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Abstract

Recently, the development of chiral perturbation theory has allowed

the generation of rigorous low-energy theorems for various hadronic pro-

cesses based only on the chiral invariance of the underlying QCD La-

grangian. Such techniques are highly developed and well-tested in the

domain of pionic and kaonic reactions. In this note we point out that

with the addition of a few additional and reasonable assumptions similar

predictive power is available for processes involving the eta meson.
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1 Introduction

It has long been the holy grail for particle and nuclear knights to generate
rigorous predictions from the Lagrangian of QCD

LQCD = −1

2
GµνGµν + q̄(iγµDµ − m)q (1)

where

Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

Dµq = (∂µ − igAµ)q. (2)

However, despite the ease with which one can write this equation, because of its
inherent nonlinearity and the large value of the coupling constant—g2/4π ∼ 1—
progress in this regard has been slow. One approach—lattice gauge theory—
holds great promise, but is currently limited by the need for large computational
facilities[1]. A second tack, that of perturbative QCD, exploits the feature of
asymptotic freedom—the vanishing of the running coupling constant at high
momentum transfer[2]. However, such predictions are valid only for the very
highest energy processes. It is gratifying then to see that in recent years a third
procedure has become available, that of chiral perturbation theory (χPT) which
exploits the chiral symmetry of QCD and allows rigorous predictive power in
the case of low energy reactions. This technique, based on a suggestion due
to Weinberg[3], was developed (at one loop level) during the last decade in
an important series of papers by Gasser and Leutwyler and others[4]. The
idea is based on the feature that the QCD Lagrangian—Eq. 1—possesses a
global SU(3)L × SU(3)R (chiral) invariance in the limit of vanishing quark
mass. Such invariance is manifested in the real world not in the conventional
Wigner-Weyl fashion. Rather, it is spontaneously broken, resulting in eight
light pseudoscalar Nambu-Goldstone bosons—π, K, η—which would be massless
if the corresponding quark masses also vanished[5]. While the identification of
this symmetry is apparent in terms of quark/gluon degrees of freedom, it is not
so simple to understand the implications of chiral invariance in the arena of
experimental meson/baryon interactions.

Early attempts in this direction were based on current algebra/PCAC
methods[6], yielding relationships between processes differing in the number
of pions, e.g.

lim
q→0

< Bπa
q |O|A >=

−i

Fπ

< B|[F a
5 ,O]|A > (3)

where Fπ = 92.4 MeV is the pion decay constant[7]. However, it was soon
realized that the most succinct way to present these restrictions is in terms of
an effective chiral Lagrangian, the simplest (two-derivative) form of which is, in
the Goldstone sector[8],

L(2)
eff =

F̄ 2

4
TrDµUDµU † +

F̄ 2

4
Tr2B0m(U + U †) + · · · (4)

1



where

U = exp





i

F̄

8
∑

j=1

λjφj



 (5)

is a nonlinear function of the pseudoscalar fields, m = (mu, md, ms)diag is the
quark mass matrix,

2B0 =
2m2

K

mu + ms

=
2m2

π

mu + md

(6)

is a phenomenological constant, Dµ = ∂µ − i[Vµ, ] − i{Aµ, } is the covariant
derivative coupling to external fields Vµ, Aµ, and F̄ is the pion decay constant
in the limit of chiral symmetry. Although these are only two of an infinite
number of terms, already at this level there exists predictive power–e.g., tree
level evaluation of L(2) yields the familiar Weinberg predictions (at O(p2, m2))
for S-wave π − π scattering lengths[9]

a0
0 =

7mπ

32πF 2
π

a2
0 = − mπ

16πF 2
π

(7)

which are approximately borne out experimentally. Loop diagrams, of course,
produce terms of O(p4, p2m2, m4) and contain divergences. However, just as in
QED such infinities can be absorbed into renormalizing phenomenological chiral
couplings, and the most general ”four-derivative” Lagrangian has been given by
Gasser and Leutwyler[3]

L(4)
eff = L1(TrDµUDµU †)2 + L2(TrDµUDνU †)2

+L3Tr(DµUDµU †)2 + L4TrDµUDµU †)Tr(m(U + U †))

+L5TrDµUDµU †m(U + U †) + L6(Trm(U + U †))2

+L7(Trm(U − U †))2 + L8Tr(mUmU + mU †mU †)

+iL9(TrFL
µνDµUDνU † + TrFR

µνDµUDνU †)

+L10TrFL
µνUFRµνU † (8)

where FL
µν , FR

µν are external field strength tensors defined via

FL,R
µν = ∂µFL,R

ν − ∂νFL,R
µ − [FL,R

µ , FL,R
ν ]

FL
µ = Vµ + Aµ FR

µ = Vµ − Aµ. (9)

Here the bare Li coefficients are themselves unphysical and are related to em-
pirical quantities Lr

i (µ) measured at scale µ via

Lr
i (µ) = Li +

Γi

32π2

(

1

ǫ
+ ln

4π

µ2
+ 1 − γ

)

, (10)

where Γi are constants defined in ref. 4b and ǫ = 4 − d is the usual parameter
arising in dimensional regularization, with d being the number of dimensions.
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Lr
1 Lr

2 Lr
5 Lr

9 Lr
10

0.71 ± 0.28 2.01 ± 0.37 2.7 ± 0.3 7.7 ± 0.2 −5.2 ± 0.3

Table 1: Empirical values of Chiral Expansion Parameters(×10−3) with µ = mη.

Gasser and Leutwyler have obtained empirical values for the phenomenological
constants Lr

1(µ), . . . Lr
10(µ), values for some of which are given in Table 1.

At the four-derivative level it is also necessary to include the contribution
of the anomaly, which in the case of coupling to the photon field Aµ has the
form[10]

ΓWZW(U, Aµ) = ΓWZW(U)

+
Nc

48π2
ǫµναβ

∫

d4x [eAµTr(Q(RνRαRβ + LνLαLβ))

− ie2FµνAαTr

(

Q2(Rβ + Lβ) +
1

2
(QU †QURβ + QUQU †Lβ)

)]

(11)

where Rµ ≡ (∂µU †)U, Lµ ≡ U∂µU † and ΓWZW is independent of the photon
field and will not be needed for our purposes. A corresponding form involving
coupling to a general nonabelian gauge field can also be written, but is lengthy
and will not be given here[11].

