
Allowing Mismatches in Anchors for Whole Genome Alignment

S.M. YIU 1 P.Y. CHAN 1 T.W. LAM 1 W.K. SUNG 2 H.F. TING 1 P.W.H. WONG 3
1 Department of Computer Science, The University of Hong Kong, Hong Kong

{smyiu, pychan, twlam, hfting}@cs.hku.hk
2 Department of Computer Science, National University of Singapore, Singapore

ksung@comp.nus.edu.sg
3 Department of Computer Science, The University of Liverpool, UK

pwong@liverpool.ac.uk

Abstract: - Recent work on whole genome alignment has resulted in efficient tools to locate (possibly)
conserved regions of two genomic sequences. Most of such tools start with locating a set of short and highly
similar substrings (called anchors) that are present in both genomes. These anchors provide clues for the
conserved regions, and the effectiveness of the tools is highly related to the quality of the anchors. Some
popular software tools use the exact match maximal unique substrings (EM-MUM) as anchors. However, the
result is not satisfactory especially for genomes with high mutation rates (e.g. virus). In our experiments, we
found that more than 40% of the conserved genes are not recovered. In this paper, we consider anchors with
mismatches in order to increase the effectiveness of locating conserved regions.

Key-Words: - Whole genome alignment, anchors with mismatches, conserved regions

1 Introduction
Recent research on whole genome alignment allows
one to locate conserved regions between two given
genomic sequences in an efficient manner. Existing
software tools were designed based on the
assumption that two regions, if conserved, share a
lot of short substrings that are highly similar and
unique, though they rarely contain the same
sequence. Thus, the first step of these tools is
usually to locate a set of such short substrings
(called anchors). These anchors provide a rough
guideline on which portions of the genomes
conserved regions can be found. Note that a lot of
these anchors may come from noise. The next step
is to eliminate the noise and identify the conserved
regions.Various techniques and heuristics have been
proposed for this step (e.g., maximum common
subsequence and clustering).

It is obvious that the effectiveness of the

software tools are highly dependent on the set of

anchors that are identified in the first step. Some

popular software tools use maximal substrings that

are exactly matched and unique in the two genomes

(EM-MUM) as anchors [1,2]. However, it is found

that the amount of conserved regions recovered are

not satisfactory, in particular, for genomes with high

mutation rates (e.g. virus genomes), thus affecting

the final effectiveness of the tools. In Table 1, the

first column shows the average result of aligning 35

pairs of virus genomes using EM-MUMs as

anchors; we use three different tools namely,

MUMmer-3 [2], MaxMinCluster [3], and MSS [4]

to select the anchors. The performance of the three

tools are similar, the coverage ranges from 53% to

56% (i.e., identifying 53% to 56% of conserved

gene regions that are known). In fact, we have

further investigated the anchors (EM-MUMs)

themselves and found that they covered only 66% of

the published conserved genes; in other words, any

software using EM-MUMs as anchors can achieve a

coverage of at most 66%. To improve the coverage,

we need better methods to generate better anchors.

Another difficulty is that we need to maintain a

reasonable sensitivity (refers to the percentage of

reported regions that overlap with published

conserved gene regions). In this paper, we focus on

finding a better set of anchors.

A natural extension for EM-MUM is to allow

some mismatches in the maximal unique substrings.

In fact, the idea of allowing mismatches in anchors

has been explored in a number of research projects

[5-10] and their results also support this extension.

Some of these approaches allow mismatches in the

anchors based on the statistical background

probability of the matching regions [9] or allow

mismatches in certain positions of the anchors [10].

Some tried to incorporate certain biological

knowledge when characterizing the type of the

mismatches (e.g., DBA [7] and WABA [8]).

However, sometimes it is difficult to obtain the

appropriate statistical and biological knowledge for

the genomes to be aligned. Also, this knowledge

may not be general for all cases. Other works take a

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE S.M. Yiu P.Y. Chan T.W. Lam
W.K. Sung H.F. Ting P.W.H. Wong

ISSN: 1109-9518
1

Issue 1, Volume 4, January 2007

more general approach. For example, GAME [6]

first starts with maximal exact matched substrings,

then it tries to extend each of these substrings on the

left and the right by allowing mismatches character

by character. The extension stops if the percentage

of the identical bases drops below a certain

threshold. The extended substring is used as an

anchor if its length is longer than a pre-set minimum

length. From a computational point of view, anchors

with a small number of mismatches may be missed

in such a generation due to the heuristics nature of

the process. We also found that the effectiveness of

these anchors fluctuates and may not be

significantly better than that of EM-MUM. In Table

1, the second column shows the performance of the

three software when using anchors provided by

GAME. We can see that out of the three software

tools, two give almost no improvement in the

coverage when compared to the case in EM-MUM,

only one shows a 4.9% increase in coverage. Note

that the sensitivity drops in all cases.

