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Abstract 

 

The COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines 

have been successful in reducing rates of infection and hospitalization, but there is still a need for 

an acute treatment for the disease. We investigate whether compounds that bind the human ACE2 

protein can interrupt SARS-CoV-2 replication without damaging ACE2’s natural enzymatic func-

tion. Initial compounds were screened for binding to ACE2 but little interruption of ACE2 enzy-

matic activity. This set of compounds was extended by application of quantitative structure-activ-

ity analysis, which resulted in 512 virtual hits for further confirmatory screening. A subsequent 

SARS-CoV-2 replication assay revealed that five of these compounds inhibit SARS-CoV-2 repli-

cation in human cells. Further effort is required to completely determine the antiviral mechanism 

of these compounds, but they serve as a strong starting point for both development of acute treat-

ments for COVID-19 and research into the mechanism of infection. 
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TOC Graphic: Overall study design. 

 

Introduction  

 

The radical consequences of coronavirus disease 2019 (COVID-19) and the virus that causes it, 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), since its advent in late 2019, are 

evident in many facets of daily life. Since this time, many economies around the world have en-

tered recessions, unemployment rates have dramatically increased, and the healthcare infrastruc-

ture in many countries is being pushed to its limits.1–3 More significantly, COVID-19 has killed 

almost 6 million people worldwide and has infected well over 400 million as of February 2022.4  

 

Vaccine deployment has been a general success in reducing rates of infection5 and especially rates 

of hospitalization5,6, though less so for transmission from a vaccinated individual.7 Importantly, 

there are breakthrough cases where vaccinated individuals contract the virus, which can still result 

in severe symptoms or death. Variants of the virus are actively developing and spreading8, and 

there is always a possibility that a viral mutation will allow evasion of the immune system detec-

tion provided by a previous infection or vaccine. Thus, while the effort that the scientific commu-

nity has put into developing a vaccine is incredibly important, it is still necessary to dedicate effort 

to finding therapies for acute COVID-19 to alleviate the severity of infection.  

 

It is imperative that efforts be dedicated to the development of small molecule inhibitors targeting 

various parts of the viral life cycle, either by direct action upon viral proteins or upon host factors 
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that play integral roles in viral replication. These therapies would not only be immediately appli-

cable to COVID-19, but also useful in any future coronavirus epidemics.9 Thus far, there are sev-

eral repurposed drugs granted emergency use authorization in the treatment of COVID-19. 

Remdesivir, a nucleoside analog that inhibits the action of SARS-CoV-2 RNA polymerase II, has 

taken a premier role in treatment since early 2020. Other drugs that are currently being used to 

treat COVID-19 cases are the rheumatoid arthritis drug baricitinib and the corticosteroid dexame-

thasone, which act to reduce the inflammation associated with severe infection.10 There is also at 

least one approved new drug for treatment of COVID-1911, but its efficacy in practice remains to 

be seen.  

 

Like other research organizations, The National Center for Advancing Translational Sciences 

(NCATS) has initiated efforts to support and promote the development of anti-SARS-CoV-2 treat-

ments. The OpenData Portal for its COVID-19 drug repurposing12 allows researchers and public 

health officials to expedite the development of SARS-CoV-2 interventions through open data shar-

ing and analysis tools, and to prioritize antiviral discovery for further development in treating 

COVID-19. Furthermore, a number of researchers have been performing large-scale virtual screen-

ing of the in-house libraries with the aim to identify chemotypes with antiviral activity and limited 

host cell cytotoxicity.13,14 Also, various screening assays have been set up that allow HTS testing 

to speed up the experimental process.15–17  

 

Although many small molecule therapies for COVID-19 thus far have targeted viral proteins, there 

is interest in discovering small molecule inhibitors of host proteins integral to the SARS-CoV-2 

life cycle. Developing drugs to target important host proteins reduces the chance of the virus de-

veloping drug resistance.18 One such host protein of particular interest is the primary entry receptor 

for SARS-CoV-2, angiotensin converting enzyme 2, or ACE2.19  

 

ACE2 is a key enzyme in the Renin-Angiotensinogen-Aldosterone System (RAAS), which is im-

plicated in renal, pulmonary, immune, and cardiovascular function.20–22 ACE2 is responsible for 

the conversion of angiotensin II to ANG 1-9, and by further extension anti-inflammatory effects.23  