In a series of recent papers it has been conclusively demonstrated that this
chiral effective action formalism provides a succinct and successful description
of low energy electroweak interactions of pions and kaons[12]. Specifically, the
reactions given in Table 2 are successfully described in terms of GL parameters
L9(µ), L10(µ). Clearly, there are far more reactions than parameters, and this
overdetermination enables one to construct required relationships between ex-
perimental quantities, the empirical validity of which constitutes a strong test of
the chiral formalism and indeed thereby of QCD itself[13]. Such tests are found
to be well satisfied, with the possible exception of the relationship between the
axial structure function in radiative pion beta decay—hA—and the charged pion
polarizability—απ+

E [14]. However, recent work indicates that this may not be
a problem and in any case a number of experimental efforts are underway to
retest this critical stricture[15].

In the pion and kaon arena then one finds strong evidence for the correctness
and utility of chiral perturbative techniques, and it is an obvious next step to
attempt to extend this success into the eta sector, which is the subject of this
note. This examination of the eta system is important both as a theoretical
exercise and because of the existence of high intensity sources of etas[16]. In
the next section then we study the ability of the chirally inspired methods
to make reliable predictions for eta decay processes. We examine only the
”allowed” modes—η → 2γ, 3π, 2πγ, π2γ, 3πγ, i.e. those modes which can occur
assuming only isospin violation or the anomaly, eschewing the temptation to

3



Reaction Quantity Theory Experiment

γ → π+π− < r2
π >(fm2) 0.44a 0.44 ± 0.02

γ → K+K− < r2
K >(fm2) 0.44 0.34 ± 0.05

π+ → π+νeγ hV (m−1
π ) 0.027 0.029 ± 0.017

hA/hV 0.46a 0.46 ± 0.08
K+ → e+νeγ (hV + hA)(m−1

π ) 0.038 0.043 ± 0.003
π+ → e+νee

+e− rA/hV 2.6 2.3 ± 0.6

γπ+ → γπ+ (αE + βM )(10−4(fm3) 0 1.4 ± 3.1

αE(10−4(fm3) 2.8 6.8 ± 1.4

γγ → ππ αE(10−4(fm3) 2.8 2.2 ± 1.6
K → πe+νe ξ = f−(0)/f+(0) -0.13 −0.20 ± 0.08

λ+(fm2) 0.067 0.065 ± 0.005

λ0(fm
2) 0.040 0.050 ± 0.012

Table 2: Chiral predictions and data in the radiative complex of transitions.
The superscript a indicates that this parameter was used as input and is not a
predicted quantity.

analyze “rare” processes such as η → 3γ, as these have been well-discussed
elsewhere[17]. Finally, we summarize our results in a concluding section III.

2 Eta Decay Processes

Strictly from a kinematic perspective, inclusion of the η(547) as part of the
chiral formalism should not be a problem, as the eta and kaon are roughly
degenerate in mass, and as mentioned above the kaon (and pion) predictions
obtained in this way are quite successful. Rather the real challenge involves
mixing with η′(958), which lies outside the simple chiral SU(3)L × SU(3)R

framework. To lowest order things are simple—in the chiral limit the pseu-
doscalar mass spectrum would consist of a massless octet of Goldstone bosons
plus a massive SU(3) singlet (η0). With the breaking of chiral invariance the
octet pseudoscalar masses become nonzero and are related, at first order in
chiral symmetry breaking, by the Gell-Mann-Okubo formula[18]

m2
η8

=
4

3
m2

K − 1

3
m2

π ≈ (0.57 GeV)2 (12)

where η8 is the eighth member of the octet. At this same order in symme-
try breaking the singlet η0 will in general mix with η8 producing the physical
eigenstates η, η′ given by

η = cos θη8 − sin θη0

η′ = sin θη8 + cos θη0. (13)

4



The mixing angle θ can be determined via diagonalization of the mass matrix
(written in the η8, η0 basis)

m2 =

(

m2
η8

m2
08

m2
08 m2

η0

)

(14)

Here m2
η8

is given in Eq. 12 while m2
08, m

2
η0

, and θ are unknown. Diagonalizing
and fitting these parameters with the two known masses yields the results

θ = −9.4◦, m2
08 = −0.44m2

K, mη0
= 0.95 GeV (15)

However, there is good reason not to trust this simple and lowest order analysis,
since higher order chiral symmetry breaking terms can generate important mod-
ifications. For example, taking the leading log correction arising from Figure 1,
we find[19]

m2
η8

=
4

3
m2

K − 1

3
m2

π − 2

3

m2
K

(4πFπ)2
ln

m2
K

µ2

≈ (0.61 GeV)2 for µ = 1 GeV, (16)

for which diagonalization of the mass matrix yields

θ ≈ −19.5◦, m2
08 = −0.81m2

K, mη0
= −0.90 GeV (17)

suggesting a doubling of the mixing angle. Of course, this is just an approximate

Figure 1: Mass and wavefunction renormalization diagram.

result. However, a full one loop calculation using χPT yields essentially the same
result[4], and consequently in our analysis below we shall use the value in Eq.
17, i.e.

sin θ ≈ −1

3
cos θ ≈ 2

√
2

3
. (18)

It is also intriguing that this solution is consistent with the assumptions of simple
U(3) invariance wherein η8, η0 have the same quark wavefunction, leading to

m2
08

m2
K

≃ 2
√

2

3

(

m̂ − ms

m̂ + ms

)

≃ −0.9 (19)
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At this same (one-loop) level of symmetry breaking there is generated a shift
in the lowest order value of the pseudoscalar decay constant FP . Thus one finds
from the diagrams in Figure 2, in leading log approximation,

Fπ = F̄

[

1 − 1

2

m2
K

(4πFπ)2
ln

m2
K

µ2

]

≈ 1.12F̄

Fη8
= F̄

[

1 − 3

2

m2
K

(4πFπ)2
ln

m2
K

µ2

]

≈ 1.25Fπ for µ ≈ 1 GeV. (20)

Once again these estimates are in excellent agreement with those given in the
full one-loop analysis[4]. (We note in addition that the corresponding prediction

FK

Fπ

= 1 − 1

4

m2
K

(4πFπ)2
ln

m2
K

µ2
− 3

8

m2
η

(4πFπ)2
ln

m2
η

µ2
≈ 1.22 (21)

is quite consistent with the experimental value 1.22 ± 0.01)

X(a) X(b)
Figure 2: Loop diagrams leading to renormalization of the pseudoscalar decay
constant. Here the symbol x indicates coupling to the axial current.

