September 17,2004 15:31 Proceedings Trim Size: 9.75ini® 6.5 192

ALLOWING MISMATCHES IN ANCHORS FOR WHOLE GENOME
ALIGNMENT: GENERATION AND EFFECTIVENESS

SMYIU* PYCHAN* TWLAM* WKSUNG' HFTING®* PWHWONG

‘Department of Computer Science
The University of Hong Kong, Hong Kong
E-mail: {smyiu, pychan, twlam, hftig@cs.hku.hk

Department of Computer Science
National University of Singapore, Singapore
E-mail: ksung@comp.nus.edu.sg

iDepartment of Computer Science
The University of Liverpool, UK
E-mail: pwong@csc.liv.ac.uk

Recent work on whole genome alignment has resulted in effitd®Is to locate (possibly) conserved
regions of two genomic sequences. Most of such tools stdht latating a set of short and highly
similar substrings (callednchorg that are present in both genomes. These anchors provids fdu
the conserved regions, and the effectiveness of the toblglidy related to the quality of the anchors.
Some popular software tools use the exact match maximalarggbstrings (EM-MUM) as anchors.
However, the result is not satisfactory especially for gees with high mutation rates (e.g. virus). In
our experiments, we found that more than 40% of the conseyerds are not recovered. In this paper,
we consider anchors with mismatches. Our contributionkidtecthe following.

e Based on the experiments on 35 pairs of virus genomes usieg thoftware tools
(MUMmer-3, MaxMinCluster, MSS), we show that using anchaith mismatches does
increase the effectiveness of locating conserved regaimsut 10% more conserved gene
regions are located, while maintaining a high sensitivity)

e To generate a more comprehensive set of anchors with mikesats not trivial for long
sequences due to the time and memory limitation. We propesetactical algorithms for
generating this anchor set. One aims at speeding up thegsiate other aims at saving
memory. Experimental results show that both algorithmsfaster (6 times and 5 times,
respectively) than a straightforward suffix tree based @ggr.

1. Introduction

Recent research on whole genome alignment allows one ttelecaserved regions be-
tween two given genomic sequences in an efficient mannestiggisoftware tools were
designed based on the assumption that two regions, if caetseshare a lot of short sub-
strings that are highly similar and unique, though theylyatentain the same sequence.
Thus, the first step of these tools is usually to locate a setict short substrings (called
anchor3. These anchors provide a rough guideline on which portidtise genomes con-
served regions can be found. Note that a lot of these anchayscome from noise. The
next step is to eliminate the noise and identify the conskregions. Various techniques



September 17,2004 15:31 Proceedings Trim Size: 9.75ini® 6.5 192

Table 1. Performance of 3 types of anchors on 35 virus pairs.

EM-MUM GAME 5-Mismatch Anchors
Coverage Sensitivity Coverage Sensitivity Coverage  Seitgi
MUMmer-3 53.0% 66.9% 53.8% 57.4% 62.2% 74.4%
MaxMinCluster 55.4% 66.7% 55.8% 58.5% 63.6% 65.6%
MSS 56.0% 65.9% 60.9% 61.3% 70.6% 82.2%

and heuristics have been proposed for this step (e.g., nnaxioommon subsequence and
clustering).

It is obvious that the effectiveness of the software toots lighly dependent on the
set of anchors that are identified in the first step. Some pomaftware tools use max-
imal substrings that are exactly matched and unique in tioeg@nomes (EM-MUM) as
anchors”? However, it is found that the amount of conserved regionsved are not
satisfactory, in particular, for genomes with high mutatiates (e.g. virus genomes), thus
affecting the final effectiveness of the tools. In Table %, first column shows the average
result of aligning 35 pairs of virus genomes using EM-MUMsaaghors; we use three
different tools namely, MUMmer-3 MaxMinCluster!® and MSS to select the anchors.
The performance of the three tools are similar, the coveragges from 53% to 56% (i.e.,
identifying 53% to 56% of conserved gene regions that ar@knoln fact, we have further
investigated the anchors (EM-MUMSs) themselves and fouatittiey covered only 66% of
the published conserved genes; in other words, any softuging EM-MUMSs as anchors
can achieve a coverage of at most 66%. To improve the coveregeeed better methods
to generate better anchors. Another difficulty is that wedrteemaintain a reasonable sen-
sitivity (refers to the percentage of reported regions tvatrlap with published conserved
gene regions). In this paper, we focus on finding a betterfsatahors.

