
September 17, 2004 15:31 Proceedings Trim Size: 9.75in x 6.5in 192

ALLOWING MISMATCHES IN ANCHORS FOR WHOLE GENOME
ALIGNMENT: GENERATION AND EFFECTIVENESS

SM YIU
�

PY CHAN
�

TW LAM
�

WK SUNG
�

HF TING
�

PWH WONG
�

�
Department of Computer Science

The University of Hong Kong, Hong Kong
E-mail: �smyiu, pychan, twlam, hfting�@cs.hku.hk�

Department of Computer Science
National University of Singapore, Singapore

E-mail: ksung@comp.nus.edu.sg�
Department of Computer Science
The University of Liverpool, UK

E-mail: pwong@csc.liv.ac.uk

Recent work on whole genome alignment has resulted in efficient tools to locate (possibly) conserved
regions of two genomic sequences. Most of such tools start with locating a set of short and highly
similar substrings (calledanchors) that are present in both genomes. These anchors provide clues for
the conserved regions, and the effectiveness of the tools ishighly related to the quality of the anchors.
Some popular software tools use the exact match maximal unique substrings (EM-MUM) as anchors.
However, the result is not satisfactory especially for genomes with high mutation rates (e.g. virus). In
our experiments, we found that more than 40% of the conservedgenes are not recovered. In this paper,
we consider anchors with mismatches. Our contributions include the following.

� Based on the experiments on 35 pairs of virus genomes using three software tools
(MUMmer-3, MaxMinCluster, MSS), we show that using anchorswith mismatches does
increase the effectiveness of locating conserved regions (about 10% more conserved gene
regions are located, while maintaining a high sensitivity).

� To generate a more comprehensive set of anchors with mismatches is not trivial for long
sequences due to the time and memory limitation. We propose two practical algorithms for
generating this anchor set. One aims at speeding up the process, the other aims at saving
memory. Experimental results show that both algorithms arefaster (6 times and 5 times,
respectively) than a straightforward suffix tree based approach.

1. Introduction

Recent research on whole genome alignment allows one to locate conserved regions be-
tween two given genomic sequences in an efficient manner. Existing software tools were
designed based on the assumption that two regions, if conserved, share a lot of short sub-
strings that are highly similar and unique, though they rarely contain the same sequence.
Thus, the first step of these tools is usually to locate a set ofsuch short substrings (called
anchors). These anchors provide a rough guideline on which portionsof the genomes con-
served regions can be found. Note that a lot of these anchors may come from noise. The
next step is to eliminate the noise and identify the conserved regions. Various techniques

1



September 17, 2004 15:31 Proceedings Trim Size: 9.75in x 6.5in 192

2

Table 1. Performance of 3 types of anchors on 35 virus pairs.

EM-MUM GAME �-Mismatch Anchors
Coverage Sensitivity Coverage Sensitivity Coverage Sensitivity

MUMmer-3 53.0% 66.9% 53.8% 57.4% 62.2% 74.4%
MaxMinCluster 55.4% 66.7% 55.8% 58.5% 63.6% 65.6%

MSS 56.0% 65.9% 60.9% 61.3% 70.6% 82.2%

and heuristics have been proposed for this step (e.g., maximum common subsequence and
clustering).

It is obvious that the effectiveness of the software tools are highly dependent on the
set of anchors that are identified in the first step. Some popular software tools use max-
imal substrings that are exactly matched and unique in the two genomes (EM-MUM) as
anchors.

� � �
However, it is found that the amount of conserved regions recovered are not

satisfactory, in particular, for genomes with high mutation rates (e.g. virus genomes), thus
affecting the final effectiveness of the tools. In Table 1, the first column shows the average
result of aligning 35 pairs of virus genomes using EM-MUMs asanchors; we use three
different tools namely, MUMmer-3,

�
MaxMinCluster,

��
and MSS

�
to select the anchors.

The performance of the three tools are similar, the coverageranges from 53% to 56% (i.e.,
identifying 53% to 56% of conserved gene regions that are known). In fact, we have further
investigated the anchors (EM-MUMs) themselves and found that they covered only 66% of
the published conserved genes; in other words, any softwareusing EM-MUMs as anchors
can achieve a coverage of at most 66%. To improve the coverage, we need better methods
to generate better anchors. Another difficulty is that we need to maintain a reasonable sen-
sitivity (refers to the percentage of reported regions thatoverlap with published conserved
gene regions). In this paper, we focus on finding a better set of anchors.

