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Abstract: - Recent work on whole genome alignment has resulted in efficient tools to locate (possibly) 
conserved regions of two genomic sequences. Most of such tools start with locating a set of short and highly 
similar substrings (called anchors) that are present in both genomes. These anchors provide clues for the 
conserved regions, and the effectiveness of the tools is highly related to the quality of the anchors. Some 
popular software tools use the exact match maximal unique substrings (EM-MUM) as anchors. However, the 
result is not satisfactory especially for genomes with high mutation rates (e.g. virus). In our experiments, we 
found that more than 40% of the conserved genes are not recovered. In this paper, we consider anchors with 
mismatches in order to increase the effectiveness of locating conserved regions. 
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1 Introduction 
Recent research on whole genome alignment allows 
one to locate conserved regions between two given 
genomic sequences in an efficient manner. Existing 
software tools were designed based on the 
assumption that two regions, if conserved, share a 
lot of short substrings that are highly similar and 
unique, though they rarely contain the same 
sequence. Thus, the first step of these tools is 
usually to locate a set of such short substrings 
(called anchors). These anchors provide a rough 
guideline on which portions of the genomes 
conserved regions can be found. Note that a lot of 
these anchors may come from noise. The next step 
is to eliminate the noise and identify the conserved 
regions.Various techniques and heuristics have been 
proposed for this step (e.g., maximum common 
subsequence and clustering). 

It is obvious that the effectiveness of the 

software tools are highly dependent on the set of 

anchors that are identified in the first step. Some 

popular software tools use maximal substrings that 

are exactly matched and unique in the two genomes 

(EM-MUM) as anchors [1,2]. However, it is found 

that the amount of conserved regions recovered are 

not satisfactory, in particular, for genomes with high 

mutation rates (e.g. virus genomes), thus affecting 

the final effectiveness of the tools. In Table 1, the 

first column shows the average result of aligning 35 

pairs of virus genomes using EM-MUMs as 

anchors; we use three different tools namely, 

MUMmer-3 [2], MaxMinCluster [3], and MSS [4] 

to select the anchors. The performance of the three 

tools are similar, the coverage ranges from 53% to 

56% (i.e., identifying 53% to 56% of conserved 

gene regions that are known). In fact, we have 

further investigated the anchors (EM-MUMs) 

themselves and found that they covered only 66% of 

the published conserved genes; in other words, any 

software using EM-MUMs as anchors can achieve a 

coverage of at most 66%. To improve the coverage, 

we need better methods to generate better anchors.  

Another difficulty is that we need to maintain a 

reasonable sensitivity (refers to the percentage of 

reported regions that overlap with published 

conserved gene regions). In this paper, we focus on 

finding a better set of anchors.  

A natural extension for EM-MUM is to allow 

some mismatches in the maximal unique substrings. 

In fact, the idea of allowing mismatches in anchors 

has been explored in a number of research projects 

[5-10] and their results also support this extension. 

Some of these approaches allow mismatches in the 

anchors based on the statistical background 

probability of the matching regions [9] or allow 

mismatches in certain positions of the anchors [10]. 

Some tried to incorporate certain biological 

knowledge when characterizing the type of the 

mismatches (e.g., DBA [7] and WABA [8]). 

However, sometimes it is difficult to obtain the 

appropriate statistical and biological knowledge for 

the genomes to be aligned. Also, this knowledge 

may not be general for all cases. Other works take a 
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more general approach. For example, GAME [6] 

first starts with maximal exact matched substrings, 

then it tries to extend each of these substrings on the 

left and the right by allowing mismatches character 

by character. The extension stops if the percentage 

of the identical bases drops below a certain 

threshold. The extended substring is used as an 

anchor if its length is longer than a pre-set minimum 

length. From a computational point of view, anchors 

with a small number of mismatches may be missed 

in such a generation due to the heuristics nature of 

the process. We also found that the effectiveness of 

these anchors fluctuates and may not be 

significantly better than that of EM-MUM. In Table 

1, the second column shows the performance of the 

three software when using anchors provided by 

GAME. We can see that out of the three software 

tools, two give almost no improvement in the 

coverage when compared to the case in EM-MUM, 

only one shows a 4.9% increase in coverage. Note 

that the sensitivity drops in all cases. 

On the other hand, we believe that the 

assumption of having short, unique, and highly 

similar common substrings in conserved regions is 

reasonable. In this paper, we propose to generate 

these unique anchors with x mismatches (called x-

mismatch anchors, formal definition will be given in 

Section 2) in a more systematic way. There are two 

issues involved. 