A natural extension for EM-MUM is to allow some mismatche#iie maximal unique
substrings. In fact, the idea of allowing mismatches in anghas been explored in a num-
ber of research projects: 7>8:11:12,16 gnd their results also support this extension. Some
of these approaches allow mismatches in the anchors basta atatistical background
probability of the matching regiorld. Some tried to incorporate certain biological knowl-
edge when characterizing the type of the mismatches (eBA7nd WABA?). However,
sometimes it is difficult to obtain the appropriate stataitiand biological knowledge for
the genomes to be aligned. Also, these knowledge may notrimrgefor all cases. Other
works take a more general approach. For example, GAMEg most recent work using
anchors with mismatches, first starts with maximal exacthed substrings, then it tries
to extend each of these substrings on the left and the rigalitwying mismatches charac-
ter by character. The extension stops if the percentagesdfiimtical bases drops below
a certain threshold. The extended substring is used as dwiiidts length is longer
than a pre-set minimum length. From a computational poiniexf, anchors with a small
number of mismatches may be missed in such a generation die keuristics nature of
the process. We also found that the effectiveness of thedwanfluctuates and may not
be significantly better than that of EM-MUM. In Table 1, theaged column shows the



September 17,2004 15:31 Proceedings Trim Size: 9.75ini® 6.5 192

performance of the three software when using anchors pediy GAME. We can see
that out of the three software tools, two give almost no ilmproent in the coverage when
compared to the case in EM-MUM, only one shows a 4.9% incrigasaverage. Note that
the sensitivity drops in all cases.

On the other hand, we believe that the assumption of haviad,almique, and highly
similar common substrings in conserved regions is readendt this paper, we propose
to generate these unique anchors witmismatches (callegd-mismatch anchorformal
definition will be given in Section 2) in a more systematic walhere are two issues
involved. The first issue is whether it is necessary to gegaeranore comprehensive set
of z-mismatch anchors in order to achieve higher coverage. itnwiork, we provide
evidence showing that the answer is affirmative. Then, aelip question is how one
can generate thegemismatch anchors. This second issue is more difficult thenroay
expect. While the generation of EM-MUMs can be done in lint@ae using suffix treé,
allowing mismatches in the substrings together with thesiregnent of uniqueness slow
down the generation process substantially. The slow dovangisificant when we want
to work on long sequences. For example, the generation timeNM-MUMs for a pair
of human-mouse chromosomes with sizes 28M and 14M respdctis only 5 minutes,
however, the generation time f@rmismatch anchors using a straight-forward approach
based on suffix tree requires about 12 hours. We then prowin@tactical algorithms for
generating the-mismatch anchors. Our contributions are summarized ifidlf@ving.

e We have compared the effectiveness of three types of ancfay£M-MUM,;
(b) anchors from GAME; (c) the-mismatch anchors. We have tested 35 pairs
of virus genomes; our evaluation is based on the result eftkpftware tools
(MUMmer-3, MaxMinCluster, and MSS). We found that using thenismatch
anchors, all tools can achieve about 10% increase in coegrafer to Table
1). More importantly, the improvement in coverage does mygily a decrease
in sensitivity. We have also measured the anchors thensahe found that the
z-mismatch anchors can achieve 8 - 14% higher coverage tieaBNRMUMS,
and 8 - 10% higher coverage than the anchors from GAME.

Besides genomes with high mutation rates, we also testedimelrors on
a number of human-mouse chromosome pairs, which are suppodee more
closely related and with lower mutation rates in both DNA #adhslated protein
sequences. The results also show an increase in coverhgagtitthe increase
for the translated protein sequences is not as significantthe other case.

¢ To tackle the problem of anchor generation, we propose taotjmal algorithms.
The first one (called Suffix-Exd) makes use of the suffix treeldoating short
substrings (seeds), then performs extension on the seedameerate the anchors.
However, in real applications, building a suffix tree for adsequence requires a
large amount of memory, so our second approach (called Falshmakes use of
a hash table to substitute the suffix tree.