A natural extension for EM-MUM is to allow some mismatches inthe maximal unique
substrings. In fact, the idea of allowing mismatches in anchors has been explored in a num-
ber of research projects

� � � � � � 	 � �� � �� � �

and their results also support this extension. Some

of these approaches allow mismatches in the anchors based onthe statistical background
probability of the matching regions.

��
Some tried to incorporate certain biological knowl-

edge when characterizing the type of the mismatches (e.g., DBA
�

and WABA
	
). However,

sometimes it is difficult to obtain the appropriate statistical and biological knowledge for
the genomes to be aligned. Also, these knowledge may not be general for all cases. Other
works take a more general approach. For example, GAME,

�
the most recent work using

anchors with mismatches, first starts with maximal exact matched substrings, then it tries
to extend each of these substrings on the left and the right byallowing mismatches charac-
ter by character. The extension stops if the percentage of the identical bases drops below
a certain threshold. The extended substring is used as an anchor if its length is longer
than a pre-set minimum length. From a computational point ofview, anchors with a small
number of mismatches may be missed in such a generation due tothe heuristics nature of
the process. We also found that the effectiveness of these anchors fluctuates and may not
be significantly better than that of EM-MUM. In Table 1, the second column shows the



September 17, 2004 15:31 Proceedings Trim Size: 9.75in x 6.5in 192

3

performance of the three software when using anchors provided by GAME. We can see
that out of the three software tools, two give almost no improvement in the coverage when
compared to the case in EM-MUM, only one shows a 4.9% increasein coverage. Note that
the sensitivity drops in all cases.

On the other hand, we believe that the assumption of having short, unique, and highly
similar common substrings in conserved regions is reasonable. In this paper, we propose
to generate these unique anchors with� mismatches (called�-mismatch anchors, formal
definition will be given in Section 2) in a more systematic way. There are two issues
involved. The first issue is whether it is necessary to generate a more comprehensive set
of �-mismatch anchors in order to achieve higher coverage. In this work, we provide
evidence showing that the answer is affirmative. Then, a follow-up question is how one
can generate these�-mismatch anchors. This second issue is more difficult than one may
expect. While the generation of EM-MUMs can be done in lineartime using suffix tree,

�

allowing mismatches in the substrings together with the requirement of uniqueness slow
down the generation process substantially. The slow down issignificant when we want
to work on long sequences. For example, the generation time for EM-MUMs for a pair
of human-mouse chromosomes with sizes 28M and 14M respectively, is only 5 minutes,
however, the generation time for

�
-mismatch anchors using a straight-forward approach

based on suffix tree requires about 12 hours. We then provide two practical algorithms for
generating the�-mismatch anchors. Our contributions are summarized in thefollowing.

� We have compared the effectiveness of three types of anchors: (a) EM-MUM;
(b) anchors from GAME; (c) the�-mismatch anchors. We have tested 35 pairs
of virus genomes; our evaluation is based on the result of three software tools
(MUMmer-3, MaxMinCluster, and MSS). We found that using the�-mismatch
anchors, all tools can achieve about 10% increase in coverage (refer to Table
1). More importantly, the improvement in coverage does not imply a decrease
in sensitivity. We have also measured the anchors themselves and found that the
�-mismatch anchors can achieve 8 - 14% higher coverage than the EM-MUMs,
and 8 - 10% higher coverage than the anchors from GAME.

Besides genomes with high mutation rates, we also tested ouranchors on
a number of human-mouse chromosome pairs, which are supposed to be more
closely related and with lower mutation rates in both DNA andtranslated protein
sequences. The results also show an increase in coverage although the increase
for the translated protein sequences is not as significant asin the other case.

� To tackle the problem of anchor generation, we propose two practical algorithms.
The first one (called Suffix-Exd) makes use of the suffix tree for locating short
substrings (seeds), then performs extension on the seeds toenumerate the anchors.
However, in real applications, building a suffix tree for a long sequence requires a
large amount of memory, so our second approach (called Hash-Tab) makes use of
a hash table to substitute the suffix tree.