The first issue is whether it is necessary to 

generate a more comprehensive set of x-mismatch 

anchors in order to achieve higher coverage. In this 

work, we provide evidence showing that the answer 

is affirmative. Then, a follow-up question is how 

one can generate these x-mismatch anchors. This 

second issue is more difficult than one may expect. 

While the generation of EM-MUMs can be done in 

linear time using suffix tree [1], allowing 

mismatches in the substrings together with the 

requirement of uniqueness slow down the 

generation process substantially. The slow down is 

significant when we want to work on long 

sequences. For example, the generation time for 

EM-MUMs for a pair of human-mouse 

chromosomes with sizes 28M and 14M respectively, 

is only 5 minutes, however, the generation time for 

2-mismatch anchors using a straight-forward 

approach based on suffix tree requires about 12 

hours. We then provide two practical algorithms for 

generating the x-mismatch anchors. Our 

contributions are summarized in the following. 

1)  We have compared the effectiveness of three 

types of anchors: (a) EM-MUM; (b) anchors 

from GAME; (c) the x-mismatch anchors. We 

have tested 35 pairs of virus genomes; our 

evaluation is based on the result of three software 

tools (MUMmer-3, MaxMinCluster, and MSS). 

We found that using the $x$-mismatch anchors, 

all tools can achieve about 10\% increase in 

coverage (refer to Table 1). More importantly, 

the improvement in coverage does not imply a 

decrease in sensitivity.  We have also measured 

the anchors themselves and found that the x-

mismatch  anchors can achieve 8 - 14% higher 

coverage than the EM-MUMs, and 8 - 10% 

higher coverage than the anchors from GAME. 

Besides genomes with high mutation rates, we 

also tested our anchors on a number of human-

mouse chromosome pairs, which are supposed to 

be more closely related and with lower mutation 

rates in both DNA and translated protein 

sequences. The results also show an increase in 

coverage although the increase for the translated 

protein sequences is not as significant as in the 

other case.  

2) To tackle the problem of anchor generation, we 

propose two practical algorithms. The first one 

(called Suffix-Exd) makes use of the suffix tree 

for locating short substrings (seeds), then 

performs extension on the seeds to enumerate the 

anchors. However, in real applications, building 

a suffix tree for a long sequence requires a large 

amount of memory, so our second approach 

(called Hash-Tab) makes use of a hash table to 

substitute the suffix tree. 

Table 2 compares the running time and 

memory usage of our approaches with a brute-

force approach based on suffix tree using a long 

human-mouse chromosome pair. The results 

show that our first algorithm runs 6 times faster 

than the brute-force approach and the second 

algorithm requires 5 times less memory than the 

suffix-tree based approach while the running 

time is still significantly faster than the brute-

force approach. We also propose a faster 

algorithm that makes use of the suffix links to 

speed up Suffix-Exd for x ≤ 3. 

 

 

2 The x-Mismatch Anchors 
In this section, we first formally define an x-
mismatch anchor. Then, we compare the 
effectiveness of these x-mismatch anchors with EM-
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MUM and anchors from GAME, the most recent 
work that uses anchors with mismatches. 

Given two genomes, A and B, we define an x-
mismatch anchor as follows. We assume that the 
input genomes are from the positive strand. We use 
the notations A+ and A- to represent the positive and 
negative strands of A, respectively. Let a and b be 
two substrings in A and B, respectively. We denote 
the hamming distance between a and b as HD(a, b). 

Definition 1. A pair of substrings a and b (a in A 
and b in B) is an x-mismatch anchor if it satisfies the 

following. (1) HD(a,b)≤x. (i.e. At most x 
mismatches are allowed.); (2) Uniqueness: The 
substrings a and b appear exactly once in A and B, 
respectively. (i.e. a appears exactly once in A+ or A-
, but not both. The same applies to b in B.); (3) One-

to-one: The substrings a and b are exact match. 

Otherwise, 1 ≤ HD(a, b) ≤ x such that there does not 

exist another substring a' of A with HD(a',b) ≤ x and 
there does not exist another substring b' of B with 

HD(a, b') ≤ x. (4) The first (and the last) characters 
of a and b must match. (This is to avoid extending 

two exact matched substrings by ≤ x mismatched 
characters to form another (redundant) x-mismatch     
anchor.); (5) Maximal: We require the pair (a, b) to 
be maximal. 

The x-mismatch anchor generation problem is to 
find all possible pairs (a,b) that are x-mismatch 
anchors of A and B. In practice, we usually require 
the anchors to be of length at least L, a user-defined 
parameter. 
 