Table 2 compares the running time and memory usage of ouoagipes with
a brute-force approach based on suffix tree using a long hwmuarse chromo-



September 17,2004 15:31 Proceedings Trim Size: 9.75ini® 6.5 192

Table 2. Performance of our suggested algorithms for géngr2-mismatch anchors
(based on human chromosome 16 of size 28M and mouse chroradsbof size 14M).

Running Time Memory Usage
Brute-force 12 hr 600M
Suffix-Exd 1.5hr 600M
Hash-Tab 2.6hr 120M

some pair. The results show that our first algorithm runs @sifaster than the
brute-force approach and the second algorithm requireséstless memory than
the suffix-tree based approach while the running time is Sthificantly faster
than the brute-force approach. We also propose a fasterithlgahat makes use
of the suffix links to speed up Suffix-Exd fer< 3.

Remark: The anchor generation problem we studied is related to pipeoximate string
matching problent: '3~ However, the two problems are not exactly the same. In the
approximate string matching problem, we are given a patethwe want to locate the
occurrences of all substrings in a given text that are smhildhe given pattern. However,
in the anchor generation problem, we are given two long tartswe want to locate all
pairs ofmaximalsubstrings, one in each text such that the two substringsiiitar and
appear unigquely in the respective text. Also, the algoriifionapproximate string matching
problem are usually difficult to implement and their praality for long DNA sequences
is still an unknown.

Organization of the paper. The rest of the paper is organized as follows. Section 2 éefin
the z-mismatch anchors and discusses the effectiveness ofdhebers. The-mismatch
anchor generation problem and our proposed generationithige are presented in Sec-
tion 3. Section 4 concludes the paper.

2. Thez-Mismatch Anchor and its Effectiveness

In this section, we first formally define arrmismatch anchor. Then, we compare the
effectiveness of these-mismatch anchors with EM-MUM and anchors from GAME, the
most recent work that uses anchors with mismatches.

2.1. The z-Mismatch Anchor

Given two genomesd andB, we define am-mismatch anchor as follows. We assume that
the input genomes are from the positive strand. We use tlaioosA+andA-to represent
the positive and negative strandsAfrespectively. Let andb be two substrings il and

B, respectively. We denote the hamming distance betweerdb asHamm dist(a, b).
Definition 2.1. A pair of substrings andbd (a in A andb in B) is anz-mismatch anchor

if it satisfies the following.

(1) Hamm dist(a,b) < z. (i.e. At mostz mismatches are allowed.)
(2) UniquenessThe substringa andb appear exactly once id and B, respectively.
(i.e. a appears exactly once f+or A-, but not both. The same appliesitin B.)



September 17,2004 15:31 Proceedings Trim Size: 9.75ini® 6.5 192

(3) One-to-one The substringsa and b are exact match. Otherwise, <
Hamm dist(a,b) < z such that there does not exist another substaihgf A
with Hamm dist(a’,b) < z and there does not exist another substbhof B with
Hamm dist(a,b’) < z.

(4) The first (and the last) charactersacodndb must match. (This is to avoid extend-
ing two exact matched substrings kyz mismatched characters to form another
(redundant)-mismatch anchor.)

(5) Maximat We require the paird, b) to be maximal. (i.e. For anyf(, '), if a
andb are substrings af’, b’ respectively, thend(, ') cannot form arc-mismatch
anchor.)

The z-mismatch anchor generation problem is to find all possibiespg, b) that are
xz-mismatch anchors of andB. In practice, we usually require the anchors to be of length
at leastL, a user-defined parameter.

2.2. Effectiveness of z-Mismatch Anchors

We compare the effectivenessmimismatch anchors with that of EM-MUM and the an-
chors from GAME. We use these anchors as input to three saftteals, MUMmer-3,
MaxMinCluster, and MSS. The evaluation is based on the sebo§erved regions re-
ported by these tools with respect to the set of publishedewed genes of the two input
genomes. We measure the effectiveness from two aspectsovieeage and the sensitiv-
ity. The coverageis the percentage of published conserved genes that owsitaghe
reported regions. Note that high coverage alone may notyimigh quality output as an
algorithm can simply output every input anchor to achiewe rireximum coverage. So,
we also measure the percentage of reported regions thdapweith a conserved gene
and the percentage is referred as ghasitivity A high quality output is expected to have
high coverage and reasonable sensitivity. Note that fostlfsvare tools and the genera-
tion of anchors from GAME, we set the parameters to be theudtefalues or the values
recommended by the authdrs