Table 2 compares the running time and memory usage of our approaches with
a brute-force approach based on suffix tree using a long human-mouse chromo-



September 17, 2004 15:31 Proceedings Trim Size: 9.75in x 6.5in 192

4

Table 2. Performance of our suggested algorithms for generating 2-mismatch anchors
(based on human chromosome 16 of size 28M and mouse chromosome 17 of size 14M).

Running Time Memory Usage

Brute-force 12 hr 600M
Suffix-Exd 1.5hr 600M
Hash-Tab 2.6hr 120M

some pair. The results show that our first algorithm runs 6 times faster than the
brute-force approach and the second algorithm requires 5 times less memory than
the suffix-tree based approach while the running time is still significantly faster
than the brute-force approach. We also propose a faster algorithm that makes use
of the suffix links to speed up Suffix-Exd for� � �.

Remark: The anchor generation problem we studied is related to the approximate string
matching problem.� � �����

However, the two problems are not exactly the same. In the
approximate string matching problem, we are given a patternand we want to locate the
occurrences of all substrings in a given text that are similar to the given pattern. However,
in the anchor generation problem, we are given two long textsand we want to locate all
pairs ofmaximalsubstrings, one in each text such that the two substrings aresimilar and
appear uniquely in the respective text. Also, the algorithms for approximate string matching
problem are usually difficult to implement and their practicality for long DNA sequences
is still an unknown.
Organization of the paper: The rest of the paper is organized as follows. Section 2 defines
the�-mismatch anchors and discusses the effectiveness of theseanchors. The�-mismatch
anchor generation problem and our proposed generation algorithms are presented in Sec-
tion 3. Section 4 concludes the paper.

2. The�-Mismatch Anchor and its Effectiveness

In this section, we first formally define an�-mismatch anchor. Then, we compare the
effectiveness of these�-mismatch anchors with EM-MUM and anchors from GAME, the
most recent work that uses anchors with mismatches.

2.1. The �-Mismatch Anchor

Given two genomes,� and� , we define an�-mismatch anchor as follows. We assume that
the input genomes are from the positive strand. We use the notationsA+andA-to represent
the positive and negative strands of� , respectively. Let� and� be two substrings in� and
� , respectively. We denote the hamming distance between� and� as	
�� � 
�� �� � ��.
Definition 2.1. A pair of substrings� and� (� in � and� in � ) is an�-mismatch anchor
if it satisfies the following.

(1) 	
�� � 
�� �� � �� � �. (i.e. At most� mismatches are allowed.)
(2) Uniqueness: The substrings� and� appear exactly once in� and� , respectively.

(i.e. � appears exactly once inA+or A-, but not both. The same applies to� in � .)



September 17, 2004 15:31 Proceedings Trim Size: 9.75in x 6.5in 192

5

(3) One-to-one: The substrings� and � are exact match. Otherwise,� �
	
�� � 
�� �� � �� � � such that there does not exist another substring� � of �
with 	
�� � 
�� �� � � �� � � and there does not exist another substring� � of � with
	
�� � 
�� �� � � � � � �.

(4) The first (and the last) characters of� and� must match. (This is to avoid extend-
ing two exact matched substrings by� � mismatched characters to form another
(redundant)�-mismatch anchor.)

(5) Maximal: We require the pair (�, �) to be maximal. (i.e. For any (� �, � �), if �
and� are substrings of� �, � � respectively, then (� �, � �) cannot form an�-mismatch
anchor.)

The �-mismatch anchor generation problem is to find all possible pairs (� � �) that are
�-mismatch anchors of� and� . In practice, we usually require the anchors to be of length
at least�, a user-defined parameter.