2.1 η → γγ

With this introductory material in hand we can now confront the subject of our
report—that of eta decay. First consider the dominant two-photon decay mode,
which to leading order arises due to the anomaly. In the analogous π0 → γγ
case we find from Eq. 11

Amp ≡ Fπγγ(0)ǫµναβǫµkνǫ′αk′
β with F theo

πγγ (0) =
Ncα

3πFπ

= 0.025 GeV−1.

(22)
General theorems guarantee that this result is not altered in higher orders of
chiral symmetry breaking[20] and, using the experimental value[21]

Γ(π0 → γγ) = (7.7 ± 0.7) eV, (23)

we determine
F exp

πγγ = (0.0250± 0.0005) GeV−1 (24)
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in excellent agreement with the theoretically predicted value and eloquently
confirming the value Nc = 3 as the number of colors. Strictly speaking, the
prediction of the anomalous four-derivative Lagrangian Eq. 11 should be in
terms of F̄ rather than Fπ . Indeed the difference between the value given in
Eq. 22 and the strict four-derivative prediction involves terms of dimension six
and is higher order in the chiral expansion. Clearly, however, our prediction for
Fπγγ(0), which arises from what we shall term extended-χPT, is in excellent
agreement with experiment. Nevertheless, although very reasonable, this is not

a firm prediction of χPT itself.
The η, η′ → γγ couplings also arise from the anomalous component of the

effective chiral Lagrangian and, in the extended χPT approximation, have the
values

Fηγγ(0) =
Fπγγ(0)√

3

(

Fπ

F8
cos θ − 2

√
2
Fπ

F0
sin θ

)

Fη′γγ(0) =
Fπγγ(0)√

3

(

Fπ

F8
sin θ + 2

√
2
Fπ

F0
cos θ)

)

. (25)

Using the experimental numbers[24]

Γ(η → γγ) = (0.51 ± 0.05) keV Γ(η′ → γγ) = (4.7 ± 0.7) keV (26)

we find

Fηγγ(0) = 0.0249± 0.0010 GeV−1 Fη′γγ(0) = 0.0328± 0.0024 GeV−1

(27)
In order to solve this system, we require an additional assumption since there are
three unknowns—F0, F8, θ—but only two pieces of data—Eq. 27. The standard
approach at this point has been to use the leading log prediction from one-loop
chiral perturbation theory—

F8

Fπ

= 1 − m2
K

(4πFπ)2
ln

m2
K

µ2
+

m2
π

(4πFπ)2
ln

m2
π

µ2
≃ 1.30 at µ ∼ 1 GeV (28)

as input, and then to solve for F0, θ, yielding

θ ≃ −20◦,
F0

Fπ

≈ 1.04 (29)

It is intriguing that these results from two phton decay are quite compatable
with those obtained from the one-loop analysis of the mass matrix—i.e., θ ≃
−20◦ and F0/Fπ consistent with the value of unity which one would obtain if
the singlet state and the pion were to have the same quark wavefunction.

Closely related to the above modes are the associated Dalitz decays—
π, η, η′ → γe+e−—which have been studied at DESY[25]. These are tradi-
tionally parameterized in terms of a dipole slope parameter ΛP such that

1

Γ

dΓ

ds
= (1 +

s

Λ2
P

)2 with s = (p+ + p−)2. (30)

7



The experimentally obtained values

Λπ = 0.75 ± 0.03 GeV Λη = 0.84 ± 0.06 GeV Λη′ = 0.79 ± 0.04 GeV
(31)

are in reasonable agreement with the vector dominance predictions[26]

Λ2
π = m2

ρ,ω ≈ (0.77 GeV)2

Λ2
η = m2

ρ,ω

(

3 cos θ − 6
√

2 sin θ

(5 − 2ξ2) cos θ − (5 + ξ2)
√

2 sin θ

)

≈ (0.75 GeV)2

Λ2
η′ = m2

ρ,ω

(

3 sin θ + 6
√

2 cos θ

(5 − 2ξ2) sin θ + (5 + ξ2)
√

2 cos θ

)

≈ (0.83 GeV)2

where ξ2 = (m2
ρ,ω/m2

φ) (32)

These results are consistent with the observation that vector/axial dominance
provides a remarkably successful representation of the values of the GL param-
eters Lr

i (µ) obtained empirically[27] and suggest an additional extension of our
(already) extended χPT to include an effective vector-dominated Lagrangian[28]

Leff = LVPP + LV γ + LVVP + LPPPγ (33)

with

LVPP =
−ig

4
TrVµ[φ, ∂µφ]

LVγ = 2eF 2
πgAµ

(

ρµ +
1

3
ωµ −

√
2

3
φµ

)

LVVP = −
√

3

4
gV V P ǫµναβTr(∂µVν∂αVβφ)

LPPPγ =
−ieNc

24π2F 3
π

ǫµναβAµ∂νπ+∂απ−∂βπ0 (34)

and

gV V P = − 3g2

8π2Fπ

, (35)

in order to understand the six-derivative component of the chiral expansion.
Here g is given by the KSRF relation as[29]

g2 =
m2

ρ

2F 2
π

. (36)

In this formalism then the amplitude for π0 → γγ is determined from the
diagram in Figure 3 to be

Fπγγ(0) =
2e2

3m2
ωm2

ρ

(2eFπg)2gωρπ =
e2

4π2Fπ

(37)

8



as the value required by the anomaly.
With this background in hand, we can now discuss a second important de-

cay mode of the eta—that of η → ππγ which also arises from the anomalous
component of the Lagrangian.

� � 
! 

Figure 3: Vector dominance diagram responsible for π0 → γγ.