ANG I is cleaved into angiotensin II (ANG II) by angiotensin converting enzyme (ACE).  ANG II 

is responsible for binding to AT1R and signaling prostaglandin and aldosterone production, in-

creasing Na+ retention, blood pressure, and inflammation.  ANG II is converted into angiotensin 

III (ANG 1-7) by ACE2, maintaining homeostasis by binding to MAS-R, producing anti-inflam-

matory, anti-fibrotic effects.24,25 This signaling is completed using soluble ACE2, which is shed 

from its cellular state by disintegrin and metalloproteinase 17 (ADAM17) as well as 

TMPRSS22625. 
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Due to the complex role of the RAAS system, the effects of inhibiting ACE2 enzymatic activity 

include increased inflammation, fibrosis, oxidative stress, and vasoconstriction.25 In the event of 

ACE2 loss-of-function due to SARS-CoV-2 binding or an orthosteric ACE2 inhibitor27, down-

stream reduction in production of ANG (1-7) would hinder anti-inflammatory compensation as 

well as allow for the over production and expression of ANG II, inciting further inflammation and 

fibrosis. Therefore, inhibition of the SARS-CoV-2 spike protein interaction without disturbing 

natural enzymatic activity should be the focus of ACE2 inhibition28 as it applies to COVID-19 

therapeutics. 

 

Understanding the powerful abilities of computational tools when used correctly29,30 enabled many 

research groups to find COVID-19 therapeutics as well as to prevent the binding of SARS-CoV-2 

to ACE231. In some cases, molecular modeling has been used to virtually screen compounds32 and 

identify predicted synergistic mixtures33 that may aid in the treatment of COVID-19. We report 

here a hybrid discovery approach, where computational models are in conjunction with high-

throughput screening to establish as large a dataset as possible of compounds with desired proper-

ties. 

 

The aims of this study are (i) to identify allosteric binders of ACE2 without enzyme inhibitory 

activity and (ii) to discover small molecules acting under this mechanism as potential agents 

against the SARS-CoV-2 virus. To do so, we utilized assays for ACE2 binding and enzymatic 

activity to screen a large dataset of small molecules and develop initial data for modeling. Inde-

pendent modeling efforts were undertaken by both NCATS and UNC teams to nominate a diverse 

set of molecules predicted to bind to ACE2 without significant interruption of enzymatic activity. 

Computationally nominated compounds were experimentally screened, resulting in 68 actives (out 

of 512 nominations; hit rate ~13%). The confirmed hits were then subjected to an assay for inhi-

bitions of SARS-CoV-2 replication in human cells. Appropriate counterscreens for cytotoxicity 

and luciferase assay interference were applied to all hits. In total, five compounds were identified 

as inhibitors of SARS-CoV-2 replication at the micromolar level presumably due to ACE2 binding 

without significant inhibition of natural ACE2 enzymatic activity. 

 

Results and Discussion 

 

Initial Screening 

 

To identify small molecule binders to ACE2 which does not interfere with its enzymatic activity, 

we utilized microscale thermophoresis (MST) in combination with an enzymatic assay. Extended 

assay descriptions are included in the Supplementary Methods. 
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Recombinant polyhistidine-tagged (His-tag) extracellular domain of ACE2 and the fluorogenic 

substrate MCA ((7-Methoxycoumarin-4-acetic acid) - Ala - Pro – Lys (Dnp) – OH) was used for 

the enzymatic assay. For MST, the recombinant ACE2 protein was labeled with a His-tag specific 

fluorophore to monitor any binding events. MLN-4760, a known ACE2 inhibitor, was used to test 

and optimize the conditions of the enzymatic and MST assays. In the enzymatic assay MLN-4760 

showed a dose-dependent inhibition of ACE2 activity with a half maximum inhibitory 

concentration (IC50) of 1.50 nM (Figure S1, A). The binding affinity of MNL-4760 to ACE2 

measured by MST was 702 nM (Figure S1, B). Consequently, MLN-4760 was used as a positive 

control in both assays to screen the compounds of the NCATS Pharmaceutical Collection and the 

anti-infectives library.  

 

A total of 3149 compounds were screened in the ACE2 enzymatic assay in a 5-point dilution series 

with final compound concentrations ranging from 20 nM to 62 μM in 1536-well-plate format. The 

Z′-factor for the assay had an average value of 0.72 ± 0.04 and a signal-to-background ratio of 

13.82 ± 2.73, indicating a robust assay performance. Compounds which showed ACE2 enzyme 

modulating activity in the primary screen were cherry-picked and retested in a 11-point dilution 

series ranging from 0.4 nM to 123.5 μM in duplicates. These compounds were tested in a 

counterscreen to check whether they interfere with the reporter fluorophore signal as well. Out of 

the 128 cherry-picked compounds 112 compounds were confirmed, where 110 of them were 

inhibitors of ACE2 enzyme and 2 activators. 