 

2.1 Effectiveness of x-Mismatch Anchors 
We compare the effectiveness of $x$-mismatch 
anchors with that of EM-MUM and the anchors 
from GAME. We use these anchors as input to three 
software tools, MUMmer-3, MaxMinCluster, and 
MSS. The evaluation is based on the set of 
conserved regions reported by these tools with 
respect to the set of published conserved genes of 
the two input genomes. We measure the 
effectiveness from two aspects: the coverage and the 
sensitivity. The coverage is the percentage of 
published conserved genes that overlap with the 
reported regions. Note that high coverage alone may 
not imply high quality output as an algorithm can 
simply output every input anchor to achieve the 
maximum coverage. So, we also measure the 
percentage of reported regions that overlap with a 
conserved gene and the percentage is referred as the 
sensitivity. A high quality output is expected to have 
high coverage and reasonable sensitivity. Note that 
for the software tools and the generation of anchors 

from GAME, we set the parameters to be the default 
values or the values recommended by the authors 
(For GAME, we also tried some other values for the 
parameters and the results are similar). 
Aligning Genomes with High Mutation Rates: We 
first evaluate the anchors using genomes with high 
mutation rates. We use nine virus genomes of length 
from 100K to 180K nucleotides. For these genomes, 
a number of conserved genes have already been 
identified by the biological community. These 
genomes and their corresponding conserved genes 
were published in Herniou et al. [11]. Since these 
genomes do not show a high level of similarity, we 
align the translated protein sequences instead of the 
DNA sequences of the genomes. We used 35 pairs 
of 9 virus genomes for experiments as one of the 
pairs shows an exceptionally high similarity and is 
excluded from our experiment. The length of the 
sequences is about 130 and the number of conserved 
genes per pair ranges from 68 to 126. 
Findings: We have tried different values for x and 
minimum anchor length L in the experiments. We 
found that it is sensible to set x = 5 and L = 13. 
Figure 1 shows the coverage of MUMmer-3 based 
on different anchors in 35 test cases. In general, the 
x-mismatch anchors outperform the other two types 
of anchors in almost all cases (the results are similar 
for the other two software tools). More precisely 
(see Table 1), for MUMmer-3, x-mismatch anchors 
achieve 9% higher coverage than both EM-MUM 
and the anchors from GAME on average. For 
MaxMinCluster, x-mismatch anchors achieve 8% 
higher coverage than both EM-MUM and the 
anchors from GAME on average. For MSS, x-
mismatch anchors achieve 14% higher coverage 
than EM-MUM and 10% higher coverage than the 
anchors from GAME on average. Also, x-mismatch 
anchors can maintain a high sensitivity while 
achieving a higher coverage. 

In fact, we have further investigated the input 
anchors, we found that the set of x-mismatch 
anchors covers more conserved genes than the other 
two types of anchors. On average, 78.7% of 
published conserved gene regions are found to be 
overlapped by x-mismatch anchors (A region is 
considered to be covered by the set of anchors if the 
region overlaps with anchors of total length of at 
least 8). For EM-MUM and anchors from GAME, 
the percentages are relatively lower (only 66% and 
68.5%, respectively). Recall that these percentages 
are roughly the upper bound for the coverage of the 
software tools. From these figures, we can also see 
that the effectiveness of x-mismatch anchors seem 
to be higher. 
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Aligning Closely Related Genomes: Besides virus 
genomes, we have also performed experiments on 
human-mouse chromosome pairs. Since human and 
mouse are closely related species, we align the DNA 
sequences of the genomes in order to see the 
differences in effectiveness of the anchors. We have 
used 10 pairs of chromosomes of length from 14M 
to 65M nucleotides (only the regions with more 
conserved genes are used for each case). The 
lengths of the chromosomes range from 14M to 
63M with 30 – 192 conserved genes per pair. 
Findings: Note that the sequences are about 100 
times longer than those of virus genomes. For 
GAME, the input anchor sets are too large to be 
processed by the software tools. On average, the 
number of anchors from GAME is about 36M while 
for EM-MUM, there are about 52K anchors and for 
x-mismatch anchors (Note that we tried a few x 
values and a few values for setting the minimum 
anchor length L. It seems reasonable to set x = 1 and 
L = 20 as the genomes are closely related), there are 
about 476K anchors only. The reason for the large 
volume of anchors in GAME is that it does not 
require the anchors to be unique in the genomes. So, 
we only compare the x-mismatch anchors with the 
EM-MUM. The result is shown in Table 3. The x-
mismatch anchors also show a significant 
improvement in terms of coverage while 
maintaining more or less the same sensitivity as that 
of EM-MUM. The increase in coverage is about 7 - 
17%. 