2.2 η → π
+
π
−

γ

In the previous section we performed an analysis of the QCD anomaly as man-
ifested in the two photon decay of the pseudoscalar mesons and, by use of the
one loop leading log value for F8/Fπ, were able to determine a solution for the
η, η′ mixing angle which is close to that found in the mass analysis together
with a value for F0/Fπ which is near that which results from the assumption
that the η0 and pion have the same wavefunction. While this is somewhat satis-
fying, it is intriguing to inquire whether one can assess the mixing angle purely
phenomenologically. We shall show below that this question can be answered in
the affirmative, provided one utilizes the additional information available in the
anomalous decays η, η′ → π+π−γ. Such processes involving a photon coupled
to three pseudoscalar mesons involve the anomaly and, at zero four-momentum,
are completely determined from Eq. 11. However, inclusion of higher order ef-
fects generates structure and study of such processes requires proper attention
to issues of unitarity and final state interactions. Before considering η, η′ decay,
however, we consider first the closely related case of γ → π+π−π0. At zero
four-momentum the anomaly requires[30]

Amp(3π − γ) = A(s+−, s+0, s−0)ǫ
µναβǫµp+νp−αp0β

where A(0, 0, 0) =
eNc

12π2F 3
π

= 9.7 GeV−3 and sij = (pi + pj)
2 (38)

and one might suspect that vector dominance could reproduce this result di-
rectly, as in the case of π0 → γγ discussed above. However, this turns out not

9



to be the case. Rather, use of the diagram shown in Figure 4a yields

A(s, t, u) =
eNc

24π2F 3
π

(

m2
ρ

m2
ρ − s

+
m2

ρ

m2
ρ − t

+
m2

ρ

m2
ρ − u

)

(39)

which at zero four-momentum is 50% larger than the value given by the anomaly.
The resolution of this problem is well-known and arises from the a direct γ−3π
coupling—Figure 4b—given in LPPPγ whose origin presumably is from unspec-
ified high-momentum-scale processes[31] . Addition of this contribution to the
γ − 3π process yields an amplitude

A(s, t, u) =
eNc

12π2F 3
π

[

1 +
1

2

(

s

m2
ρ − s

+
t

m2
ρ − t

+
u

m2
ρ − u

)]

(40)

which has the structure required by vector dominance, but also agrees with the
value required by the chiral anomaly at zero four-momentum. Inclusion of loop
corrections modifies Eq. 40 slightly but does not change the general form.[32]

(a) � �
� �  ���(b)

Figure 4: Vector dominance diagrams responsible for the anomalous process
γπ → ππ.

The γ−3π reaction has been studied experimentally via pion pair production
by the pion in the nuclear Coulomb field and yields a number[33]

A(0, 0, 0)exp = 12.9 ± 0.9 ± 0.5 GeV−3 (41)

in apparent disagreement with Eq. 38 and suggesting the value Nc ≈ 4! This
value was obtained, however, assuming no energy dependence of the amplitude
and is reduced to

A(0, 0, 0)exp = 11.9 ± 0.9 ± 0.5 GeV−3 (42)

if Eq. 40 is utilized, but is still too large. The most likely conclusion is that
this an experimental problem associated with this difficult-to-measure process,
but it has recently been pointed out by Ametller, Knecht, and Talavera that
an important electromagnetic effect—the photon exchange diagram connecting

10



π0γγ∗ and π+π−γ vertices—can reduce this number by another 1 × 10−3 or
so[36]. In any case a new high-precision experiment is clearly called for, and
this has been accomplished at JLab using the CLAS detector and the reaction
γp → π+π−n. Such a measurement has been also been proposed at DaΦne[34].

The JLab experiment is currently being analyzed and this high statistics
measurement will require an equally careful theoretical analysis in order to pro-
duce the desired extrapolation from the rho resonance region, where most of the
data has been obtained, to the zero four-momentum point where the anomaly
stricture obtains. This issue has been approached in a number of authors:

i) Holstein has used a simple matching of the one loop chiral correction to
the rho dominance form[37].

ii) Truong has utilized a unitarization based upon the Omnes-Muskhelishvili
method[38].

iii) Hannah unitarizes the amplitude using the inverse amplitude
procedure[39].

Regardless of the method used, the results are similar and are somewhat robust.
The resulting value of the anomaly obtained in a preliminary analysis of the
CLAS measurement are consistent, within a significant uncertainty, with the
expected number—three. However, a definitive value awaits further analysis.

Having warmed up on the γ − 3π process, it is now straightforward to con-
struct the analogous η → π+π−γ amplitude. Using the extended χPT assump-
tion we find[41]

Amp(η → π+π−γ) = B(s+−, s+γ , s−γ)ǫµναβǫ∗µp+νp−αkγβ (43)

with the anomaly stricture yielding

Bη(0, 0, 0) =
eNc

12
√

3π2F 3
π

(

Fπ

F8
cos θ −

√
2
Fπ

F0
sin θ

)

(44)

However, the physical region for the decay—4m2
π ≤ sππ ≤ m2

η—is far from
the zero-momentum point which is constrained by the anomaly. One indi-
cation of this fact is that the decay rate obtained via neglect of momentum

dependence—Γ
(0)
η→ππγ=35.7 eV—is significantly different from the experimental

value—Γexpt
η→ππγ = 64±6 eV. For the η′ channel the situation is, of course, much

worse. The experimental value—Γexpt
η′→ππγ = 61 ± 5 keV—is a factor of twenty

larger than the value Γ
(0)
η′→π+π−γ

=3 KeV obtained via use of the simple anomaly
prediction

Bη′(0, 0, 0) =
eNc

12
√

3π2F 3
π

(

Fπ

F8
sin θ +

√
2
Fπ

F0
cos θ

)

(45)

Thus proper inclusion of momentum dependence is essential. The η → π+π−γ
spectrum was measured in the experiment of Gormley et al.[41] and was found
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to be approximately fit in terms of a pure (width-modified) ρ-dominated ma-
trix element. This result is not in agreement, however, with the simple vector
dominance prediction—cf. Eq. 50—which would require

|B(s, t, u)|2theo ∼ 1 + 3
s

m2
ρ

+ · · · (46)

and corresponds instead to

|B(s, t, u)|2exp ∼ 1 + 2
s

m2
ρ

+ · · · . (47)

Thus a careful look at the unitarization procedure is called for.
We begin by noting that a one-loop chiral perturbation theory calculation

gives

B1−loop
η (s, sππ) = Bη(0, 0)[1 +

1

32π2F 2
π

((−4m2
π +

1

3
sππ) ln

m2
π

m2
ρ

+
4

3
F (sππ) − 20

3
m2

π +
3

2m2
ρ

sππ] (48)

where

F (s) =























(1 − s
4m2

π

)

√

s−4m2
π

s
ln

1+

√

s−4m
2
π

s

−1+

√

s−4m
2
π

s

− 2 s > 4m2
π

2(1 − s
4m2

π

)
√

4m2
π
−s

s
tan−1

√

s
4m2

π
−s

− 2 s ≤ 4m2
π

(49)

while the vector dominance picture (cf. Figure 5) yields

Bη(sππ) = Bη(0, 0, 0)

(

1 +
3

2

sππ

m2
ρ − sππ

)

(50)

Certainly, in order to treat the decay of the η′, one must include unitarity
effects via final state interactions. One very obvious approach is simply to
include the (energy-dependent) width of the rho-meson in the propagator in the
vector-dominance form Eq. 44 via

sππ

m2
ρ − sππ

→ sππ

m2
ρ − sππ − imρΓρ(sππ)

(51)

This use of vector width-modified vector dominance already makes an important
difference from the simple anomaly—tree level—results (especially in the case
of the η′), changing the predicted decay widths from the values 35 eV and 3
KeV quoted above to the much more realistic numbers

Γtheo−V M
η−ππγ = 62.3 eV, Γtheo−V M

η′−ππγ = 67.5 KeV (52)
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Figure 5: Shown are contact (a) and VMD (b,c) contributions to η, η′ → π+π−γ
decay.

if the parameters

F8/Fπ = 1.3, F0/Fπ = 1.04, θ = −20◦ (53)

are employed. However, this procedure does not match onto the one-loop chiral
form in the low energy limit.