 

The same small molecule libraries were screened for ACE2 binding by MST in 96-capillary-for-

mat at a single dose with final concentrations ranging from 39 to 392 μM depending on the highest 

available concentration of the compounds in the library due to their different solubility. Out of the 

492 compounds (14.36%, Figure S1, C) identified as potential hits, 405 unique compounds were 

selected for the affinity screening at 7-point dilution series. The compounds were counterscreened 

with a fluorophore labeled His-peptide as well, to identify compounds interacting with the His-tag 

of the recombinant ACE2 instead of the target protein. The hit compounds identified from the 

affinity screen with dissociation constant (Kd) values less than 30 μM and not active in the ACE2 

enzymatic assay were re-tested in a second round of MST experiment. 116 compounds were vali-

dated as ACE2 putative allosteric binders.  
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Virtual Screening

 

 

 

UNC Modeling: Model validation statistics for all evaluated models are reported in Supplementary 

Table 2. Models in bold were selected for final predictive use. According to standard metrics of 

model accuracy, model performance was fairly poor (correct classification rates close to 0.5). 

However, we placed emphasis on the positive predictive value (PPV) statistic, as our goal for 

validation was to determine the likelihood that any molecule that we nominate for experimental 

screening is truly active. We sought an increase in PPV over the selection strategy for the initial 

screening set (3.7% active rate).  

 

Four of these models were selected to be used in consensus based on PPV and diversity of model 

type and descriptors. Our consensus model performance predicted about a 3-fold increase in the 

rate of active compounds. The strategy for nominating new compounds proceeded by first predict-

ing every compound in the screening set with the MuDRA model and the gradient boosting model 

built on the RDKit descriptors. The simplex-based models take a significant amount of computa-

tion time to generate descriptors, so they were not included in the initial screening step. The gra-

dient boosting model predicted a total of 20 actives, and the MuDRA model predicted 1015 actives, 

with no overlap between the two models.  

 

This set of 1035 actives was further predicted by the simplex-based models for prioritization. 6 

compounds were predicted active by both the MuDRA model and a simplex-based model and were 

Figure 1: Computational workflow. a) Curation protocol. UNC curation protocol34–36 shown, and NCATS protocol 

is similar with minor deviations. b) Modeling workflow. In total, three model types were used to screen com-

pounds to produce 512 nominations for further experimental validation. 
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considered the highest priority nominations. All 20 actives predicted by the gradient boosting 

model with RDKit descriptors were chosen as the next tier of nominations. To reach 256 nomi-

nated compounds, all remaining actives predicted by the MuDRA model were sorted by Euclidean 

distance to the nearest training set active compound in the RDKit descriptor space, and the top 230 

were selected. 

 

NCATS Modeling: Detailed model statistics on the training set and the test set are provided in 

Supplementary Table 3. All four models showed AUC values close or above 65% in both training 

set and test datasets. Taking a consensus between different descriptor combinations did not im-

prove the model performance.  

 

For the LBP modeling, we used the 110 active compounds; clustering based on pharmacophore-

based similarity (cluster distance of 0.4, 0.6, 0.7, and 0.8), followed by generation of ligand-based 

hypotheses led to a total of 89 pharmacophore hypotheses (MFP and SFP). Taking the computa-

tional constraints into account, 24 pharmacophore models that hit the majority (>20%) of active 

vs. inactive were selected for virtual screening. All pharmacophore hypotheses generated in this 

study are presented in Supplementary Table 1. In general, the pharmacophoric sites such as hydro-

gen bond acceptor (HBA), hydrogen bond donor (HBD) and aromatic ring, were prudently char-

acterized.  

 

For the virtual screening, the complete collection of 138,729 compounds was tested against our 

SB models and ranked by the prediction score. This score takes a value between 0 and 1, and the 

higher the score, the higher the probability of the compound to be active. We filtered the com-

pounds that have the prediction score greater than 0.60 from each descriptor combination. This led 

us to a subset of 660 compounds that were predicted to be active by at least two out of the four 

models. We also screened the 138,729 compounds using the LBP models shortlisted for the screen-

ing (Supplementary Table 1). This gave us 16,231 compounds, 58 of which were also in the list of 

660 compounds (from SB). These 58 compounds were selected for the experimental validation. 

