
 Open access Journal Article DOI:10.1089/CMB.2017.0258

AllSome Sequence Bloom Trees. — Source link

Chen Sun, Robert S. Harris, Rayan Chikhi, Paul Medvedev

Institutions: Pennsylvania State University, university of lille

Published on: 05 Apr 2018 - Journal of Computational Biology (Mary Ann Liebert Inc.)

Topics: Tree (data structure), Bloom filter and Set (abstract data type)

Related papers:

 Fast search of thousands of short-read sequencing experiments

 AllSome Sequence Bloom Trees

 Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index.

 A fast, lock-free approach for efficient parallel counting of occurrences of k-mers

 Space/time trade-offs in hash coding with allowable errors

Share this paper:

View more about this paper here: https://typeset.io/papers/allsome-sequence-bloom-trees-
3b1ilucxm9

https://typeset.io/
https://www.doi.org/10.1089/CMB.2017.0258
https://typeset.io/papers/allsome-sequence-bloom-trees-3b1ilucxm9
https://typeset.io/authors/chen-sun-3eny5brp47
https://typeset.io/authors/robert-s-harris-4m7iyr2moq
https://typeset.io/authors/rayan-chikhi-1yt7zdymqk
https://typeset.io/authors/paul-medvedev-15xdc82pjd
https://typeset.io/institutions/pennsylvania-state-university-14gcuxm7
https://typeset.io/institutions/university-of-lille-2tmq6ir3
https://typeset.io/journals/journal-of-computational-biology-sjpw91ir
https://typeset.io/topics/tree-data-structure-1tkfl5ag
https://typeset.io/topics/bloom-filter-2mb3lb5s
https://typeset.io/topics/set-abstract-data-type-dj1hxzvz
https://typeset.io/papers/fast-search-of-thousands-of-short-read-sequencing-3lvuzosvm0
https://typeset.io/papers/allsome-sequence-bloom-trees-4wj2dkshn9
https://typeset.io/papers/mantis-a-fast-small-and-exact-large-scale-sequence-search-3jag5a4c8w
https://typeset.io/papers/a-fast-lock-free-approach-for-efficient-parallel-counting-of-3tjx1nqa3f
https://typeset.io/papers/space-time-trade-offs-in-hash-coding-with-allowable-errors-4am9ayfrvi
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/allsome-sequence-bloom-trees-3b1ilucxm9
https://twitter.com/intent/tweet?text=AllSome%20Sequence%20Bloom%20Trees.&url=https://typeset.io/papers/allsome-sequence-bloom-trees-3b1ilucxm9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/allsome-sequence-bloom-trees-3b1ilucxm9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/allsome-sequence-bloom-trees-3b1ilucxm9
https://typeset.io/papers/allsome-sequence-bloom-trees-3b1ilucxm9

AllSome Sequence Bloom Trees

Chen Sun∗1, Robert S. Harris∗2, Rayan Chikhi3, and Paul Medvedev†1,4,5

1 Department of Computer Science and Engineering,
The Pennsylvania State University, USA

2 Department of Biology, The Pennsylvania State University, USA
3 CNRS, CRIStAL, University of Lille, France

4 Department of Biochemistry and Molecular Biology,
The Pennsylvania State University, USA

5 Genome Sciencies Institute of the Huck,
The Pennsylvania State University, USA

∗C.S. and R.S.H. contributed equally to the work.
† to whom correspondence should be addressed: pashadag@cse.psu.edu

Abstract. The ubiquity of next generation sequencing has transformed the size and nature of many
databases, pushing the boundaries of current indexing and searching methods. One particular example
is a database of 2,652 human RNA-seq experiments uploaded to the Sequence Read Archive. Recently,
Solomon and Kingsford proposed the Sequence Bloom Tree data structure and demonstrated how it can
be used to accurately identify SRA samples that have a transcript of interest potentially expressed. In
this paper, we propose an improvement called the AllSome Sequence Bloom Tree. Results show that our
new data structure significantly improves performance, reducing the tree construction time by 52.7%
and query time by 39 - 85%, with a price of up to 3x memory consumption during queries. Notably, it
can query a batch of 198,074 queries in under 8 hours (compared to around two days previously) and
a whole set of k-mers from a sequencing experiment (about 27 mil k-mers) in under 11 minutes.