However, as a remark, if the alignment is 
performed on the translated protein sequences, the 
improvement is smaller and is of a few percentages 
(1-6%) by using x-mismatch anchors. The small 
improvement is due to the fact that the coverage 
using EM-MUM is already high (about 90%) as the 
species are closely related. In real applications, we 
should try to align the translated protein sequences 
(especially for distant species). So, the results for 
aligning DNA sequences of the human-mouse 
chromosome pairs are for reference to illustrate the 
effectiveness of x-mismatch anchors. 
 

 

3 The Anchor Generation Algorithms 
In this section, we propose two practical 

algorithms, Suffix-Exd and Hash-Tab, for 

generating x-mismatch anchors given two genomic 

sequences A and B. By making use of the suffix 

links, we also show how to speed up Suffix-Exd for 

the case of x ≤ 3. To start with, we first present a 

suffix tree based brute-force approach. Recall that 

when generating the anchors, we require the length 

of an anchor to be at least L as very short anchors 

most likely come from noise.  

The Suffix Tree Based Brute-force Approach: We 

first build a suffix tree TA+ for A+, then for each 

position i of B+, we aim at locating all substrings s 

in A+ that satisfy the following. (1) s is of length at 

least L; (2) s is unique in A+; (3) there is a 

corresponding substring t in B+ starting at position i 

such that HD(s,t) ≤ x and (s, t) is maximal. We 

search the suffix tree TA+ in a brute-force manner. 

Based on the characters at i, i+1, ..... of B+, we 

search TA+. Since we allow x mismatches, we try all 

branches at every node and keep track the number 

of mismatches for each branch with respect to the 

corresponding substring in B+. Output the substring 

s in the tree if it satisfies the above three conditions. 

For each pair (s,t) reported, we check the 

uniqueness of s and t by searching the suffix trees of 

A-, B+, and B-. Finally, to satisfy the one-to-one 

condition (Condition (3) of Definition 1), the 

remaining (s,t) pairs will go through a simple 

checking procedure. Then, repeat the same 

procedure by building TA- for A- and using B+ to 

search for x-mismatch anchors with respect to B+ 

and A-. The brute-force approach is easy to 

implement, but is too slow, especially for long 

genomic sequences and large x values. Table 2 

shows that it takes 12 hours to enumerate the anchor 

set for a human-mouse chromosome pair which are 

of size 28M and 14M. 

The Suffix-Exd Approach: In the brute-force 

approach, for large values of x, a large portion of the 

tree will be searched and this slows down the 

searching process. The idea of the Suffix-Exd 

approach is given in the following lemma based on 

the pigeon-hole principle. 

Lemma 1. Let s[1..z]$ and t[1..z] be substrings in 

the genomes A and B, respectively such that HD(s,t) 

≤ x. Then, either HD(s[1..⎣z/2⎦], t[1..⎣z/2⎦]) ≤ ⎣x/2⎦ 
or HD(s[⎣z/2⎦] +1..z), t[⎣z/2⎦+1..z]) ≤ ⎣x/2⎦. 

Roughly speaking, the above lemma says that if s 

and t is an x-mismatch anchor, then either the first 

half or the second half of s and t contain at most x/2 

mismatches. In other words, there must be 

substrings (either prefixes or suffices) in s and t of 

length exactly ⎣L/2⎦ with at most x/2 mismatches. 

(Recall that L is the minimum anchor length.) 

So, we can search the suffix tree for these 

substrings (with fewer mismatches) as seeds in 

order to avoid searching a large portion of the tree. 

We then extend from these seeds to locate the 

anchor set. The details are as follow. For each 
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substring q of length exactly ⎣L/2⎦] in B+, we search 

the suffix tree TA+ for substrings p (the seeds) such 

that HD(p,q) ≤ ⎣x/2⎦. We call this step the seed 

finding step. Note that we search for shorter, fixed 

length substrings with fewer mismatches in the 

suffix tree so as to speed up the process. Then, we 

extend each (p, q) pair to (p',q') such that p' and q' 

are maximal, of length ≥ L, and HD(p',q') ≤ x. We 

can then go through the same checking as in the 

brute-force approach to make sure that p', q' are 

unique and satisfy the one-to-one condition. Again, 

we repeat the procedure for TA- and B+. From Table 

2, we can see that the speed up is about 6 times.  