Owing to poor performance of our SB models we only picked another top 58 compounds from the 

SB approach (ranked according to their prediction score). The other 140 compounds were selected 

from our LBP models, according to their pharmacophore fit score (that hit at-least 3 pharmaco-

phore models) and sorted by the Tanimoto similarity (based on Morgan fingerprints) to the nearest 

training set active compound. This gave us a list of 256 compounds for experimental validation.  

 

Post-modeling Screening and Follow-up Experiments 
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As described above, computational models were used to nominate a total of 512 compounds for 

experimental testing. Within the top 256 compounds, chosen from each institute, there were over-

lapping 11 compounds. Thus, we added additional 11 compounds from the UNC list (actives pre-

dicted by the MuDRA model and sorted by Euclidean distance to the nearest training set active 

compound in the RDKit descriptor space). 

 

First, these molecules were tested for ACE2 binding by MST at a single concentration. Out of the 

512 compounds, 130 (25.39%) were identified as binders and nine – as inconclusive (Figure 2). 

Next, the 139 potential hit compounds were measured by MST in dose-response at 7-point dilution 

series for ACE2 binding and in His-peptide counterscreen to test the binding specificity. These 

compounds were tested in ACE2 enzymatic assay as well. Sixty-eight compounds were identified 

as ACE2 binders with Kd values ranging from 6 nM to 562 µM, where only two of them had 

moderate enzyme inhibitory activity. 

 

Figure 2. Experimental testing of the predicted molecules for ACE2 binding by MST at a single dose. Out of the tested 

512 compounds, 130 (25.39%) were identified as hits, 360 as non-binders, 9 inconclusive. Twelve compounds were 

auto-fluorescent, and one compound caused aggregation. 

 

To determine whether putative allosteric binders of ACE2 can affect SARS-CoV-2 infection, com-

pounds with Kd below 10 µM and no enzyme inhibiting activity were tested in live SARS-CoV-2 

Fluc assay (see the Material and Methods section for details). The assay indirectly monitors the 

ability of compounds to inhibit viral replication and infection through various molecular mecha-

nisms, including direct inhibition of viral entry or enzymatic processes as well as acting on host 

pathways that modulate viral replication. The compounds were tested in the corresponding coun-

terscreens for cytotoxicity and luciferase inhibitory activity.  
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Overall, 5 compounds showed a SARS-CoV-2 inhibiting activity with an efficacy greater than 70% 

and half maximal inhibitory concentration (IC50) values of 14 - 25 µM (Table 1). Of these com-

pounds, only compound 1 showed a cytotoxic effect with IC50 = 24.8 µM (Figure S2, A), and com-

pounds 3 and 5 had moderate luciferase inhibiting activity (Figure S2, B). The remaining compounds 

were inactive in the counterscreens and can be considered as true SARS-CoV-2 inhibitors. 

 

Table 1: Compounds Identified as ACE2 Binders and Inhibitors of SARS-CoV-2 

ID Structure 
ACE2 binding, 

Kd (μM)a 

IC50 

(μM)b 

Efficacy 

(%)c 

1 

 

 

0.092 15.67 140.19 

2 

 

0.382 17.58 124.61 

3 

 

 

0.623 13.96 177.42 

4 

 

 

0.727 19.72 100.73 

5 

 

 

3.31 24.83 70.61 

Notes: 
aACE2-binding affinity (Kd) measured by MST; 
bIC50: half-maximal inhibitory concentration values obtained SARS-CoV-2 Fluc assay, measured in triplicate; 
cEfficacy: maximum inhibitory effect observed in SARS-CoV-2 Fluc assay. 

 

To summarize, we used a microscale thermophoresis assay (to measure compound binding to 

ACE2) and an enzymatic assay (to determine whether cleavage of a known peptide substrate of 