In order to determine a form for the final state interactions which matches
onto both the one-loop chiral correction and to the vector dominance result in
the appropriate limits, we postulate an N/D structure

Bη−ππγ(s, sππ) = Bη−ππγ(0, 0)

[

1 − c + c
1 + asππ

D1(sππ)

]

(54)

where D1(s) is the Omnes function and is defined in terms of the p-wave ππ
phase shifts via
citefnt2

D1(s) = exp

(

− s

π

∫ ∞

4m2
π

ds′δ(s′)

s′(s′ − s − iǫ)

)

(55)

13



and a, c are free parameters to be determined. In order to reproduce the coef-
ficient of the F (sππ) function, which contains the rho width, we require c = 1.
On the other hand, matching onto the VMD result at O(p6) can be achieved
by the choice a = 1/2m2

ρ. Thus in the case of the η the form is completely
determined. Since the η′ spectrum is closely related and is dominated by the
presence of the rho we shall postulate an identical form for the η′ case. Using
these forms we can then calculate the decay widths assuming the theoretical
values for the anomaly. Using the parameters given in Eq. 53 one finds, for
example,

i)Dexp
1 (s) Γη−ππγ = 65.7 eV, Γη′−ππγ = 66.2KeV

ii)Danal
1 (s) Γη−ππγ = 69.7 eV, Γη′−ππγ = 77.8KeV (56)

There is a tendency then for the numbers obtained via the analytic form of the
Omnes function to be somewhat too high.

Figure 6: Shown is the photon spectrum in η → π+π−γ from Gormley et al.[41]
as well as various theoretical fits. In the Figure 6a, the dashed line represents
the (width-modified) VMD model. The (hardly visible) dotted line and the solid
line represent the final state interaction ansatz Eq.54 with use of the analytic
and experimental version of the Omnes function respectively. Figure 6b shows
the experimental Omnes function result (solid line) compared with the one-loop
result (dotdash line).

We can also compare the predicted spectra with the corresponding experi-
mentally determined values. As shown in Figure 6, we observe that the experi-
mental spectra are well fit in the η case in terms of both the N/D or the VMD
forms, but that the one-loop chiral expression does not provide an adequate
representation of the data. In the case of the corresponding η′ decay the results
are shown in Figure 7, wherein we observe that either the unitarized VMD or
the use of N/Dexp

1 provides a reasonable fit to the data (we get χ2/dof=32/17
and 20/17, respectively), while the use of the analytic form for the Omnes

14



Figure 7: Shown is the photon spectrum in η′ → π+π−γ from Abele et al.[42] as
well as various theoretical fits. As in Figure 6a, the dashed line represents the
(width-modified) VMD model. The dotted and solid lines represent the final
state interaction ansatz Eq.54 with use of the analytic and experimental version
of the Omnes function, respectively. Here the curves have been normalized to
the same number of events.

function yields a predicted spectrum (χ2/dof=104/17) which is slightly too low
on the high energy end. However, for both η and η′ we see that our simple
ansatz—Eq.54—provides a very satisfactory representation of the decay spec-
trum. Our conclusion in the previous section was that if the mixing angle and
pseudoscalar coupling constants were assigned values consistent with present
theoretical and experimental leanings, then the predicted widths and spectra of
both η, η → π+π−γ are basically consistent with experimental values. Our goal
in this section is to go the other way, however. That is, using the assumed N/D
forms for the decay amplitude, and treating the pseudoscalar decay constants
F8, F0 as well as the η−η′ mixing angle θ as free parameters, we wish to inquire
as to how well they can be constrained purely from the experimental data on
η, η′ → γγ and η, η′ → π+π−γ decays, with reasonable assumptions made about
the final state interaction effects in these two channels.

On theoretical grounds, one is somewhat more confident about the extraction
of the threshold amplitude in the case of the lower energy η → π+π−γ system.
Indeed, in this case the physical region extends only slightly into the tail of
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F8/Fπ F0/Fπ θ
VMD 1.28 ± 0.24 1.07 ± 0.48 −20.3◦ ± 9.0◦

N/Danal
1 1.49 ± 0.29 1.02 ± 0.42 −22.6◦ ± 9.6◦

N/Dexp
1 1.37 ± 0.26 1.02 ± 0.45 −21.2◦ ± 9.3◦

Table 3: Values of the renormalized pseudoscalar coupling constants and the
η − η′ mixing angle using the η, η′ − γγ and η − ππγ amplitudes in a three
parameter fit.

F8/Fπ F0/Fπ θ
VMD 1.28 ± 0.20 1.07 ± 0.04 −20.8◦ ± 3.2◦

N/Danal
1 1.48 ± 0.24 1.09 ± 0.03 −24.0◦ ± 3.0◦

N/Dexp
1 1.38 ± 0.22 1.06 ± 0.03 −22.0◦ ± 3.3◦

Table 4: Values of the renormalized pseudoscalar coupling constants and of the
η − η′ mixing angle obtained from a maximum likelihood analysis using the
η, η′ − γγ and η, η′ − ππγ amplitudes.

the rho unlike the related η′ decay wherein the spectrum extends completely
over the resonance so that there exists considerable sensitivity to details of the
shape. Thus a first approach might be to utilize only the two-photon decays
together with the η → π+π−γ width in order to determine the three desired
parameters. In this fashion one finds the results shown in Table 1. We observe
that the results are in agreement, both with each other and with the chiral
symmetry expectations—F8/Fπ ∼ 1.3, F0/Fπ ∼ 1, and θ ∼ −20◦. However,
the uncertainties obtained in this way are uncomfortably high.