2.2. Effectiveness of �-Mismatch Anchors

We compare the effectiveness of�-mismatch anchors with that of EM-MUM and the an-
chors from GAME. We use these anchors as input to three software tools, MUMmer-3,
MaxMinCluster, and MSS. The evaluation is based on the set ofconserved regions re-
ported by these tools with respect to the set of published conserved genes of the two input
genomes. We measure the effectiveness from two aspects: thecoverage and the sensitiv-
ity. The coverageis the percentage of published conserved genes that overlapwith the
reported regions. Note that high coverage alone may not imply high quality output as an
algorithm can simply output every input anchor to achieve the maximum coverage. So,
we also measure the percentage of reported regions that overlap with a conserved gene
and the percentage is referred as thesensitivity. A high quality output is expected to have
high coverage and reasonable sensitivity. Note that for thesoftware tools and the genera-
tion of anchors from GAME, we set the parameters to be the default values or the values
recommended by the authors�.
Aligning Genomes with High Mutation Rates: We first evaluate the anchors using genomes
with high mutation rates. We use nine virus genomes of lengthfrom 100K to 180K nu-
cleotides. For these genomes, a number of conserved genes have already been identified by
the biological community. These genomes and their corresponding conserved genes were
published in Herniou et al.



Since these genomes do not show a high level of similarity, we

align the translated protein sequences instead of the DNA sequences of the genomes. We
used 35 pairs of virus genomes for experiments as one of the pairs shows an exceptionally
high similarity and is excluded from our experiment. Details of the data sets are given in
Table 4 of the Appendix.
Findings: We have tried different values for� and minimum anchor length� in the ex-
periments. We found that it is sensible to set� � � and� � ��. Figure 1 shows the

�
For GAME, we also tried some other values for the parameters and the results are similar.



September 17, 2004 15:31 Proceedings Trim Size: 9.75in x 6.5in 192

6

coverage of the three software tools based on different anchors in 35 test cases. In gen-
eral, the�-mismatch anchors outperform the other two types of anchorsin almost all cases.
More precisely (see Table 1), for MUMmer-3,�-mismatch anchors achieve 9% higher cov-
erage than both EM-MUM and the anchors from GAME on average. For MaxMinCluster,
�-mismatch anchors achieve 8% higher coverage than both EM-MUM and the anchors
from GAME on average. For MSS,�-mismatch anchors achieve 14% higher coverage
than EM-MUM and 10% higher coverage than the anchors from GAME on average. Also,
�-mismatch anchors can maintain a high sensitivity while achieving a higher coverage.

In fact, we have further investigated the input anchors, we found that the set of�-
mismatch anchors covers more conserved genes than the othertwo types of anchors. On
average, 78.7% of published conserved gene regions are found to be overlapped by�-
mismatch anchors�. For EM-MUM and anchors from GAME, the percentages are rela-
tively lower (only 66% and 68.5%, respectively). Recall that these percentages are roughly
the upper bound for the coverage of the software tools. From these figures, we can also see
that the effectiveness of�-mismatch anchors seem to be higher.

Figure 1. Effectiveness of anchors on 35 virus pairs

Aligning Closely Related Genomes: Besides virus genomes, we have also performed exper-
iments on human-mouse chromosome pairs. Since human and mouse are closely related
species, we align the DNA sequences of the genomes in order tosee the differences in ef-
fectiveness of the anchors. We have used 10 pairs of chromosomes of length from 14M to
65M nucleotides. Details of the data sets are given in Table 5in the Appendix.
Findings: Note that the sequences are about 100 times longer than those of virus genomes.
For GAME, the input anchor sets are too large to be processed by the software tools. On
average, the number of anchors from GAME is about 36M while for EM-MUM, there are
about 52K anchors and for�-mismatch anchors (Note that we tried a few� values and a
few values for setting the minimum anchor length� . It seems reasonable to set� � � and
� � ��

as the genomes are closely related), there are about 476K anchors only. The reason
for the large volume of anchors in GAME is that it does not require the anchors to be unique
in the genomes. So, we only compare the�-mismatch anchors with the EM-MUM. The

�
A region is considered to be covered by the set of anchors if the region overlaps with anchors of total length of

at least 8.



September 17, 2004 15:31 Proceedings Trim Size: 9.75in x 6.5in 192

7

Table 3. Performance of�-mismatch anchors on 10 human-mouse chromosome pairs.

EM-MUM
�
-Mismatch Anchors

Coverage Sensitivity Coverage Sensitivity

MUMmer-3 57.5% 31.5% 70.0% 31.4%
MaxMinCluster 72.2% 32.4% 89.9% 32.5%
MSS 87.5% 30.0% 94.6% 30.1%

result is shown in Table 3. The�-mismatch anchors also show a significant improvement in
terms of coverage while maintaining more or less the same sensitivity as that of EM-MUM.
The increase in coverage is about 7 - 17%.