ID
ACE2 Kd, 

uM

Fluc virus 

- A549
A549 tox, 

Fluc 

counter

IC50, uM
efficacy, 

%
IC50, uM

efficacy, 

%
IC50, uM

efficacy, 

%

1 0.092 15.67 -140.191 24.82 -139.6 null

2 0.382 17.58 -124.607 null null

3 0.623 13.96 -177.417 null 15.01 -33.9

4 0.727 19.72 -100.727 null null

5 3.31 24.83 -70.613 null 18.89 -56.5

ID
ACE2 Kd, 

uM

Fluc virus 

- A549
A549 tox, 

Fluc 

counter

IC50, uM
efficacy, 

%
IC50, uM

efficacy, 

%
IC50, uM

efficacy, 

%

1 0.092 15.67 -140.191 24.82 -139.6 null

2 0.382 17.58 -124.607 null null

3 0.623 13.96 -177.417 null 15.01 -33.9

4 0.727 19.72 -100.727 null null

5 3.31 24.83 -70.613 null 18.89 -56.5

ID
ACE2 Kd, 

uM

Fluc virus 

- A549
A549 tox, 

Fluc 

counter

IC50, uM
efficacy, 

%
IC50, uM

efficacy, 

%
IC50, uM

efficacy, 

%

1 0.092 15.67 -140.191 24.82 -139.6 null

2 0.382 17.58 -124.607 null null

3 0.623 13.96 -177.417 null 15.01 -33.9

4 0.727 19.72 -100.727 null null

5 3.31 24.83 -70.613 null 18.89 -56.5

ID
ACE2 Kd, 

uM

Fluc virus 

- A549
A549 tox, 

Fluc 

counter

IC50, uM
efficacy, 

%
IC50, uM

efficacy, 

%
IC50, uM

efficacy, 

%

1 0.092 15.67 -140.191 24.82 -139.6 null

2 0.382 17.58 -124.607 null null

3 0.623 13.96 -177.417 null 15.01 -33.9

4 0.727 19.72 -100.727 null null

5 3.31 24.83 -70.613 null 18.89 -56.5

ID
ACE2 Kd, 

uM

Fluc virus 

- A549
A549 tox, 

Fluc 

counter

IC50, uM
efficacy, 

%
IC50, uM

efficacy, 

%
IC50, uM

efficacy, 

%

1 0.092 15.67 -140.191 24.82 -139.6 null

2 0.382 17.58 -124.607 null null

3 0.623 13.96 -177.417 null 15.01 -33.9

4 0.727 19.72 -100.727 null null

5 3.31 24.83 -70.613 null 18.89 -56.5
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ACE2 was interrupted in the presence of these compounds) to discover putative allosteric binders 

of ACE2. We presumed that a compound that shows strong binding to ACE2 but little to no inter-

ruption of enzymatic activity is an allosteric binder. Using the results of the initial binding and 

enzymatic activity assays (3,246 compounds), we developed the QSAR models, which were used 

to nominate a set of 512 virtual hits. Experimental validation of these compounds demonstrated 

that 13% of them were allosteric ACE2 binders. This was a significant enrichment of hit rate over 

the prevalence of allosteric binders in the original assay, which was closer to 3%. This set of com-

pounds, along with hits from the original assay, were then subjected to a further experimental 

analysis to determine their anti-SARS-CoV-2 activity. Thus, an assay for viral replication of a 

modified SARS-CoV-2 virus in human cells over-expressing ACE2 was applied to the set of pre-

sumed allosteric ACE2 binders, along with appropriate counterscreens to rule out assay artifacts. 

In total, five hit compounds reported here have significant binding to ACE2, little disruption of 

ACE2 enzymatic activity, and significantly reduce SARS-CoV-2 replication in human cells. To 

the best of our knowledge, this is the first successful attempt to discover antiviral agents against 

SARS-CoV-2 via ACE2 allosteric binding mechanism, and we encourage further exploration of 

these hits for use in treatment of COVID-19. 

 

 

Material and Methods 

 

Experimental: 

 

Microscale Thermophoresis Assay 

 

Binding of the compounds to recombinant human ACE2 (Sino Biological, Cat #: 10108-H08H) 

was evaluated by microscale thermophoresis (MST). His-tagged ACE2 was labeled with RED-

tris-NTA 2nd generation dye (Nanotemper Technologies, Cat #: MO-L018) following 

manufacturer’s protocol and diluted in MST buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 10 

mM CaCl2, 0.01% Tween 20) to a final concentration of 3 nM For the single dose screen 200 nL 

of library compounds were pre-dispensed into the assay plate using Echo 650 series acoustic 

dispenser (Labcyte Inc.), mixed with 10 μL of labeled protein and incubated for 15 min at RT. For 

dose-response experiments, 100 nL of compounds in two-fold dilution series were transferred to 

384-well compound plate (Greiner, Cat #: 784201-1B). MST traces were collected using Monolith 

NT.Automated (Nanotemper Technologies) unit and standard treated capillary chip (Nanotemper 

Technologies, Cat #: MO AK002) with following setting: 45% excitation power, medium MST 

power and MST periods of 3s/10s/1s. Kd values were calculated by fitting the change in normalized 

fluorescence signal of the thermograph using MO.Affinity analysis software. 
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To identify false-positive binders, which could interact with the fluorophore labeled His-tag 

instead of the target protein, all compounds tested in the dose-response experiments with ACE2 

were counterscreened with poly-histidine control peptide (Nanotemper Technologies) under the 

same experimental conditions as with ACE2.    