Aligning Genomes with High Mutation Rates We first evaluate the anchors using genomes
with high mutation rates. We use nine virus genomes of lefrgiim 100K to 180K nu-
cleotides. For these genomes, a number of conserved gereealheady been identified by
the biological community. These genomes and their corredipg conserved genes were
published in Herniou et &1.Since these genomes do not show a high level of similarity, we
align the translated protein sequences instead of the DjAes&es of the genomes. We
used 35 pairs of virus genomes for experiments as one of iregheows an exceptionally
high similarity and is excluded from our experiment. Detaif the data sets are given in
Table 4 of the Appendix.

Findings: We have tried different values far and minimum anchor length in the ex-
periments. We found that it is sensible to set= 5 and L = 13. Figure 1 shows the

2For GAME, we also tried some other values for the parametaiidtee results are similar.



September 17,2004 15:31 Proceedings Trim Size: 9.75ini® 6.5 192

coverage of the three software tools based on different@sdh 35 test cases. In gen-
eral, thex-mismatch anchors outperform the other two types of andhatnost all cases.
More precisely (see Table 1), for MUMmers3;mismatch anchors achieve 9% higher cov-
erage than both EM-MUM and the anchors from GAME on average MaxMinCluster,
z-mismatch anchors achieve 8% higher coverage than both ENMNd the anchors
from GAME on average. For MS&;-mismatch anchors achieve 14% higher coverage
than EM-MUM and 10% higher coverage than the anchors from GAivl average. Also,
x-mismatch anchors can maintain a high sensitivity whiléexéhg a higher coverage.

In fact, we have further investigated the input anchors, auené that the set af-
mismatch anchors covers more conserved genes than thetwthgmes of anchors. On
average, 78.7% of published conserved gene regions arel foube overlapped by:-
mismatch anchobPs For EM-MUM and anchors from GAME, the percentages are rela-
tively lower (only 66% and 68.5%, respectively). Recalltttheese percentages are roughly
the upper bound for the coverage of the software tools. Fha®e figures, we can also see
that the effectiveness afmismatch anchors seem to be higher.

Coverage of MUMmer Coverage of MaxMin Coverage of MSS

‘ —e—EMMUM _ —=— 5 mismatch anchor GAME ‘ [[—+—EM-MUM  —=—Smismatch anchor GAME | [[—e—Em-MUM_ —m—5mismatcn anchor GAME |
! 2

:J\ J,_J el Bl g B
i

%«nﬁ bfww ;;HJL; —*Jf“{ﬂgf&

.
PR FLIFIEFEEILEEFFE || FPTILPIPIFPLLAEIED || §PFFFIPEFEEEPEESFE

Figure 1. Effectiveness of anchors on 35 virus pairs

Aligning Closely Related GenomesBesides virus genomes, we have also performed exper-
iments on human-mouse chromosome pairs. Since human argkeracel closely related
species, we align the DNA sequences of the genomes in ordeetthe differences in ef-
fectiveness of the anchors. We have used 10 pairs of chramessof length from 14M to
65M nucleotides. Details of the data sets are given in Taletse Appendix.

Findings: Note that the sequences are about 100 times longer tham dtfiegus genomes.
For GAME, the input anchor sets are too large to be procesgéaebsoftware tools. On
average, the number of anchors from GAME is about 36M whiteefd-MUM, there are
about 52K anchors and far-mismatch anchors (Note that we tried a fewalues and a
few values for setting the minimum anchor lendthlt seems reasonable to set= 1 and

L = 20 as the genomes are closely related), there are about 47®isanly. The reason
for the large volume of anchors in GAME is that it does not iegjthe anchors to be unique
in the genomes. So, we only compare thenismatch anchors with the EM-MUM. The

bA region is considered to be covered by the set of anchorgifejion overlaps with anchors of total length of
at least 8.



September 17,2004 15:31 Proceedings Trim Size: 9.75ini® 6.5 192

Table 3. Performance af-mismatch anchors on 10 human-mouse chromosome pairs.