In order to ameliorate this problem, we have also done a maximum likelihood
fit including the η′ − ππγ decay rate, yielding the results shown in Table 2. We
observe that the central values stay fixed but that the error bars are somewhat
reduced. The conclusions are the same, however—substantial renormalization
for F8 ∼ 1.3Fπ, almost none for F0 ∼ Fπ , and a mixing angle θ ∼ −20◦. These
numbers appear nearly invariant, regardless of the approach.

An interesting aside here is the recent observation by Bär and Wiese that
the π0 → γγ reaction alone does not verify the three color hypothesis—in a
careful analysis the Nc-dependence of the Wess-Zumino-Witten term is com-
pletely canceled by the Nc-dependent part of a Goldstone-Wilczek term, and
that it is only the η → π+π−γ measurement which truly confirms the result
that Nc = 3[43].

Having above confirmed the basic correctness of the predictions of the
anomaly (and thereby of this important cornerstone of QCD) we move now
to the important three pion decay of the eta, which occurs independent of the
anomaly and which rather probes the conventional two- and four-derivative piece
of the chiral Lagrangian.
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2.3 η → πππ

The decay of the isoscalar eta to the predominantly I=1 final state of the three
pion system occurs primarily on account of the d-u quark mass difference[44],
and the result arising from lowest order chiral perturbation theory is well-
known[45]

Amp(η8 → πaπbπc) = δabδc3C(sab, sac, sbc) + Permutations (57)

where

C(s, t, u) = −B0(md − mu)

3
√

3F 2
π

[

1 +
3(s − s0)

m2
η − m2

π

]

(58)

and we have defined

sab = (pa + pb)
2 and s0 =

1

3
(m2

η + m2
π+ + m2

π− + m2
π0). (59)

Equivalently, we can write the prefactor of Eq. 58 in a form which respects the
reparameterization invariance of Kaplan and Manohar[46]

B0(md − mu)

3
√

3F 2
π

= − 1

Q2

m2
K

m2
π

(m2
K − m2

π) (60)

where

Q2 =
ms − m̂

md − mu

ms + m̂

md + mu

(61)

and m̂ = 1
2 (md + mu) is the average u, d quark mass.

Thus the decay η → 3π can be used in order to determine the quantity Q2.
Alternatively, if Q2 is given from some other process then the η → 3π amplitude
is completely determined. The standard approach to such a determination is to
utilize the pseudoscalar meson masses via the relation

Q2 =
m2

K

m2
π

m2
K − m2

π

(m2
K0 − m2

K+)QCD
(62)

where (m2
K0 − m2

K+)QCD is the nonelectromagnetic component of the K0, K+

mass difference—

(m2
K0 − m2

K+)QCD = (m2
K0 − m2

K+)expt − (m2
K0 − m2

K+)em (63)

In order to evaluate the right hand side of Eq. 63 one generally uses Dashen’s
theorem, which guarantees the identity of the electromagnetic piece of the kaon
and pion electromagnetic mass shifts in the chiral symmetric limit[47]

(m2
π+ − m2

π0) = (m2
K+ − m2

K0)EM. (64)

This simple assumption gives then

Q2
Dashen =

m2
K

m2
π

m2
K − m2

π

m2
K0 − m2

K+ + m2
π+ − m2

π0

= 24.1 (65)
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and results in a prediction

Γ(η → π+π−π0) = 66 eV (66)

in strong contradiction to the experimental result

Γexp(η → π+π−π0) = 281 ± 28 eV. (67)

At first sight this would appear to be a rather strong and irreparable violation
of a lowest order chiral prediction and therefore not salvagable by the expected
O(m2

η/(4πF 2
π )2) ∼ 30% corrections from higher order effects. However, this is

not at all the case. In fact the one-loop and counterterm contributions were
calculated by Gasser and Leutwyler and were found to enhance the lowest order
prediction by a factor 2.6, yielding[48]

Γtheo(η → π+π−π0) ≈ 167 ± 50 eV, (68)

which is a significant improvement, but still somewhat too low. The origin of
such a large correction lies primarily with η8, η0 mixing which generates a factor
(cos θ−

√
2 sin θ)2 ∼ 2 leaving the expected 30% corrections due to conventional

higher order loop and counterterm contributions. However, recent work has
indicated that Eq. 68 is probably a considerable underestimate due a significant
violation of Dashen’s theorem. Indeed, the Dashen requirement was derived in
the limit of chiral symmetry—m2

π = m2
K = 0—and plausible estimates of chiral

breaking effects have yielded the estimate[49]

Q2
χ−broken ≈ 0.8Q2

Dashen, i .e. Qχ−broken ∼ 21.7 (69)

which corresponds to an additional ∼40% enhancement of the chiral calculation
Eq. 68, i.e. Γtheo(η → π+π−π0) ∼ 240 eV, and puts the result in the right ball-
park. There are at least two possible sources for the existence of any remaining
discrepancy. One is the fact that the estimate for the size of Dashen’s theorem
violation is just that—an estimate. It is possible that the size of the violation
is more significant than that given in Eq. 69, leading to an even larger value
for Γ(η → π+π−π0). A second possibility is that the simple one loop estimate
given in ref. 4 is not sufficient to include the full impact of final state interaction
effects. This has been demonstrated in other processes where the I=0 S-wave
π − π plays an important role, as it does here[50]. Indeed the closely related
K → 3π reaction is one such case[51].

In order to decide which—if either—possibility obtains it is necessary to
make careful spectral shape measurements in addition to simple lifetime num-
bers. Also it is necessary to confront such results with precise theoretical calcu-
lations. Phenomenologically, we expand the decay amplitude about the center
of the Dalitz plot as

C(s, t, u) ≡ α
[

1 + βy + γy2 + δx2 + . . .
]

(70)

where

y =
3(s − s0)

2mη∆η

and x =

√
3(t − u)

2mη∆η

. (71)
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where ∆η = mη − 2mπ± − m0
π is the Q-value. These parameters have been

determined experimentally to be

Layter et al.[52] : β = 0.54 ± 0.007 γ = 0.017± 0.014 δ = 0.023 ± 0.016

Gormley et al.[53] : β = 0.585 ± 0.010 γ = 0.105 ± 0.015 δ = 0.03 ± 0.02

Amsler et al.[54] : β = 0.470 ± 0.075 γ = 0.055 ± 0.135 (72)

to be compared to the one-loop chiral prediction

β = 0.665 γ = 0.21 δ = 0.04 (73)

Clearly there is general (though certainly not excellent) agreement, suggesting
the importance of higher order scattering contributions.