 

ACE2 Enzymatic Assay 

 

ACE2 enzyme activity was monitored in a fluorometric assay. Briefly, 25 nL compounds were 

transferred to the 1536-well assay plate (Greiner, solid black medium-binding plates) using Echo 

650 (Labcyte Inc.) acoustic dispenser. 3 μL/well of 0.27 nM ACE2 (0.2 nM final concentration) 

suspension in assay buffer (PBS, pH 7.4, 0.01% Tween-20) was dispensed into assay plate with 

Aurora Discovery BioRAPTR Dispenser (FRD; Beckton Dickenson) and incubated 15 min at 

room temperature (RT). One μL/well of 60 μM ACE2 substrate (AnaSpec, Cat #: AS-60757) was 

then added. The plate was centrifuged at 1000 rpm for 15 sec and the fluorescence was detected 

with the PHERAstar plate reader (BMG Labtech) equipped with Module 340/440 at t1=0 min and 

t2=15 min at RT. Data was normalized to enzyme activity in presence of DMSO, set as 0%, and 

in presence of 6.2 µM MLN-4760, set as -100% inhibition. The resulting percent of inhibition data 

were fitted to a sigmoidal dose response curve using four-parameter Hill equation. 

 

Live SARS-CoV-2 Fluc Assay and Cytotoxicity Counterscreen 

 

A live SARS-CoV-2 replication assay in A549-ACE2 host cells was used to measure the ability 

of compounds to perturb the replication of SARS-CoV-2. It employs an engineered SARS-CoV-2 

WA-1 lineage virus that has an integrated firefly luciferase reporter (Fluc, provided by Pei-Yong 

Shi, UTMB) and A549-ACE2 cells (generously provided by Pei-Yong Shi, UTMB), an adenocar-

cinoma human alveolar basal epithelial cell line stably overexpressing human ACE2.   

Briefly, 20 nL/well of compounds in DMSO were spotted into 1536-well assay plates (Aurora E8, 

black clear bottom, tissue culture treated plates) by acoustic dispensing. In parallel, 20 nL of 

DMSO were added to the first 4 columns of the plate, which serve as the no virus and neutral 

control wells. 4 µL of A549-ACE2 cells are dispensed to all wells, for a final density of 1,600 

cells/well in DMEM media with 2% FBS. In addition, 1 µL of media (DMEM, 2% FBS) are dis-

pensed to columns 1 and 2. Thereafter, 1 µl/well of SARS-CoV-2 (USA_WA1/2020) at multiplic-

ity of infection (MOI) of 0.2 suspended in media were dispensed to columns 3-48. Assay plates 

were incubated for 48 h at 37°C, 5% CO2, 90% humidity. After incubation, 2 µL/well of One-Glo 
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(Promega, Cat # E6120) detection reagent was added, and plates were incubated for 5 min at room 

temperature. Luminescence signal was measured on BMG PheraStar plate reader. 

Raw data was normalized to the neutral control (cells infected with virus in presence of DMSO, 

set as 0%) and positive control (cells without virus added, set as -100%) for each plate. The result-

ing percent of inhibition data were fitted to a sigmoidal dose response curve using four-parameter 

Hill equation. 

 

In parallel, the compounds were tested in a cytotoxicity counterscreen against the A549-ACE2 cell 

line. The assay was set up in the same way as in the Fluc assay omitting the addition of virus. 

A549-ACE2 with DMSO solvent served as the negative control, whereas media and DMSO (no 

cells) was the positive control. The plates were incubated for 48 hrs. at 37°C, and one volume of 

CellTiter-Glo assay reagent (Promega, Madison, WI), which assess viable cells (ATP content), 

was added using a BioRAPTR FRD (Beckman Coulter, Brea, CA). Cell viability was measured 

using a ViewLux µHTS Microplate Imager (PerkinElmer, Waltham, MA). The obtained lumines-

cence signal was normalized against negative control (0% response) and positive control (-100% 

response). 