EM-MUM 1-Mismatch Anchors
Coverage Sensitivity Coverage  Sensitivity
MUMmer-3 57.5% 31.5% 70.0% 31.4%
MaxMinCluster 72.2% 32.4% 89.9% 32.5%
MSS 87.5% 30.0% 94.6% 30.1%

resultis shown in Table 3. Themismatch anchors also show a significantimprovementin
terms of coverage while maintaining more or less the sanstsaty as that of EM-MUM.
The increase in coverage is about 7 - 17%.

However, as aremark, if the alignmentis performed on thesteded protein sequences,
the improvement is smaller and is of a few percentages (1#ftjsingz-mismatch an-
chors. The small improvement is due to the fact that the egesusing EM-MUM is
already high (about 90%) as the species are closely relltedal applications, we should
try to align the translated protein sequences (especiatlgittant species). So, the results
for aligning DNA sequences of the human-mouse chromosoring @i for reference to
illustrate the effectiveness afmismatch anchors.

To conclude, using-mismatch anchors is more effective than EM-MUM and anchors
from GAME. In the next section, we will discuss how to generiiie set of:-mismatch
anchors, especially for long sequences.

3. The Anchor Generation Algorithms

In this section, we propose two practical algorithms, Stifid and Hash-Tab, for gener-
ating z-mismatch anchors given two genomic sequen¢esd B. By making use of the
suffix links, we also show how to speed up Suffix-Exd for theeaafs < 3. To start with,
we first present a suffix tree based brute-force approachalRbat when generating the
anchors, we require the length of an anchor to be at 1basd very short anchors most
likely come from noise. Le#d, B be the two given genomes.
The Suffix Tree Based Brute-force Approach We first build a suffix tre@’4 for A+, then for
each position of B+, we aim at locating all substringsin A+ that satisfy the following.
(1) s is of length at leasL; (2) s is unique inA+; (3) there is a corresponding substring
t in B+ starting at positioni such thatlamm dist(s,t) < z and §, t) is maximal. We
search the suffix treé€4 in a brute-force manner. Based on the characterg at1, . . . of
B+, we searcl44. Since we allowr mismatches, we try all branches at every node and
keep track the number of mismatches for each branch witheotdp the corresponding
substring inB+. Output the substringin the tree if it satisfies the above three conditions.
For each pair 4, t) reported, we check the uniquenesssadndt by searching the
suffix trees ofA-, B+, andB-. Finally, to satisfy the one-to-one condition (Conditi@) 6f
Definition 2.1), the remainings(t) pairs will go through a simple checking procedure (the
details will be given in the full paper). Then, repeat the sgrocedure by building 4 —
for A- and usingB+ to search for:-mismatch anchors with respectBa- andA-.
The brute-force approach is easy to implement, but is tow,stspecially for long



September 17,2004 15:31 Proceedings Trim Size: 9.75ini® 6.5 192

genomic sequences and larg®alues. Table 2 shows that it takes 12 hours to enumerate
the anchor set for a human-mouse chromosome pair which aizeo28M and 14M.

The Suffix-Exd Approach: In the brute-force approach, for large valuegpé large portion

of the tree will be searched and this slows down the searghiogess. The idea of the
Suffix-Exd approach is given in the following lemma basedhmngigeon-hole principle.

Lemma 3.1. Lets[1..£] andt[1..£] be substrings in the genomésand B, respectively such
thatHamm dist(s,t) < z. Then, eitheHamm dist(s[1..|£/2]],¢[1..[£/2]]) < |z/2] or
Hamm dist(s[|[£/2] + 1..0],¢[|£/2] + 1..4]) < |z/2].

Roughly speaking, the above lemma says thatihdt is anz-mismatch anchor, then
either the first half or the second half oaind¢ contain at most/2 mismatches. In other
words, there must be substrings (either prefixes or suffices)andt¢ of length exactly
| L/2] with at mostz /2 mismatches. (Recall thdtis the minimum anchor length.)