Keywords: sequence Bloom trees, Bloom filters, RNA-seq, data structures, algorithms, bioinformatics

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

1 Introduction

Data structures for indexing and searching of databases have always been a core contribution of
algorithmic bioinformatics to the analysis of biological data and are the building blocks of many
popular tools [21]. Traditional databases may include reference genome assemblies, collections of
known gene sequences, or reads from a single sequencing experiment. However, the ubiquity of next
generation sequencing has transformed the size and nature of many databases. Each sequencing
experiment results in a collection of reads (gigabytes in size), typically deposited into a database
such as the Sequence Read Archive (SRA) [17]. There are thousands of experiments deposited into
the SRA, creating a database of unprecedented size in genomics (4 petabases, as of 2016). The
SRA enables public access of the database via meta-data queries on the experiments’ name, type,
organism, etc. However, efficiently querying the raw read sequences of the database has remained
out of reach for today’s indexing and searching methods, until earlier this year [34].

Given a transcript of interest, an important problem is to identify all publicly available se-
quenced samples which express it. The SRA contains thousands of human RNA-seq experiments,
providing a powerful database to answer this question. One approach is to use tools such as [37,
30, 4] to first identify transcripts present in each of the experiments; however, running these tools
on a massive scale is time prohibitive (though cloud-enabled tools like Rail-RNA [29] are making
inroads). Moreover, they introduce biases and can easily miss a transcript that is supported by
the reads. Another approach is to align the SRA reads to the transcript of interest; however, this
approach is infeasible for such large datasets [34].

Recently, Solomon and Kingsford proposed the Sequence Bloom Tree (SBT) data structure
and demonstrated how it can accurately identify samples that may have the transcript of interest
expressed in the read data [34]. SBT was a breakthrough, allowing to query a set of 214,293
transcripts against a database of 2,652 human RNA-seq experiments in just under 4 days. The
SBT is not intended to replace more thorough methods, like alignment, but is intended to be
complementary, narrowing down the set of experiments for which a more rigorous investigation is
needed.

In this paper, we present the AllSome Sequence Bloom Tree (SBT-ALSO), a time and space
improvement on the original SBT (denoted by SBT-SK). It combines three new ideas. The first one
is a better construction algorithm based on clustering. The second one is a different representation
of the internal nodes of the tree so as to allow earlier pruning and faster exploration of the search
space. The final one is building a Bloom filter on the query itself. This allows quick execution of
queries that are not just transcripts but are themselves large sequencing experiments.

We evaluate SBT-ALSO on the database of 2,652 human RNA-seq sequencing runs used in [34].
SBT-ALSO reduces tree construction time by 52.7%, when given the Bloom filters of the datasets.
It reduces query time by 39 - 85%, with a price of up to 3x memory consumption. Notably, it can
query a batch of 198,074 queries in under 8 hours, compared to over two days for SBT-SK. It can
also query a whole set of k-mers from a sequencing experiment (about 27 mil k-mers) in under
11 minutes, compared to more than 23 hours by SBT-SK. Our software is open source and freely
available via GitHub1.

1SBT-ALSO GitHub repository: https://github.com/medvedevgroup/bloomtree-allsome

2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

2 Related Work

This work falls into the general category of string pattern matching, where we are asked to locate
all occurrences of a short pattern in a large text. In many cases, it is useful to pre-process the text
to construct an index that will speed up future queries. The k-mer-index, trie, suffix tree, suffix
array, BWT, and FM-index are examples of such indices [21]. These form the basis of many read
alignment tools such as BWA-mem [18] and Bowtie 2 [16]. While many of these approaches are
space and time efficient in their intended setting, they can nevertheless be infeasible on terabyte
or petabyte scale data. Other approaches based on word-based indices [28, 39] and compressive
genomics [20, 38] do not help for the type of data and queries we consider in this paper.

A Bloom filter (BF) is widely used to improve scalability by determining whether the pattern
occurs in the text, without giving its location. It is a space efficient data structure for representing
sets that occasionally provides false-positive answers to membership queries [3]. For pattern match-
ing, a BF can be constructed for all the constituent k-mers (strings of length of k) of the text. Then,
if a high percentage of a pattern’s constituent k-mers match, the text is a potential match and a full
search can be performed. BFs are used in several bioinformatics contexts such as assembly [25, 6,
33, 12], to index and compress whole genome datasets [32], and to compare sequencing experiments
against whole genomes [35].