Firefly Luciferase Counterscreen 

To identify false-positive hits, which could reduce the Fluc signal due to the inhibition of the lucif-

erase enzyme rather than perturbing the viral infection, compounds were tested in a biochemical 

assay with recombinant luciferase from Photinus pyralis (firefly). Briefly, 25 nL/well compounds or 

DMSO as vehicle control (columns 1-4) were acoustically transferred to white solid 1536-well-plate 

(Greiner, Cat #: 789175-F). 3 μL/well of 13.33 nM luciferase (10 nM final concentration) suspension 

in 50 mM Tris-acetate buffer, pH 7.6 was dispensed into assay plate with Aurora Discovery Bio-

RAPTR Dispenser (FRD; Beckton Dickenson) and incubated 15 min at room temperature. 3 µL/well 

of buffer only were dispensed to columns 3-4 as no enzyme control. One μL/well of 40 μM D-

luciferin in substrate buffer (50 mM Tris-acetate, pH 7.6, 10 mM Mg-acetate, 10 µM ATP, 0.01% 

Tween-20, 0.05% BSA) was then added. The plate was centrifuged at 1000 rpm for 15 sec and the 

luminescence was detected with the PHERAstar plate reader (BMG Labtech). Data was normalized 

to enzyme activity in presence of DMSO, set as 0%, and no enzyme control, set as -100% inhibition. 
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The resulting percent of inhibition data were fitted to a sigmoidal dose response curve using four-

parameter Hill equation. 

Computational: 

 

Data Curation  

 

UNC protocol: All chemical structures and correspondent activity information were analyzed and 

prepared according to data curation protocols proposed by Fourches et al.34–36 All steps of data 

curation were performed in KNIME37 integrated with ChemAxon Standardizer38. In summary, 

specific chemotypes were normalized and explicit hydrogens were added. If present, polymers, 

salts, organometallic compounds, and mixtures were removed. Furthermore, we performed the 

analysis and exclusion of duplicates. The following criteria were applied for exclusion of dupli-

cates: (i) if the reported activity of the duplicates were the same (i.e., in concordance), only one 

entry was kept in the dataset; (ii) if duplicates presented discordance in biological activity, both 

entries were excluded. 1 compound with ambiguous activity data was removed. In total, 163 com-

pounds were removed in the curation process, 6 of which were actives. 

 

NCATS followed similar protocols using KNIME37,39 and the Atkinson standardization protocol, 

described at https://github.com/flatkinson/standardiser.40 

 

Molecular Descriptors  

 

UNC protocol: Descriptors were chosen to cover a reasonable amount of descriptor types (whole 

molecule descriptors, fragment descriptors, topological descriptors) while maximizing ease-of-

use. A total of seven different descriptors were generated for the dataset. Six of these (RDKit 

whole-molecule descriptors, Morgan fingerprint, HashedAtomPairFingerprint, HashedTopologi-

calTorsionFingerprint, and MACCS Keys) were generated using the RDKit41 Python package.  

The seventh descriptor type, Simplex Representation of Molecular Structures (SiRMS), was cal-

culated using the Hit QSAR software.42 At the 2D level, the connectivity of atoms in a simplex, 

the atom type, and bond nature (single, double, triple, aromatic) were considered43. Bonded and 

nonbonded 2D simplexes were used. In addition to element and atom type, physicochemical char-

acteristics of atoms, such as partial charge, lipophilicity, refraction, and the atom’s ability to be a 

hydrogen-bond donor/acceptor, were used for atom differentiation in the simplexes. For the atom 

characteristics with real values (charge, lipophilicity, and refraction), a binning procedure was used 

to define discrete groups: (i) partial charge A ≤−0.05 < B ≤ 0<C ≤ 0.05 < D, (ii) lipophilicity A 

≤−0.5 < B ≤ 0<C ≤ 0.5 < D, and (iii) refraction A ≤ 1.5 < B ≤ 3<C ≤ 8<D. For hydrogen-bond 
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characteristics, the atoms were also divided into three groups: A (acceptor of hydrogen in H-bond); 

D (donor of hydrogen in H-bond); and I (indifferent atom, i.e., atom that does not form H-bonds)44. 