On the other hand, we believe that the

assumption of having short, unique, and highly

similar common substrings in conserved regions is

reasonable. In this paper, we propose to generate

these unique anchors with x mismatches (called x-

mismatch anchors, formal definition will be given in

Section 2) in a more systematic way. There are two

issues involved.

The first issue is whether it is necessary to

generate a more comprehensive set of x-mismatch

anchors in order to achieve higher coverage. In this

work, we provide evidence showing that the answer

is affirmative. Then, a follow-up question is how

one can generate these x-mismatch anchors. This

second issue is more difficult than one may expect.

While the generation of EM-MUMs can be done in

linear time using suffix tree [1], allowing

mismatches in the substrings together with the

requirement of uniqueness slow down the

generation process substantially. The slow down is

significant when we want to work on long

sequences. For example, the generation time for

EM-MUMs for a pair of human-mouse

chromosomes with sizes 28M and 14M respectively,

is only 5 minutes, however, the generation time for

2-mismatch anchors using a straight-forward

approach based on suffix tree requires about 12

hours. We then provide two practical algorithms for

generating the x-mismatch anchors. Our

contributions are summarized in the following.

1) We have compared the effectiveness of three

types of anchors: (a) EM-MUM; (b) anchors

from GAME; (c) the x-mismatch anchors. We

have tested 35 pairs of virus genomes; our

evaluation is based on the result of three software

tools (MUMmer-3, MaxMinCluster, and MSS).

We found that using the x-mismatch anchors,

all tools can achieve about 10\% increase in

coverage (refer to Table 1). More importantly,

the improvement in coverage does not imply a

decrease in sensitivity. We have also measured

the anchors themselves and found that the x-

mismatch anchors can achieve 8 - 14% higher

coverage than the EM-MUMs, and 8 - 10%

higher coverage than the anchors from GAME.

Besides genomes with high mutation rates, we

also tested our anchors on a number of human-

mouse chromosome pairs, which are supposed to

be more closely related and with lower mutation

rates in both DNA and translated protein

sequences. The results also show an increase in

coverage although the increase for the translated

protein sequences is not as significant as in the

other case.

2) To tackle the problem of anchor generation, we

propose two practical algorithms. The first one

(called Suffix-Exd) makes use of the suffix tree

for locating short substrings (seeds), then

performs extension on the seeds to enumerate the

anchors. However, in real applications, building

a suffix tree for a long sequence requires a large

amount of memory, so our second approach

(called Hash-Tab) makes use of a hash table to

substitute the suffix tree.

Table 2 compares the running time and

memory usage of our approaches with a brute-

force approach based on suffix tree using a long

human-mouse chromosome pair. The results

show that our first algorithm runs 6 times faster

than the brute-force approach and the second

algorithm requires 5 times less memory than the

suffix-tree based approach while the running

time is still significantly faster than the brute-

force approach. We also propose a faster

algorithm that makes use of the suffix links to

speed up Suffix-Exd for x ≤ 3.

2 The x-Mismatch Anchors
In this section, we first formally define an x-
mismatch anchor. Then, we compare the
effectiveness of these x-mismatch anchors with EM-

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE S.M. Yiu P.Y. Chan T.W. Lam
W.K. Sung H.F. Ting P.W.H. Wong

ISSN: 1109-9518
2

Issue 1, Volume 4, January 2007

MUM and anchors from GAME, the most recent
work that uses anchors with mismatches.

Given two genomes, A and B, we define an x-
mismatch anchor as follows. We assume that the
input genomes are from the positive strand. We use
the notations A+ and A- to represent the positive and
negative strands of A, respectively. Let a and b be
two substrings in A and B, respectively. We denote
the hamming distance between a and b as HD(a, b).

Definition 1. A pair of substrings a and b (a in A
and b in B) is an x-mismatch anchor if it satisfies the

following. (1) HD(a,b)≤x. (i.e. At most x
mismatches are allowed.); (2) Uniqueness: The
substrings a and b appear exactly once in A and B,
respectively. (i.e. a appears exactly once in A+ or A-
, but not both. The same applies to b in B.); (3) One-

to-one: The substrings a and b are exact match.