These have been examined by two Swiss collaborations using dispersion re-
lation treatments in order to address the problem of higher order three-body
scattering effects. The calculation of Anisovich and Leutwyler quotes only
the integrated decay rate which is is agreement with experiment if the value
Q = 22.7±0.8 is chosen[55]—consistent with the Dashen theorem violation cal-
culated in [49]. Similarly the integrated decay rate found in the Khuri-Treiman
calculation by Kambor, Wiesendanger, and Wyler agrees with the experimental
rate if the value Q = 22.4 ± 0.9 is used[56]. However, these authors also quote
values for the spectral shape

β = 0.58 γ = 0.12 δ = 0.045

β = 0.58 γ = 0.115 δ = 0.05 (74)

where the two sets of numbers correspond to different ways of determining the
experimental input. Obviously the slope parameter β is in general agreement
with experiment. However, the situation is more complex for the quadratic
components. In particular the calculated values for γ, δ are in good agreement
with the measurement of Gormley et al. (or Amsler et al.) but not with that
of Layter et al. However, experimental uncertainties are significant and a new
high statistics determination of the spectral shape is needed.

Additional information is available by studying the neutral decay mode η →
3π0, for which Bose symmetry determines the decay amplitude to be

Amp(η → 3π0) = N000|1 + ǫ(x2 + y2)sym|2 (75)

where

(x2 + y2)sym =
1

3

3
∑

i=1

(x2
i + y2

i ) = 2y2
sym (76)

Here the dispersive calculation by Kambor et al. predicts

ǫ = −0.028, or ǫ = −0.014 (77)

depending on how the experimental input is handled. On the experimental
side the only measurement of the energy dependence until recently had been of
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limited accuracy

Amsler et al.[58] : ǫ = −0.044 ± 0.046

Baglin et al.[59] : ǫ = −0.64 ± 0.74

Abele et al.[60] : ǫ = −0.104 ± 0.04 (78)

which is consistent with (but with large experimental uncertainty) the dispersive
calculation. However, recently a new result of uncprecedented precision has been
announced from the Crystal Ball group at BNL[57]

ǫ = −0.062± 0.006± 0.004 (79)

Clearly this number is significantly larger than expected from the Khuri-
Treiman calculation, suggesting that new dynamical input is involved. This is
not unexpected. Indeed the calculation of Kambor et al. utilized the effective
chiral Lagrangian at O(p4) is input. Clearly from the agreement with experi-
ment this is the main effect, but one also expects contributions from pieces of
the chiral Lagrangian of O(p6) such as

L(6) ∼ F 2
π

Λ2
χ

tr[(χU † + Uχ†)DµUDµU †]tr(DνUDνU †) (80)

where χ = 2B0m, with B0 being a constant and m is the quark mass matrix,
Λχ ∼ 4πFπ ∼ 1 GeV is the chiral scale. The coefficients of such terms are
unconstrained by the strictures of chiral invariance and are experimentally un-
determined at present, since they arise at two-loop order. Nevertheless, their
presence can lead to peices of the decay amplitude of the form

A ∼ A1k · qcaa · qb + A2(k · aaqb · qc + k · qbqa · qc)

≃ m4
η

(A1

18
+

A2

9

)

[

1 −
Q2

η

m2
η

(x2 + y2)

]

+
1

12
m4

η(A1 −A2)

[

2Qη

3mη

y − 8

27

Q2
η

m2
η

(y2 − x2)

]

(81)

If such a dynamical component is present then its size should be set by chiral
scaling arguments

AI ∼ md − mu

Λ2
χF 2

π

and an isospin relation

γ+−0(dyn) + δ+−0(dyn) = ǫ000(dyn) (82)

must exist between the quadratic parameters for the charged and neutral chan-
nels. Here the symbol dyn indicates the dynamical (i.e., non-rescattering com-
ponent of the coefficient in question and is found by subtracting the theoretical
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value obtained from the Khuri-Trieman calculation from the experimental quan-
tity. In this way we find, using the Gormley numbers for experimental input,

γ+−0(dyn) = −0.025 ± 0.015 δ+−0(dyn) = −0.02± 0.02 (83)

and
ǫ000(dyn) = −0.034± 0.007 or − 0.048 ± 0.007 (84)

depending on the dynamical input chosen. The comparison

γ+−0(dyn) + δ+−0(dyn) = −0.045± 0.03 (85)

vs.
ǫ000(dyn) = −0.034± 0.007 or − 0.045 ± 0.007 (86)

is obviously satisfactory within errors but again cries out for a high precision
measurement of the η → π+π−π0 spectrum, such as would be possible using
WASA.

Of course, there is one additional test which we can use. Since according to
isotopic spin invariance the 3π0 amplitude at the center of the Dalitz plot must
be a factor of three larger than the corresponding π+π−π0 number, the total
decay rates should differ by the factor

Γ(0)(000)

Γ(0)(+ − 0)
=

32

3!
= 1.5 (87)

When rescattering corrections are included, the prediction becomes

Γ(000)

Γ(+ − 0)
=

{

1.43 one loop
1.41 ± 0.03 Khuri-Treiman

(88)

Both numbers are consistent with the value quoted by the Particle Data
Group[62]

(

Γ(000)

Γ(+ − 0)

)exp

= 1.404 ± 0.034 (89)

and are in good agreement with the recent Crystal Ball measurement[54]

(

Γ(000)

Γ(+ − 0)

)exp

= 1.44 ± 0.09 ± 0.01 (90)

Clearly there is plenty of challenge in the three-pion sector for an eta facility,
but there is also interest in examining the remaining radiative modes η →
π0γγ, 3πγ.