The Hash-Tab Approach: For long sequences, 

building suffix tree requires a lot of memory. The 

Hash-Tab approach solves the memory problem as 

follows. In the seed finding step, instead of using 

suffix tree, we build a hash table to store the 

locations of all possible substrings of fixed length in 

A+. Then, for each substring in B+, we search the 

hash table for matching strings in A+. To check the 

uniqueness, building a single suffix tree may not be 

feasible. So, we can divide the genome into several 

regions, build multiple suffix trees, then we check 

all these suffix trees to guarantee the uniqueness. 

The Hash-Tab approach is slower than the Suffix-

Exd approach, but it can save a lot of memory. 

Table 2 shows that the Hash-Tab approach requires 

5 times less memory while the running time is still 

significantly faster than the brute-force approach. 

Speeding Up the Suffix-Exd Approach: Recall that in 

the seed finding step of the Suffix-Exd approach, for 

each substring q of length exactly ⎣L/2⎦ in B+, we 

search the suffix tree TA+ for substrings p such that 

HD(p,q) ≤ ⎣x/2⎦. Assume that we have searched the 

suffix tree TA+ for p = αu where p is a substring in 

B+ and α is a single nucleotide (character), the 

following lemma shows how to speed up the 

searching of u by making use of the suffix links in 

TA+. Let r = ⎣x/2⎦. 
Lemma 2. Let p = αu be a substring in B+ and α 

is a single nucleotide. Let N be an internal node in 

TA+ with path label q representing a substring in A+ 

such that HD(p,q) ≤ r. Let N' be the node pointed by 

the suffix link of N and q' be the path label of N'. 

Then, HD(u,q') ≤ r. 

From the above lemma, assume that we have 

finished searching the suffix tree for the substrings p 

starting at position i in B+, if we can keep track of 

all corresponding locations of N', then we can speed 

up the searching for substrings starting at position 

i+1. If r = 1, we have a simple data structure to do 

this. In other words, using suffix link, we can easily 

speed up the seed finding step of Suffix-Exd for x ≤ 

3. The speed up can be shown to be  ⎣L/2⎦ times.  

 

 

4 Conclusion 
In this paper, we consider the effectiveness and the 

generation of anchors with mismatches for whole 

genome alignment. We defined an x-mismatch 

anchor. We then compared the effectiveness of x-

mismatch anchors with exact match maximal unique 

substrings (EM-MUM) and the anchors from 

GAME (the most recent work that also uses anchors 

with mismatches) based on a set of experiments on 

35 pairs of virus genomes and 10 pairs of human-

mouse chromosome pairs using three software tools 

(MUMmer-3, MaxMinCluster, MSS). The results 

show that the effectiveness of x-mismatch anchors is 

higher than the other anchors. We also discussed the 

issues (time and memory) involved in generating x-

mismatch anchors and proposed several practical 

algorithms to tackle the generation problem. 

Designing faster algorithms that use less memory is 

still a challenging problem and desirable for 

handling long genomic sequences. Also, extending 

the concept to solve other sequence alignment 

problems [12, 13] should also be considered. 
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Table 1: Performance of 3 types of anchors on 35 virus pairs. 

 EM-MUM GAME 5-Mismatch Anchors 

 Coverage Sensitivity Coverage Sensitivity Coverage Sensitivity 

MUMmer-3 53.0% 66.9% 53.8% 57.4% 62.2% 74.4% 
MaxMinCluster 55.4% 66.7% 55.8% 58.5% 63.6% 65.6% 

MSS 56.0% 65.9% 60.9% 61.3% 70.6% 82.2% 

 
Table 2: Performance of our algorithms for generating 2-mismatch anchors (based on human chromosome 16 

of size 28M and mouse chromosome 17 of size 14M) 

 Brute-force Suffix-Exd Hash-Tab 

Running Time 12 hr 1.5hr 2.6hr 
Memory Usage 600M 600M 120M 

 
Table 3: Performance of x-mismatch anchors on 10 human-mouse chromosome pairs 

 EM-MUM 1-Mismatch Anchors 

 Coverage Sensitivity Coverage Sensitivity 

MUMmer-3 57.5% 31.5% 70.0% 31.4% 
MaxMinCluster 72.2% 32.4% 89.9% 32.5% 

MSS 87.5% 30.0% 94.6% 30.1% 

 
Figure 1. Effectiveness of anchors on 35 virus pairs (using MUMmer-3) 
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