Otherwise, 1 ≤ HD(a, b) ≤ x such that there does not

exist another substring a' of A with HD(a',b) ≤ x and
there does not exist another substring b' of B with

HD(a, b') ≤ x. (4) The first (and the last) characters
of a and b must match. (This is to avoid extending

two exact matched substrings by ≤ x mismatched
characters to form another (redundant) x-mismatch
anchor.); (5) Maximal: We require the pair (a, b) to
be maximal.

The x-mismatch anchor generation problem is to
find all possible pairs (a,b) that are x-mismatch
anchors of A and B. In practice, we usually require
the anchors to be of length at least L, a user-defined
parameter.

2.1 Effectiveness of x-Mismatch Anchors
We compare the effectiveness of x-mismatch
anchors with that of EM-MUM and the anchors
from GAME. We use these anchors as input to three
software tools, MUMmer-3, MaxMinCluster, and
MSS. The evaluation is based on the set of
conserved regions reported by these tools with
respect to the set of published conserved genes of
the two input genomes. We measure the
effectiveness from two aspects: the coverage and the
sensitivity. The coverage is the percentage of
published conserved genes that overlap with the
reported regions. Note that high coverage alone may
not imply high quality output as an algorithm can
simply output every input anchor to achieve the
maximum coverage. So, we also measure the
percentage of reported regions that overlap with a
conserved gene and the percentage is referred as the
sensitivity. A high quality output is expected to have
high coverage and reasonable sensitivity. Note that
for the software tools and the generation of anchors

from GAME, we set the parameters to be the default
values or the values recommended by the authors
(For GAME, we also tried some other values for the
parameters and the results are similar).
Aligning Genomes with High Mutation Rates: We
first evaluate the anchors using genomes with high
mutation rates. We use nine virus genomes of length
from 100K to 180K nucleotides. For these genomes,
a number of conserved genes have already been
identified by the biological community. These
genomes and their corresponding conserved genes
were published in Herniou et al. [11]. Since these
genomes do not show a high level of similarity, we
align the translated protein sequences instead of the
DNA sequences of the genomes. We used 35 pairs
of 9 virus genomes for experiments as one of the
pairs shows an exceptionally high similarity and is
excluded from our experiment. The length of the
sequences is about 130 and the number of conserved
genes per pair ranges from 68 to 126.
Findings: We have tried different values for x and
minimum anchor length L in the experiments. We
found that it is sensible to set x = 5 and L = 13.
Figure 1 shows the coverage of MUMmer-3 based
on different anchors in 35 test cases. In general, the
x-mismatch anchors outperform the other two types
of anchors in almost all cases (the results are similar
for the other two software tools). More precisely
(see Table 1), for MUMmer-3, x-mismatch anchors
achieve 9% higher coverage than both EM-MUM
and the anchors from GAME on average. For
MaxMinCluster, x-mismatch anchors achieve 8%
higher coverage than both EM-MUM and the
anchors from GAME on average. For MSS, x-
mismatch anchors achieve 14% higher coverage
than EM-MUM and 10% higher coverage than the
anchors from GAME on average. Also, x-mismatch
anchors can maintain a high sensitivity while
achieving a higher coverage.

In fact, we have further investigated the input
anchors, we found that the set of x-mismatch
anchors covers more conserved genes than the other
two types of anchors. On average, 78.7% of
published conserved gene regions are found to be
overlapped by x-mismatch anchors (A region is
considered to be covered by the set of anchors if the
region overlaps with anchors of total length of at
least 8). For EM-MUM and anchors from GAME,
the percentages are relatively lower (only 66% and
68.5%, respectively). Recall that these percentages
are roughly the upper bound for the coverage of the
software tools. From these figures, we can also see
that the effectiveness of x-mismatch anchors seem
to be higher.