However, as a remark, if the alignment is performed on the translated protein sequences,
the improvement is smaller and is of a few percentages (1-6%)by using�-mismatch an-
chors. The small improvement is due to the fact that the coverage using EM-MUM is
already high (about 90%) as the species are closely related.In real applications, we should
try to align the translated protein sequences (especially for distant species). So, the results
for aligning DNA sequences of the human-mouse chromosome pairs are for reference to
illustrate the effectiveness of�-mismatch anchors.

To conclude, using�-mismatch anchors is more effective than EM-MUM and anchors
from GAME. In the next section, we will discuss how to generate the set of�-mismatch
anchors, especially for long sequences.

3. The Anchor Generation Algorithms

In this section, we propose two practical algorithms, Suffix-Exd and Hash-Tab, for gener-
ating�-mismatch anchors given two genomic sequences� and� . By making use of the
suffix links, we also show how to speed up Suffix-Exd for the case of � � �. To start with,
we first present a suffix tree based brute-force approach. Recall that when generating the
anchors, we require the length of an anchor to be at least� as very short anchors most
likely come from noise. Let� , � be the two given genomes.
The Suffix Tree Based Brute-force Approach: We first build a suffix tree

���
for A+, then for

each position� of B+, we aim at locating all substrings� in A+ that satisfy the following.
(1) � is of length at least� ; (2) � is unique inA+; (3) there is a corresponding substring�

in B+ starting at position� such that	
�� � 
�� �� � �� � � and (�, �
) is maximal. We

search the suffix tree
���

in a brute-force manner. Based on the characters at� � � � � � 	 	 	 of
B+, we search

���
. Since we allow� mismatches, we try all branches at every node and

keep track the number of mismatches for each branch with respect to the corresponding
substring inB+. Output the substring� in the tree if it satisfies the above three conditions.

For each pair (�, �
) reported, we check the uniqueness of� and

�
by searching the

suffix trees ofA-, B+, andB-. Finally, to satisfy the one-to-one condition (Condition (3) of
Definition 2.1), the remaining (� � �) pairs will go through a simple checking procedure (the
details will be given in the full paper). Then, repeat the same procedure by building

���
for A- and usingB+ to search for�-mismatch anchors with respect toB+ andA-.

The brute-force approach is easy to implement, but is too slow, especially for long



September 17, 2004 15:31 Proceedings Trim Size: 9.75in x 6.5in 192

8

genomic sequences and large� values. Table 2 shows that it takes 12 hours to enumerate
the anchor set for a human-mouse chromosome pair which are ofsize 28M and 14M.
The Suffix-Exd Approach: In the brute-force approach, for large values of�, a large portion
of the tree will be searched and this slows down the searchingprocess. The idea of the
Suffix-Exd approach is given in the following lemma based on the pigeon-hole principle.

Lemma 3.1. Let � �� 		�� and
� �� 		�� be substrings in the genomes� and� , respectively such

that 	
�� � 
�� �� � �� � �. Then, either	
�� � 
�� �� �� 		 ������ � � �� 		 ������� � �� ��� or
	
�� � 
�� �� � ����� � � 		�� � � � ����� � � 		��� � �� ���.

Roughly speaking, the above lemma says that if� and
�

is an�-mismatch anchor, then
either the first half or the second half of� and

�
contain at most�

��
mismatches. In other

words, there must be substrings (either prefixes or suffices)in � and
�

of length exactly
�� ���

with at most�
��

mismatches. (Recall that� is the minimum anchor length.)
So, we can search the suffix tree for these substrings (with fewer mismatches) as seeds

in order to avoid searching a large portion of the tree. We then extend from these seeds
to locate the anchor set. The details are as follow. For each substring � of length ex-
actly �� ���

in B+, we search the suffix tree
���

for substrings� (the seeds) such that
	
�� � 
�� �� � � � � �����. We call this step theseed finding step. Note that we search for
shorter, fixed length substrings with fewer mismatches in the suffix tree so as to speed up
the process. Then, we extend each (� � �) pair to (� � � � �) such that� � and � � are maximal,
of length� �, and	
�� � 
�� �� � � � � � � �. We can then go through the same checking as
in the brute-force approach to make sure that� � � � � are unique and satisfy the one-to-one
condition. Again, we repeat the procedure for

