples were pinned during �xation and held up right during freezing to ensure perpendicular 
sections were obtained at 14 µm thick (Microm HM 560, �ermo Fisher Scienti�c, Waltham MA, USA) and at 
least three slides were collected from each specimen (subject to quality of sections obtained). Between each slide 
(Superfrost Plus, �ermo Fisher Scienti�c, Waltham MA, USA), at least 350 µm of specimen was discarded so 
sections collected were not adjacent to each other.
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Sections were imaged with confocal microscopy (LSM 510 META, Zeiss, Oberkochen, Germany) using 10x 
and 20x objectives and plain, white light to observe morphology and skin layers. An 800 nm laser was used to 
identify the presence of collagen at 430 nm, which indicates the approximate dermal layer62, if layers were dif-
�cult to distinguish. Representative images are shown in Supplementary Fig. S7. Five replicates of each species 
were measured at least 20 times, up to 100 times on each skin layer depending on species and sample quality 
(i.e. no folding, curling and/or shattering of histology specimens) (Zen Black Edition 2009, Zeiss, Oberkochen, 
Germany). Distance was taken as perpendicular to the SC surface and spaced approximately three times the 
SC length apart between each measurement illustrated in Supplementary Fig. S8. Bright-�eld microscopy with 
haematoxylin and eosin following staining61 was also used to identify the separate skin strata (BX45, Olympus 
Corporation, Tokyo, Japan), at 4x, 10x and 40x magni�cation. Brightness, contrast and colour balance were 
adjusted (Photoshop CC, Adobe Systems Incorporated, San Jose CA, USA).

Indentation equipment. Species were separated into thin and thick skin. For thin skin (mice and rats), a 
Triboindenter (Hysitron TI900, Minneapolis MN, USA) with a MultiRange NanoProbe transducer was used. For 
the remaining, thick skin, a universal testing machine (Instron 5543, Norwood MA, USA) with a 5 N load cell 
were used. Both equipment has an overlapping indentation rate of 100 µm s−1. �e reason for the separation is 
due to Triboindenter’s maximum vertical displacement of ~90 µm, not deep enough for thicker skin. Secondly, 
for small displacements (e.g. up to 50 µm), Instron data contained relatively high levels of noise. For these inden-
tations, the Triboindenter was used.

Polydimethylsiloxane (PDMS) as a handling layer for indentation. A PDMS layer was used as han-
dling layer for the skin to be pinned on, and to protect the load cell in case of overshooting the intended displace-
ment. PDMS backing was made using Sylgard 184 Silicone Elastomer Kit (Dow Corning, Midland MI, USA) 
mixed with the supplied curing agent in a 20:1 ratio. Vacuum chamber removed air bubbles in mixture. Mixture 
was poured in circular mould to 7–10 mm thick and cured in 60 °C oven for two hours.

Indentation tips. Custom-made, aluminium, flat cylindrical tips with radii of 0.180, 0.315, 1.000 and 
3.150 mm were used. �ese radius sizes gave contact area one order of magnitude larger than the previous (except 
the 0.18 mm tip, which was the smallest we manufactured) to provide a range of readings and extrapolation of 
material properties outside the scales tested down to the sub-cellular scale28. Tip sizes were selected based on 
Wayes et al., who indicated a suitable range of indentation tip size between 0 and 100% of the specimen thickness, 
as tip sizes signi�cantly larger than the skin thickness changes the experiment to a �at plate compression model63. 
Smaller tip sizes in the micrometre range are more closely associated to and more relevant to the typical scales of 
microneedle devices.

Surface roughness. �e gap between skin and tissue due to surface roughness may a�ect mechanical anal-
ysis, however, to minimise this e�ect, skin furrow and hair root regions were avoided. Skin roughness surface 
amplitudes shown in literature were smaller than our indentation depths (e.g. mice Ra (arithmetic mean) ~7.864, 
human Rµ (root mean) ~22–3065).

Indentation procedure. A diagram illustrating the method is shown in Supplementary Fig. S9. Skin was 
placed on wet paper towel moistened with 1x phosphate bu�ered saline (PBS) during experiment to prevent 
dehydration37. Mice and rat skin (with 1x PBS paper towel layer) were placed on a Triboindenter specimen holder. 
Rabbit, pig and human skin were pinned on the edges together with 1x PBS paper towel on a PDMS handling 
layer using hypodermic needles (to its original dimensions prior to excision to mimic in vivo conditions) for the 
Instron stage. Indentation area excluded regions near sample boundaries and the pins. Mice and rat skin were 
not pinned due to loose-skin nature of animals and limited working space in the Triboindenter. A mass-balance 
experiment (Supplementary Table S9) was carried out to verify skin was not overhydrated through passive capil-
lary di�usion or osmosis. For the in vivo human skin experiment, the volunteers rested their arms on the Intron 
stage.

Indentation depth was set at approximately 10% of the material thickness66,67 to eliminate potential substrate 
e�ects while maintaining the ability to measure the e�ects of the full skin thickness. Tests performed using the 
Instron incorporated a preload of ~1 mN to ensure full contact of the tip and skin surfaces prior to commencing 
the loading ramp, similar to the automatic contact detection of the Triboindenter. Loading ramp was 0.01 mm s−1 
and repeated at 0.1 mm s−1. �is was not pre-conditioning the material, and the magnitude of the pre-load was 
the minimum readout from the load cell without ambient �uctuations. �is was followed by a �xed-displacement 
hold for 10 s and an unload ramp at the same rate. We doubled the recording hold time (i.e. data points) for in 
vivo human skin to allow better curve-�t due to small body movements detected during measurement (Fig. 3(b)). 
Increasing the sampling rate allowed a reduction in recording/relaxation duration. Quality of �t (R2) was also 
used as an indicator to determine the minimum required duration without reaching a fully-relaxed plateau. to 
determine Prony coe�cients; force-relaxation could be as short as less than one second68. Each condition was 
repeated �ve times for each tip size and indentation rate, with �ve replicates per species to ensure robustness of 
data allowing for natural variations in biological specimens.