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE S.M. Yiu P.Y. Chan T.W. Lam
W.K. Sung H.F. Ting P.W.H. Wong

ISSN: 1109-9518
3

Issue 1, Volume 4, January 2007

Aligning Closely Related Genomes: Besides virus
genomes, we have also performed experiments on
human-mouse chromosome pairs. Since human and
mouse are closely related species, we align the DNA
sequences of the genomes in order to see the
differences in effectiveness of the anchors. We have
used 10 pairs of chromosomes of length from 14M
to 65M nucleotides (only the regions with more
conserved genes are used for each case). The
lengths of the chromosomes range from 14M to
63M with 30 – 192 conserved genes per pair.
Findings: Note that the sequences are about 100
times longer than those of virus genomes. For
GAME, the input anchor sets are too large to be
processed by the software tools. On average, the
number of anchors from GAME is about 36M while
for EM-MUM, there are about 52K anchors and for
x-mismatch anchors (Note that we tried a few x
values and a few values for setting the minimum
anchor length L. It seems reasonable to set x = 1 and
L = 20 as the genomes are closely related), there are
about 476K anchors only. The reason for the large
volume of anchors in GAME is that it does not
require the anchors to be unique in the genomes. So,
we only compare the x-mismatch anchors with the
EM-MUM. The result is shown in Table 3. The x-
mismatch anchors also show a significant
improvement in terms of coverage while
maintaining more or less the same sensitivity as that
of EM-MUM. The increase in coverage is about 7 -
17%.

However, as a remark, if the alignment is
performed on the translated protein sequences, the
improvement is smaller and is of a few percentages
(1-6%) by using x-mismatch anchors. The small
improvement is due to the fact that the coverage
using EM-MUM is already high (about 90%) as the
species are closely related. In real applications, we
should try to align the translated protein sequences
(especially for distant species). So, the results for
aligning DNA sequences of the human-mouse
chromosome pairs are for reference to illustrate the
effectiveness of x-mismatch anchors.

3 The Anchor Generation Algorithms
In this section, we propose two practical

algorithms, Suffix-Exd and Hash-Tab, for

generating x-mismatch anchors given two genomic

sequences A and B. By making use of the suffix

links, we also show how to speed up Suffix-Exd for

the case of x ≤ 3. To start with, we first present a

suffix tree based brute-force approach. Recall that

when generating the anchors, we require the length

of an anchor to be at least L as very short anchors

most likely come from noise.

The Suffix Tree Based Brute-force Approach: We

first build a suffix tree TA+ for A+, then for each

position i of B+, we aim at locating all substrings s

in A+ that satisfy the following. (1) s is of length at

least L; (2) s is unique in A+; (3) there is a

corresponding substring t in B+ starting at position i

such that HD(s,t) ≤ x and (s, t) is maximal. We

search the suffix tree TA+ in a brute-force manner.

Based on the characters at i, i+1, of B+, we

search TA+. Since we allow x mismatches, we try all

branches at every node and keep track the number

of mismatches for each branch with respect to the

corresponding substring in B+. Output the substring

s in the tree if it satisfies the above three conditions.

For each pair (s,t) reported, we check the

uniqueness of s and t by searching the suffix trees of

A-, B+, and B-. Finally, to satisfy the one-to-one

condition (Condition (3) of Definition 1), the

remaining (s,t) pairs will go through a simple

checking procedure. Then, repeat the same

procedure by building TA- for A- and using B+ to

search for x-mismatch anchors with respect to B+

and A-. The brute-force approach is easy to

implement, but is too slow, especially for long

genomic sequences and large x values. Table 2

shows that it takes 12 hours to enumerate the anchor

set for a human-mouse chromosome pair which are

of size 28M and 14M.

The Suffix-Exd Approach: In the brute-force

approach, for large values of x, a large portion of the

tree will be searched and this slows down the

searching process. The idea of the Suffix-Exd

approach is given in the following lemma based on

the pigeon-hole principle.

Lemma 1. Let s[1..z]$ and t[1..z] be substrings in

the genomes A and B, respectively such that HD(s,t)

≤ x. Then, either HD(s[1..⎣z/2⎦], t[1..⎣z/2⎦]) ≤ ⎣x/2⎦
or HD(s[⎣z/2⎦] +1..z), t[⎣z/2⎦+1..z]) ≤ ⎣x/2⎦.

Roughly speaking, the above lemma says that if s

and t is an x-mismatch anchor, then either the first

half or the second half of s and t contain at most x/2

mismatches. In other words, there must be

substrings (either prefixes or suffices) in s and t of

length exactly ⎣L/2⎦ with at most x/2 mismatches.

(Recall that L is the minimum anchor length.)

So, we can search the suffix tree for these

substrings (with fewer mismatches) as seeds in

order to avoid searching a large portion of the tree.