 

NCATS protocol: We employed three different sets of descriptors: physicochemical descriptors 

(RDKit), Morgan fingerprints (1024 bits) and Avalon fingerprints (1024 bits), calculated using the 

RDKit toolkit41. As consensus modeling approaches have been reported to outperform simple 

QSAR models45–49 , we also performed the consensus of descriptors (RDKit, Morgan and Avalon). 

 

Model Building 

 

UNC QSAR protocol: The models were developed using best practices as described in Cherkasov 

et al.50 For models not based on decision trees, the descriptor matrix was normalized to prevent 

undesired weighting of certain descriptor dimensions. Descriptor dimensions with low variance 

(less than 0.0001) were eliminated due to being non-informative. Models were generated for most 

architecture-descriptor pairs. The MuDRA51 algorithm requires multiple descriptor spaces, so it 

was handled differently than the rest. The four descriptor types used for the MuDRA model were 

the Morgan fingerprint, HashedAtomPairFingerprint, HashedTopologicalTorsionFingerprint, and 

MACCS Keys.  

 

NCATS QSAR protocol: In order to overcome the problem of data imbalance, we used bagging 

with stratified under-sampling52. This method has proven to be among the best performing meth-

ods for dealing with imbalanced datasets53. Stratified bagging (SB) is a machine learning technique 

that is based on an ensemble of models developed using multiple training datasets sampled from 

the original training set. It uses minority class samples to create the training set of positive samples 

using a traditional bagging approach (resampling with replacement) and after that randomly selects 

the same number of samples from the majority class. Thus, the total bagging training set size was 

double the number of the minority class molecules. Several models are then built, and predictions 

averaged in order to produce a final ensemble model output. Because of random sampling, about 

37% of the molecules are not selected and left out in each run. These samples create the “out-of-

the-bag” sets, which are used for testing the performance of the final model53. Although a small 

set of samples are selected each time, the majority of molecules contributed to the overall bagging 

procedure since the datasets were generated randomly. Random Forest (with default parameters) 

was used as a base-classifier. The number of trees was arbitrarily set to 100 (default), since it has 

been shown that the optimal number of trees is usually 64-128, while further increasing the number 

of trees does not necessarily improve the model’s performance. 
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Pharmacophore-based modeling: In addition to QSAR, we also performed ligand-based pharma-

cophore modeling (LBP). A pharmacophore describes the spatial arrangement of essential inter-

actions of a drug with its respective receptor binding site. It is a well-established method virtual 

screening (VS) in the early drug discovery process. In this study, the generation of LBP models, 

their subsequent refinement, and VS were performed with LigandScout 4.4 Advanced, available 

by Inte:Ligand GmbH. The conformational libraries for both pharmacophore modeling and the VS 

process were created with i:Con54 (max. 200 conformations per compound), a conformer generator 

implemented in LigandScout. 

 

To design the LBP models, the actives (from the training set) were clustered based on pharmaco-

phore-based similarity (cluster distance 0.4, 0.6, 0.7, and 0.8, respectively). For each of the clusters 

obtained from different cluster distance thresholds, merged-features pharmacophore (MFP) and 

shared-features pharmacophore (SFP) models were generated that incorporate the features of se-

lected compounds per cluster.55 A good pharmacophore model should not only be able to estimate 

the activity of active compounds, but also have the ability to identify the active molecules from a 

database containing a large number of inactive compounds. To select the best models for screen-

ing, we applied these models on our complete dataset (training and test set combined) and calcu-

lated the percentage of active and inactive that hit these pharmacophore models. The models that 

hit 20% more active compounds versus inactive compounds were selected for the final virtual 

screening. The screening was performed using iscreen module, with default settings with the max-

imum number of omitted features set to 2. 

 

Model Validation 

 

UNC protocol: Models were evaluated using five-fold external cross-validation. The dataset was 

split randomly into five partitions. Each model was trained on four of the five partitions and tested 

on the fifth. This process was repeated five times so each partition was used once as a test set. 

Reported model statistics are an average of performance across each test set.  

 

NCATS protocol: From each class, 80 % of the data was randomly selected and used as a training 

set. The remaining 20 % of compounds were considered as the external validation set. For stratified 

Bagging, since multiple training datasets were generated by selecting the molecules with replace-

ment from training set in a random fashion, this leaves out about 37% of the instances in each run. 

Therefore, these molecules that constitute the ‘out-of-the-bag’ sets are later used for testing the 

performance of the final model.  

 

Data availability 
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All the data, models, and results produced/developed in this study are available at Chem-

bench56(https://chembench.mml.unc.edu/).  
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