2.4 η → π
0
γγ

For the decay η → π0γγ chiral symmetry does not play a important role, but
vector dominance does. This can be seen from the feature that there exists

21



no contribution at all to this process from the tree level two-derivative La-
grangian. Rather the lowest order chiral contribution arises at one-loop level—
η → 3π, KK̄π → π0γγ. However, the 3π intermediate intermediate state is
suppressed by the factor md − mu while the contribution from KK̄π is sup-
pressed kinematically. To see this, we define the general decay amplitude

Amp(η → π0γγ) = D(s, t, u) [ǫ1 · ǫ2q1 · q2 − ǫ1 · q2ǫ2 · q1]

− E(s, t, u) [−ǫ1 · ǫ2p · q1p · q2 − ǫ1 · pǫ2 · pq1 · q2

+ ǫ1 · q2ǫ2 · pp · q1 + ǫ1 · pǫ2 · q1p · q2] (91)

Then from the one-pion-loop contributions from L(2) we find

Dπ(s, t, u) =

√
2α

π
T (s)F (s, m2

π), Eπ(s, t, u) = 0 (92)

where T (s) is the lowest order η → 3π amplitude given in Eq. 58 and

sF (s, m2
π) = 1 +

4m2
π

s
ln2

(

β(s) + 1

β(s) − 1

)

with β(s) =

√

s − 4m2
π

s
(93)

with a similar expression obtaining for the kaon loop contribution. Calculation
of the associated rate yields[63]

Γloop(η → π0γγ) ≈ 4× 10−3 eV vs. Γexp(η → π0γγ) = 0.84± 0.18 eV. (94)

Thus the one-loop chiral contribution plays a very minor role. Consider, how-
ever, the vector dominance diagram shown in Figure 8, for which

D(s, t, u) =
2
√

3

9
g2

ωρπ

(

2eF 2
πg

m2
V

)2
[

p · q2 − m2
η

m2
V − t

+
p · q1 − m2

η

m2
V − u

]

×
(

Fπ

F8
cos θ −

√
2

Fπ

F0 sin θ

)

E(s, t, u) = −2
√

3

9
g2

ωρπ

(

2eF 2
πg

m2
V

)[

1

m2
V − t

+
1

m2
V − u

]

×
(

Fπ

F8
cos θ −

√
2
Fπ

F0
sin θ

)

(95)

and yielding for the decay rate

ΓVD(η → π0γγ) = 0.31 eV (96)

Inclusion of other higher order effects such as the contribution from a pair
of anomalous terms—πππγ and ηππγ—coupled via a pion loop increases this
estimate to about half the experimental result, but a considerable discrepancy
remains and should be the focus of future experimental as well as theoretical
work.

22



(a)� � 
� ! � ! 

� �
(b)

Figure 8: Vector dominance diagram responsible for η0 → π0γγ.

A new number from the Brookhaven experiment was first announced at this
meeting by Nefkens

Γexp(η → πγγ) = (0.38 ± 0.11) eV (97)

is about a factor of two smaller than the Particle Data Group value. The
problem with the previous measurements is probably associated with eliminating
the background from other much more probably neutral modes such as η → 3π0

and confirmation using WASA would clearly be welcome. In this regard, spectral
shape measurements could be helpful, although this will be difficult, since this
is a low branching ratio—∼ 7 × 10−4—experiment.

2.5 η → πππγ

The final mode which we shall mention in this report is η → 3πγ, for which on
the experimental side there exists at present only an upper bound[62]

Γ(η → 3πγ)

Γ(η → π+π−π0
|exp < 0.0024. (98)

Ordinarily the dominant component of a radiative mode such as this is due to
the the inner bremsstrahlung process, for which the matrix element is

Amp(η → π+π−π0γ) ≃ Amp(η → π+π−π0)

× ieǫµ

[

(2p+ + k)µ

(p+ + k)2 − m2
π

− (2p− + k)µ

(p− + k)2 − m2
π

]

(99)

and it is experimentally difficult to distinguish any direct photon emission. How-
ever, an exception occurs when the non-radiative process is suppressed in some
fashion, such as occurs, e.g., in the cases of π+ → e+νeγ and KL → π+π−γ,
wherein the nonradiative process is small because of helicity suppression and CP
violation respectively[64]. One might have anticipated the same enhancement
mechanism to apply in our case since the nonradiative reaction η → π+π−π0

takes place only due to the relatively small u-d quark mass difference. For exam-
ple, the direct emission associated with the vector-dominance diagrams shown in

23



Figure 9 could be expected to play an important role. However, a careful analy-
sis by D’Ambrosio et al. has shown that this unfortunately does not appear to be
the case[65]. The contribution from this direct—vector-dominated—mechanism
is found to have the form

Aµ
direct ( η → π+π−π0γ) =

e64hV θV

3
√

3M2
V F 4

π

[

pη · p0g
µ
+− + pη · p+gµ

−0 + pη · p−gµ
0+

]

(100)

where
Gµ

ij = k · pip
µ
j − k · pjp

µ
i (101)

and the combination of Bose symmetry and gauge invariance results in a sup-
pression that makes such pieces even smaller than the pion loop component,
which arise to O(p4) and which are proportional to mu − md. In ref. [65] it is
estimated that the direct emission (DE) component is only a few percent addi-
tion to the inner bremsstrahlung (IB), even at relatively large photon energies

[(ΓIB+DE − ΓIB)/ΓIB]Eγ>90 MeV ≃ 3.5 × 10−2 (102)

which appears to be too small to make this a realistic experimental goal.

� ��! �
Figure 9: Vector dominance diagrams responsible for η0 → π+π−π0γ.

3 Conclusions

We have examined the ”non-rare” decay modes of the eta meson—η →
γγ, π+π−γ, 3π, π0γγ, 3πγ—in light of current theoretical knowledge and within
the general framework of chiral symmetry. While there exist no striking dis-
crepancies observed with respect to any of these predictions, we clearly iden-
tified problem areas wherein additional experimental scrutiny, such as would
be possible at CELSIUS, would add significantly to our understanding. These
conclusions can be summarized succinctly as follows:
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a : η → γγ—a resolution of the discrepancy between the rates measured
via the Primakoff effect[23] and via QED production[22] is essential to future
progress in understanding the eta system in general.

b : η → π+π−γ—a careful spectral shape measurement would be useful in
order check the spectral shape with that predicted on fairly solid theoretical
grounds from the anomalous sector of QCD.

c : η → 3π—a precise spectral shape measurement is called for in order
to determine whether the existing disagreement between experimental findings
and (what should be) solid theoretical predictions based on chiral perturbation
theory are cause by an inaccurate value for the d-u quark mass difference or are
due to the importance of higher order final state interaction effects.

d : η → π0γγ—a precision measurement of the Dalitz plot distribution is
suggested in order to learn the origin of the existing disagreement between the
experimental rate and that predicted from vector dominance.

e : η → 3πγ—a determination of an actual rate instead of the existing upper
bound would be of interest, but theoretical indications are that it will be difficult
to detect other than the inner bremsstrahlung component.

Clearly there is lots of interesting physics here and a marriage between pre-
cise and solid new experimental data and careful and well-motivated theoretical
analysis would, I predict, be a happy one, leading to the offspring of a new degree
of understanding of an important component of low energy phenomenology.
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