We then extend from these seeds to locate the

anchor set. The details are as follow. For each

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE S.M. Yiu P.Y. Chan T.W. Lam
W.K. Sung H.F. Ting P.W.H. Wong

ISSN: 1109-9518
4

Issue 1, Volume 4, January 2007

substring q of length exactly ⎣L/2⎦] in B+, we search

the suffix tree TA+ for substrings p (the seeds) such

that HD(p,q) ≤ ⎣x/2⎦. We call this step the seed

finding step. Note that we search for shorter, fixed

length substrings with fewer mismatches in the

suffix tree so as to speed up the process. Then, we

extend each (p, q) pair to (p',q') such that p' and q'

are maximal, of length ≥ L, and HD(p',q') ≤ x. We

can then go through the same checking as in the

brute-force approach to make sure that p', q' are

unique and satisfy the one-to-one condition. Again,

we repeat the procedure for TA- and B+. From Table

2, we can see that the speed up is about 6 times.

The Hash-Tab Approach: For long sequences,

building suffix tree requires a lot of memory. The

Hash-Tab approach solves the memory problem as

follows. In the seed finding step, instead of using

suffix tree, we build a hash table to store the

locations of all possible substrings of fixed length in

A+. Then, for each substring in B+, we search the

hash table for matching strings in A+. To check the

uniqueness, building a single suffix tree may not be

feasible. So, we can divide the genome into several

regions, build multiple suffix trees, then we check

all these suffix trees to guarantee the uniqueness.

The Hash-Tab approach is slower than the Suffix-

Exd approach, but it can save a lot of memory.

Table 2 shows that the Hash-Tab approach requires

5 times less memory while the running time is still

significantly faster than the brute-force approach.

Speeding Up the Suffix-Exd Approach: Recall that in

the seed finding step of the Suffix-Exd approach, for

each substring q of length exactly ⎣L/2⎦ in B+, we

search the suffix tree TA+ for substrings p such that

HD(p,q) ≤ ⎣x/2⎦. Assume that we have searched the

suffix tree TA+ for p = αu where p is a substring in

B+ and α is a single nucleotide (character), the

following lemma shows how to speed up the

searching of u by making use of the suffix links in

TA+. Let r = ⎣x/2⎦.
Lemma 2. Let p = αu be a substring in B+ and α

is a single nucleotide. Let N be an internal node in

TA+ with path label q representing a substring in A+

such that HD(p,q) ≤ r. Let N' be the node pointed by

the suffix link of N and q' be the path label of N'.

Then, HD(u,q') ≤ r.

From the above lemma, assume that we have

finished searching the suffix tree for the substrings p

starting at position i in B+, if we can keep track of

all corresponding locations of N', then we can speed

up the searching for substrings starting at position

i+1. If r = 1, we have a simple data structure to do

this. In other words, using suffix link, we can easily

speed up the seed finding step of Suffix-Exd for x ≤

3. The speed up can be shown to be ⎣L/2⎦ times.

4 Conclusion
In this paper, we consider the effectiveness and the

generation of anchors with mismatches for whole

genome alignment. We defined an x-mismatch

anchor. We then compared the effectiveness of x-

mismatch anchors with exact match maximal unique

substrings (EM-MUM) and the anchors from

GAME (the most recent work that also uses anchors

with mismatches) based on a set of experiments on

35 pairs of virus genomes and 10 pairs of human-

mouse chromosome pairs using three software tools

(MUMmer-3, MaxMinCluster, MSS). The results

show that the effectiveness of x-mismatch anchors is

higher than the other anchors. We also discussed the

issues (time and memory) involved in generating x-

mismatch anchors and proposed several practical

algorithms to tackle the generation problem.

Designing faster algorithms that use less memory is

still a challenging problem and desirable for

handling long genomic sequences. Also, extending

the concept to solve other sequence alignment

problems [12, 13] should also be considered.

Acknowledgement: This work was supported in
part by Hong Kong RGC Grant HKU 7139/04E.

References:

[1] A.L. Delcher, A. Phillippy, J. Carlton, S.L.
Salzberg, Fast Algorithms for Large-Scale
Genome Alignment and Comparison, Nucleic

Acids Research, Vol. 30, No. 11, 2002, pp.
2478-2483.

[2] S. Kurtz et al., Versatile and Open Software for
Comparing Large Genomes, Genome Biology,
Vol. 5:R12, 2004.