Data analysis. Derivations to the Prony series and Ogden curve �ts are from Crichton et al. and Lin et al.33,69 
Force, displacement and time data were obtained from indentation. Two-term Prony series curve was �tted to 
force-time data of the hold section during indentation as per Wu et al.70, with the Prony series in general form 
(Equation 1) and in two-term form (Equation 2):
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tion displacement and v is the indentation velocity. Equation 2 gives a value between 0 and 1, which is used to 
obtain the reduced elastic modulus by multiplying the instantaneous elastic modulus with G t( ). Replicates that did 
not converge for the code to �lter ambient vibrations were discarded.

�e Ogden hyperelastic model in Equation 3 was used to �t the force-displacement curves previously demon-
strated by Lin et al.69 beyond small-strain de�nition, applicable for non-linear stress-strain behaviour of so� 
material indentations (although not dramatic, our range we indent to approximately 10% of the skin thickness). 
�e authors also considered the Ogden model as the most appropriate for biological tissues71. Speci�cally, we �t-
ted the model to the loading curve instead of the unloading curve for conventional indentation66, e�ectively char-
acterising the material properties at the instance the skin is being loaded, in the same manner as a micro-scale 
medical device being applied onto the skin. Replicates unable to be �tted despite changing the “initial guess” 
parameters (i.e. E and α) and boundary conditions were discarded.
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where P is the load, E0 is the elastic modulus, a is the tip contact radius, α is the �tting parameter, ν is the Poisson’s 
ratio and ε is the strain (instantaneous indentation depth/skin thickness) for large deformations applicable to this 
study69.

Matlab 2015a and 2016a (MathWorks, Natick MA) were used to automate data processing. Ogden and Prony 
curves were �t using the nlin�t function. Up to 10% of the initial force-displacement data was excluded from 
the origin to avoid �tting over noise/movement (in vivo) with relatively low forces, ambient noise and transient 
artefacts.

Statistical analysis and graph plotting. Skin thickness power law equations were determined using the 
Matlab (2016a, MathWorks, Natick MA) Curve Fitting Tool. Prism (GraphPad Inc., La Jolla CA) was as follows: 
(a) Plotting of all graphs. (b) Statistical signi�cance in indentation and thickness data between species using 
ordinary one-way ANOVA multiple comparisons (Tukey’s multiple comparisons test). Statistical signi�cance 
levels shown in �gures and tables are: ns (P > 0.05), *(P ≤ 0.05), **(P ≤ 0.01), ***(P ≤ 0.001), ****(P ≤ 0.0001). 
Standard deviation is stated unless otherwise speci�ed. (c) Elastic modulus power law equations were determined 
using the Nonlinear Regression (log-log line) Tool.

Power curves were �tted to the central trend of each species to obtain an allometric scaling relationship for 
skin thickness, elastic modulus and indenter tip radius from Tables 3 and 5:

=y ax (4)
b

= +y a b xlog log log (5)

in both power law and logarithmic forms, with the latter resembling the linear algebraic equation = +y mx c for 
the log-log graphs shown in Figs 1(f) and 3(e,f).

Analytical model. To investigate whether elasticity can be primarily de�ned as a function of skin layer thick-
nesses, the skin was modelled as three balanced, ideal springs in series, with no mass, damping or viscoelastic 
e�ects representing each of the skin layer and to isolate the system to the elastic components. Viscoelasticity could 
be applied later using the Prony coe�cients as they do not appear to depend on scale33; including damping ele-
ments in the model but this complicates the calculation and deviates the model away from its intended purpose. 
�e three spring system was comparable to the work of Pailler-Mattei et al., who quanti�ed their tissue layers as 
dermis, hypodermis and muscle for their indentation study26. Starting from a basic spring force-displacement 
relationship with Hooke’s law:

=F kx (6)

A constant contact area throughout the skin equal to the tip contact area was assumed, i.e. 1D treatment of 
compression in this model. �is was expressed as the material sti�ness of an in�nite series of springs in series 
�xed on one end72:

=









∑








=

k
1

(7)i
n

k1
1

i

For a three-layer composite structure model de�ned as the SC, VE and D layers, this becomes:
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=









+ +










F x
1

(8)k k k

1 1 1

SC VE D

where x is the displacement of the tip and klayer  is the sti�ness of each layer as the axial sti�ness in relation to 
elasticity:

=k
E A

t (9)
layer

layer

layer

With A approximated as the tip surface area and tlayer as the measured thickness of the skin layer and Elayer as 
the elastic moduli of the SC, VE and D of mice skin obtained from mice by Crichton et al.33 �tted using power law 
(parameters in Supplementary Table S8). Mouse skin layer data was used here, as we hypothesised that skin of 
di�erent species share common material properties.

A generalised equation to estimate the elastic modulus, if the skin layer thicknesses were known, was devel-
oped from the de�nition of stress, assuming an elastic relationship:

σ

ε

=E
(10)

σ =
F

A (11)

Substituting Equations 8–11, we obtained the generalised analytical equation to estimate elastic modulus of 
skin:

ε

=
+ +

E
x

A

1

(12)k k k

1 1 1

SC VE D

where x is the maximum indentation displacement, π=A R2 for a �at, cylindrical tip and ε is the maximum 
strain. �e area modi�er allowed for tip interface scale dependencies as observed in biological tissues.

A schematic diagram of the simpli�ed skin model is shown in Supplementary Fig. S11.

Data availability
�e datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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