��� andB+. From Table 2, we can see that
the speed up is about 6 times.
The Hash-Tab Approach: For long sequences, building suffix tree requires a lot of memory.
The Hash-Tab approach solves the memory problem as follows.In the seed finding step,
instead of using suffix tree, we build a hash table to store thelocations of all possible
substrings of fixed length in	�. Then, for each substring in
 �, we search the hash table
for matching strings in	�. To check the uniqueness, building a single suffix tree may not
be feasible. So, we can divide the genome into several regions, build multiple suffix trees,
then we check all these suffix trees to guarantee the uniqueness. The details will be given
in the full paper. The Hash-Tab approach is slower than the Suffix-Exd approach, but it
can save a lot of memory. Table 2 shows that the Hash-Tab approach requires 5 times less
memory while the running time is still significantly faster than the brute-force approach.
Speeding Up the Suffix-Exd Approach: Recall that in the seed finding step of the Suffix-Exd
approach, for each substring� of length exactly�� ���

in B+, we search the suffix tree���
for substrings� such that	
�� �
�� �� � � � � �����. Assume that we have searched

the suffix tree
���

for � � �� where� is a substring inB+ and� is a single nucleotide
(character), the following lemma shows how to speed up the searching of� by making use
of the suffix links in

���
. Let 
 � �����.

Lemma 3.2. Let � � �� be a substring in B+ and� is a single nucleotide. Let�
be an internal node in

���
with path label� representing a substring in	� such that



September 17, 2004 15:31 Proceedings Trim Size: 9.75in x 6.5in 192

9

	
�� � 
�� �� � � � � 
. Let� � be the node pointed by the suffix link of� and� � be the path
label of� �. Then,	
�� � 
�� �� � � � � � 
.

From the above lemma, assume that we have finished searching the suffix tree for the
substrings� starting at position� in B+, if we can keep track of all corresponding locations
of � �, then we can speed up the searching for substrings starting at position� � �. If 
 � �,
we have a simple data structure to do this. So, using suffix link, we can easily speed up the
seed finding step of Suffix-Exd for� � �. The speed up can be shown to be�� ���

times.

4. Conclusion

In this paper, we consider the effectiveness and the generation of anchors with mismatches
for whole genome alignment. We formally defined an�-mismatch anchor. We then com-
pare the effectiveness of�-mismatch anchors with exact match maximal unique substrings
(EM-MUM) and the anchors from GAME (the most recent work thatalso uses anchors with
mismatches) based on a set of experiments on 35 pairs of virusgenomes and 10 pairs of
human-mouse chromosome pairs using three software tools (MUMmer-3, MaxMinClus-
ter, MSS). The results show that the effectiveness of�-mismatch anchors is higher than
the other anchors. We also discuss the issues (time and memory) involved in generating
�-mismatch anchors. A straightforward suffix tree based approach uses too much time
and memory for long sequences. We propose several practicalalgorithms to tackle the
generation problem. However, designing faster algorithmsthat use less memory is still a
challenging problem and desirable for handling long genomic sequences.

References

1. Brona Brejova, Daniel Brown, and Tomas Vinar. Vector seeds: An extension to spaced seeds
allows substantial improvements in sensitivity and specificity. In Proceedings of the 3rd Inter-
national Workshop in Algorithms and Bioinformatics (WABI 2003), pages 39–54, 2003.

2. HL Chan, TW Lam, WK Sung, Prudence WH Wong, and SM Yiu. A mutation-sensitive ap-
proach for locating conserved gene pairs between related species. InProc. 4th IEEE Symp. on
Bioinformatics and Bioengineering (BIBE 2004), pages 545–552, 2004.

3. J.-H. Choi, H.-G. Cho, and S. Kim. GAME: Genome alignment by match extension. InProceed-
ings of the Computational Systems Bioinformatics Conference (CSB 2004), 2004. To appear.