[3] Prudence W.H. Wong et al., An Efficient
Algorithm for Optimizing Whole Genome
Alignment with Noise, Bioinformatics,
Vol. 20, No. 16, 2004, pp. 2676-2684.

[4] HL Chan et al., The Mutated Subsequence
Problem and Locating Conserved
Genes, Bioinformatics, Vol. 21, No. 10, 2005,
pp. 2271-2278.

[5] Brona Brejova et al., Vector Seeds: An
Extension to Spaced Seeds, Journal of

Computer and System Sciences (JCSS), Vol.
70, No. 3, 2005, pp. 364-380.

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE S.M. Yiu P.Y. Chan T.W. Lam
W.K. Sung H.F. Ting P.W.H. Wong

ISSN: 1109-9518
5

Issue 1, Volume 4, January 2007

[6] J.-H. Choi et al., GAME: A Simple and
Efficient Whole Genome Alignment Method
using Maximal Exact Match Filtering,
Computational Biology and Chemistry, Vol.
29, No. 3, 2005, pp. 244-253.

[7] N. Jareborg et al., Comparative Analysis of
Noncoding Regions of 77 orthologous mouse
and human gene pairs, Genome Research, Vol.
9, 2000, pp. 815-824.

[8] J. Kent and M. Zahler, The Intronerator:
Exploring Introns and Alternative Splicing in
C. Elegans Genomic Alignment, Genome
Research, Vol. 10, 2000, pp. 1115-1125.

[9] B. Ma et al., PatternHunter: Faster and More
Sensitive Homology Search, Bioinformatics,
Vol. 18, No. 3, 2002, pp. 440-445.

[10] Jinbo Xu et al., Optimizing Multiple Spaced
Seeds for Homology Search, Journal of

Computational Biology, Vol. 13, No. 7, 2006,
pp.1355-1358.

[11] E.A. Herniou et al., Use of Whole Genome
Sequence Data to Infer Baculovirus Phylogeny,
Journal of Virology, Vol. 75, No. 17, 2001, pp.
8117-8126.

[12] Yi Wang et al., A Position-Specific and
Consistency-Based Objective Function for
Iterative Multiple Sequence Alignment,
Proceedings of the 6

th
 WSEAS International

Conference on Mathematics and Computers in

Biology and Chemistry, 2005.
[13] TW Lam et al., Improving the Efficiency and

Accuracy of Aligning Erroneous mRNAs,
WSEAS Transactions on Systems, Vol. 3(4),
p.1469-1473, 2004.

Table 1: Performance of 3 types of anchors on 35 virus pairs.

 EM-MUM GAME 5-Mismatch Anchors

 Coverage Sensitivity Coverage Sensitivity Coverage Sensitivity

MUMmer-3 53.0% 66.9% 53.8% 57.4% 62.2% 74.4%
MaxMinCluster 55.4% 66.7% 55.8% 58.5% 63.6% 65.6%

MSS 56.0% 65.9% 60.9% 61.3% 70.6% 82.2%

Table 2: Performance of our algorithms for generating 2-mismatch anchors (based on human chromosome 16

of size 28M and mouse chromosome 17 of size 14M)

 Brute-force Suffix-Exd Hash-Tab

Running Time 12 hr 1.5hr 2.6hr
Memory Usage 600M 600M 120M

Table 3: Performance of x-mismatch anchors on 10 human-mouse chromosome pairs

 EM-MUM 1-Mismatch Anchors

 Coverage Sensitivity Coverage Sensitivity

MUMmer-3 57.5% 31.5% 70.0% 31.4%
MaxMinCluster 72.2% 32.4% 89.9% 32.5%

MSS 87.5% 30.0% 94.6% 30.1%

Figure 1. Effectiveness of anchors on 35 virus pairs (using MUMmer-3)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
cC

p

A
cL

d

A
cP

x
A
cX

c

B
m

H
a

B
m

O
p

B
m

Se

H
aC

p

H
aXc

Ld
H
a

Ld
Se

O
pC

p

O
pL

d

O
pS

e

P
xC

p

S
eC

p

S
eP

x

X
cC

p

Virus pairs

C
o

v
e
ra

g
e

EM-MUM 5-mismatch anchors GAME

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE S.M. Yiu P.Y. Chan T.W. Lam
W.K. Sung H.F. Ting P.W.H. Wong

ISSN: 1109-9518
6

Issue 1, Volume 4, January 2007

	
	Acknowledgement: This work was supported in part by Hong Kong RGC Grant HKU 7139/04E.