So, we can search the suffix tree for these substrings (witbrfenismatches) as seeds
in order to avoid searching a large portion of the tree. Wa #adend from these seeds
to locate the anchor set. The details are as follow. For eabktsngq of length ex-
actly |[L/2] in B+, we search the suffix treéB4, for substringg (the seed} such that
Hamm dist(p,q) < |z/2]|. We call this step theeed finding stepNote that we search for
shorter, fixed length substrings with fewer mismatches éngthiffix tree so as to speed up
the process. Then, we extend eaphy] pair to (', ¢') such thatp’ andq¢’ are maximal,
of length> L, andHamm dist(p', ¢') < x. We can then go through the same checking as
in the brute-force approach to make sure gfag’ are unique and satisfy the one-to-one
condition. Again, we repeat the procedureTor andB+. From Table 2, we can see that
the speed up is about 6 times.

The Hash-Tab Approach For long sequences, building suffix tree requires a lot afhoe.
The Hash-Tab approach solves the memory problem as followhe seed finding step,
instead of using suffix tree, we build a hash table to storeldbations of all possible
substrings of fixed length id+. Then, for each substring iB+, we search the hash table
for matching strings iM+. To check the uniqueness, building a single suffix tree may no
be feasible. So, we can divide the genome into several regimild multiple suffix trees,
then we check all these suffix trees to guarantee the unigaeii@e details will be given
in the full paper. The Hash-Tab approach is slower than tHéxStixd approach, but it
can save a lot of memory. Table 2 shows that the Hash-Tab agprequires 5 times less
memory while the running time is still significantly fastliah the brute-force approach.
Speeding Up the Suffix-Exd Approach Recall that in the seed finding step of the Suffix-Exd
approach, for each substringof length exactly| L/2] in B+, we search the suffix tree
T4 for substring® such thalamm dist(p,q) < |z/2]|. Assume that we have searched
the suffix treel's4 for p = au wherep is a substring irB+ anda is a single nucleotide
(character), the following lemma shows how to speed up thechéng ofu by making use
of the suffix links inT'y. Letr = |z/2].

Lemma 3.2. Letp = au be a substring in B+ andv is a single nucleotide. LeV
be an internal node T4 with path labelg representing a substring id+ such that



September 17,2004 15:31 Proceedings Trim Size: 9.75ini® 6.5 192

Hamm dist(p,q) < r. LetN' be the node pointed by the suffix linkiéfandq’ be the path
label of N'. ThenHamm dist(u,q') <.

From the above lemma, assume that we have finished seartieisyffix tree for the
substring® starting at positior in B+, if we can keep track of all corresponding locations
of N’, then we can speed up the searching for substrings stattpagion: +1. If r = 1,
we have a simple data structure to do this. So, using suffxVire can easily speed up the
seed finding step of Suffix-Exd far < 3. The speed up can be shown to|de/2| times.

4. Conclusion

In this paper, we consider the effectiveness and the geoei@tanchors with mismatches
for whole genome alignment. We formally definedzamismatch anchor. We then com-
pare the effectiveness efmismatch anchors with exact match maximal unique sulgsrin
(EM-MUM) and the anchors from GAME (the most recent work #lab uses anchors with
mismatches) based on a set of experiments on 35 pairs of ginemes and 10 pairs of
human-mouse chromosome pairs using three software todldviider-3, MaxMinClus-
ter, MSS). The results show that the effectiveness-afismatch anchors is higher than
the other anchors. We also discuss the issues (time and memweolved in generating
z-mismatch anchors. A straightforward suffix tree based @ggr uses too much time
and memory for long sequences. We propose several praatgalithms to tackle the
generation problem. However, designing faster algorittimas use less memory is still a
challenging problem and desirable for handling long germsaguences.

References

1. Brona Brejova, Daniel Brown, and Tomas Vinar. Vector seedin extension to spaced seeds
allows substantial improvements in sensitivity and spetyfiIn Proceedings of the 3rd Inter-
national Workshop in Algorithms and Bioinformatics (WABD3), pages 39-54, 2003.

2. HL Chan, TW Lam, WK Sung, Prudence WH Wong, and SM Yiu. A rtiatasensitive ap-
proach for locating conserved gene pairs between relatdesp InProc. 4th IEEE Symp. on
Bioinformatics and Bioengineering (BIBE 200gpges 545-552, 2004.

3. J.-H. Choi, H.-G. Cho, and S. Kim. GAME: Genome alignmentriatch extension. IRroceed-
ings of the Computational Systems Bioinformatics Conter¢@SB 2004)2004. To appear.