4. A. Cobbs. Fast approximate matching using suffix trees. InProceedings of the 6th Annual Sym-
posium on Combinatorial Pattern Matching (CPM’95), pages 41–54, 1995.

5. A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms for large-scale genome
alignment and comparison.Nucleic Acids Research, 30(11):2478–2483, 2002.

6. E.A. Herniou, et al. Use of whole genome sequence data to infer baculovirus phylogeny.Journal
of Virology, 75(17):8117–8126, 2001.

7. N. Jareborg, E. Birney, and R. Durbin. Comparative analysis of noncoding regions of 77 orthol-
ogous mouse and human gene pairs.Genome Research, 9:815–824, 2000.

8. J. Kent and M. Zahler. The intronerator: Exploring introns and alternative splicing in c. elegans
genomic alignment.Genome Research, 10:1115–1125, 2000.

9. S. Kurtz, A. Phillippy, A.L. Delcher, M. Smoot, M. Shumway, C. Antonescu, and S.L. Salzberg.
Versatile and open software for comparing large genomes.Genome Biology, 5(2), 2004.

10. T. W. Lam, et al. Efficient algorithms for optimizing whole genome alignment with noise. In
Proc. 14th International Symposium on Algorithms and Computation, pages 364–374, 2003.



September 17, 2004 15:31 Proceedings Trim Size: 9.75in x 6.5in 192

10

11. B. Ma, J. Tromp, and M. Li. PatternHunter: Faster and moresensitive homology search.Bioin-
formatics, 18(3):440–445, 2002.

12. B. Morgenstern, K. Frech, D. Dress, and T. Werner. Dialign: Finding local similarities by mul-
tiple sequence alignment.Bioinformatics, 14:290–294, 1998.

13. G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate string matching.
Journal of Discrete Algorithms, 1(1):205–239, 2000.

14. G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for approximate string
matching.IEEE Data Engineering Bulletin, 24(4):19–27, 2001.

15. E. Ukkonen. Approximate matching over suffix trees. InProceedings of the 4th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM’93), pages 228–242, 1993.

16. P. Vincens, L. Buffat, C. Andre, J.P. Chevrolat, J.F. Boisvieux, and S. Hazout. A strategy for
finding regions of similarity in complete genome sequences.Bioinformatics, 14:715–725, 1998.

Appendix

Table 4. Details of the 35 baculovirus pairs. The lengths (bp) of the genomes are respectively 134k for AcMNPV (Ac),
128k for BmNPV (Bm), 131k for OpMNPV (Op), 161k for LdMNPV (Ld), 136k for SeMNPV (Se), 131k for HaSNPV (Ha),
179k for XcGV (Xc), 101k for PxGv (Px), and 124k for CpGV (Cp).

Exp. Virus # of Conserved Exp. Virus # of Conserved Exp. Virus # of Conserved
No. Pair Genes No. Pair Genes No. Pair Genes
1 AcCp 72 13 BmSe 99 25 OpLd 98
2 AcHa 98 14 BmXc 75 26 OpPx 68
3 AcLd 95 15 HaCp 71 27 OpSe 101
4 AcOp 126 16 HaPx 67 28 OpXc 75
5 AcPx 68 17 HaXc 74 29 PxCp 97
6 AcSe 100 18 LdCp 75 30 PxXc 99
7 AcXc 78 19 LdHa 92 31 SeCp 75
8 BmCp 72 20 LdPx 68 32 SeHa 101
9 BmHa 98 21 LdSe 102 33 SePx 68
10 BmLd 93 22 LdXc 77 34 SeXc 76
11 BmOp 122 23 OpCp 76 35 XcCp 107
12 BmPx 68 24 OpHa 95

Table 5. Details of the 10 human-mouse chromosome pairs

Exp. Mouse Chr. Human Chr. Length of Mouse Length of Human # ofPublished
No. No. No. Chr. Chr. Conserved Genes

1 2 15 51M 54M 51
2 7 19 22M 31M 192
3 9 11 51M 47M 101
4 14 8 39M 18M 38
5 15 22 65M 29M 72
6 16 16 63M 26M 31
7 16 22 63M 27M 30
8 17 16 15M 29M 46
9 17 19 31M 40M 30
10 19 11 30M 14M 93