4. A. Cobbs. Fast approximate matching using suffix treeBrdceedings of the 6th Annual Sym-
posium on Combinatorial Pattern Matching (CPM’'9Ppges 41-54, 1995.

5. A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzbefgst algorithms for large-scale genome
alignment and comparisoMucleic Acids ResearcB80(11):2478-2483, 2002.

6. E.A.Herniou, et al. Use of whole genome sequence datdeohbaculovirus phylogenylournal
of Virology, 75(17):8117-8126, 2001.

7. N. Jareborg, E. Birney, and R. Durbin. Comparative amalysnoncoding regions of 77 orthol-
ogous mouse and human gene pa@snome Research:815-824, 2000.

8. J. Kent and M. Zahler. The intronerator: Exploring ins@nd alternative splicing in c. elegans
genomic alignmeniGenome Researcthi0:1115-1125, 2000.

9. S. Kurtz, A. Phillippy, A.L. Delcher, M. Smoot, M. Shumway. Antonescu, and S.L. Salzberg.
Versatile and open software for comparing large genoi@esome Biology5(2), 2004.

10. T. W. Lam, et al. Efficient algorithms for optimizing wieogenome alignment with noise. In
Proc. 14th International Symposium on Algorithms and Cdietjian, pages 364—374, 2003.



September 17,2004 15:31 Proceedings Trim Size: 9.75ini® 6.5 192

10

11.

12.

13.

14.

15.

16.

B. Ma, J. Tromp, and M. Li. PatternHunter: Faster and nserssitive homology searcBioin-
formatics 18(3):440-445, 2002.

B. Morgenstern, K. Frech, D. Dress, and T. Werner. Dialiginding local similarities by mul-
tiple sequence alignmerBioinformatics 14:290-294, 1998.

G. Navarro and R. Baeza-Yates. A hybrid indexing metlwdapproximate string matching.
Journal of Discrete Algorithmsl(1):205-239, 2000.

G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhiexing methods for approximate string
matching.|EEE Data Engineering Bulletir?4(4):19-27, 2001.

E. Ukkonen. Approximate matching over suffix treesPtaceedings of the 4th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM’'93)ages 228-242, 1993.

P. Vincens, L. Buffat, C. Andre, J.P. Chevrolat, J.F.sBmux, and S. Hazout. A strategy for
finding regions of similarity in complete genome sequenBésinformatics 14:715-725, 1998.

Appendix

Table 4.

Details of the 35 baculovirus pairs. The lengthg (dghe genomes are respectively 134k for ACMNPV (Ac),

128k for BmNPV (Bm), 131k for OpMNPYV (Op), 161k for LAMNPV ()d136k for SeMNPV (Se), 131k for HaSNPV (Ha),
179k for XcGV (Xc), 101k for PxGv (Px), and 124k for CpGV (Cp).

Exp. Virus  #of Conserved Exp. Virus  #of Conserved Exp. Virus # of Conserved
No. Pair Genes No. Pair Genes No. Pair Genes
1 AcCp 72 13 BmSe 99 25 OpLd 98
2 AcHa 98 14 BmXc 75 26 OpPx 68
3 AcLd 95 15 HaCp 71 27 OpSe 101
4 AcOp 126 16 HaPx 67 28 OpXc 75
5 AcPx 68 17 HaXc 74 29 PxCp 97
6 AcSe 100 18 LdCp 75 30 PxXc 99
7 AcXc 78 19 LdHa 92 31 SeCp 75
8 BmCp 72 20 LdPx 68 32 SeHa 101
9 BmHa 98 21 LdSe 102 33 SePx 68
10 BmLd 93 22 LdXc 77 34 SeXc 76
11 BmOp 122 23 OpCp 76 35  XcCp 107
12 BmPx 68 24 OpHa 95

Table 5. Details of the 10 human-mouse chromosome pairs

Exp. Mouse Chr. Human Chr. Length of Mouse Length of Human RBudflished

No. No. No. Chr. Chr. Conserved Genes
1 2 15 51M 54M 51
2 7 19 22M 31M 192
3 9 11 51M 47M 101
4 14 8 39M 18M 38
5 15 22 65M 29M 72
6 16 16 63M 26M 31
7 16 22 63M 27M 30
8 17 16 15M 29M 46
9 17 19 31M 40M 30
10 19 11 30M 14M 93