When pattern matching against a database of read collections from sequencing experiments,
additional factors need to be considered. First, the reads contain sequencing errors. Second, they
only represent short fragments of the underlying DNA and are typically much shorter than the
pattern. Third, there are many texts, each of which is its own sequencing experiment. The goal
is to identify all texts that match the pattern. A simple way to adapt the BF idea to this case
is to simply build a BF for every text and check the pattern separately against every text’s BF.
A more sophisticated approach builds a tree to index the collection of BFs [8]. This Bloofi data
structure was introduced in the context of distributed data provenance, but it was later adapted
to the bioinformatics setting by Solomon and Kingsford in [34].

An orthogonal approach is the Bloom Filter Trie (BFT) [13], which works similarly to a trie
on the k-mers in all the texts. Each leaf contains a bitvector describing the texts in which that
k-mer appears, and BFs are cleverly used inside the trie to “jump down” ℓ positions at a time, thus
speeding up the trie traversal process. The BFT complexity scales up with the number of k-mers in
the query, while SBT complexity scales up with the number of datasets. Thus the two approaches
suggest orthogonal use cases. In particular, the BFT is very efficient for queries that are single
k-mers, significantly outperforming the SBT. An approach that uses BFT to query longer patterns
like the ones we consider in this paper is promising but is not yet available.

There is also a body of work about storing and indexing assembled genomes [19, 26, 2, 24, 10],
which is part of the growing field of pangenomics [7]. However, our work relates to the indexing of
unassembled data (i.e. reads) as opposed to complete genomes. In addition to the topics specifically
mentioned above, there are other studies related to scaling up indexing methods [23, 9], though the
list here is in no way complete.

3 Technical Background

Terminology: Let x and y be two bitvectors of the same length. The bitwise AND (i.e. intersection)
between x and y is written as x ∩ y, and the bitwise OR (i.e union) is x ∪ y. A bitvector can
be viewed as a set of positions set to 1, and this notation is consistent with the notion of set

3

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

union and intersection. The set difference of x and y is written as x \ y and can be defined as
x \ y = x AND (NOT y). A Bloom filter (BF) is a bitvector of length b, together with p hash
functions, h1, . . . , hp, where b and p are parameters. Each hash function maps a k-mer to an integer
between 0 and b−1. The empty set is represented as an array of zeros. To add a k-mer x to the set,
we set the position hi(x) to 1, for all i. To check if a k-mer x is in the set, we check that the position
hi(x) is 1, for all i. In this paper, we assume that the number of hash functions is 1 (see Section 6
for a discussion). Next, consider a rooted binary tree. The parent of a non-root node u is denoted
as parent(u), and the set of all the leaves of the subtree rooted at a node v is denoted by leaves(v).
Let lchild(u) and rchild(u) refer to the left and right children of a non-leaf node u, respectively.

SBT: Let Q be a non-empty set of k-mers, and let B be a k-mer BF. Given 0 ≤ θ ≤ 1, we say
that Q θ-matches B if |{x ∈ Q : x exists in B}|/|Q| ≥ θ. That is, the percentage of k-mers in Q
that are also in B (including false positive hits) is at least θ. Solomon and Kingsford consider the
following problem. We are given a database D = {D1, . . . , Dn}, where each Di is a BF of size b.
The query is a k-mer set Q, and the result of the query should be the set {i : Q θ-matches Di}.
The goal is to build a data structure that can construct an index on D to support multiple future
queries.

We make a distinction between the abstract data type that Solomon and Kingsford propose
for the problem and their implementation of it. We call the first SBT, and the second SBT-SK

(note that in [34] no distinction is made and SBT refers to both). A rooted binary tree is called
a Sequence Bloom Tree (SBT) of a database D if there is a bijection between the leaf nodes and
the elements of D. Define B∪(u) for a leaf node u as its associated database element and B∪(u) for
an internal node as

⋃

i∈leaves(u)B∪(i). Note that B∪(u) of an internal node u can be equivalently
defined as B∪(lchild(u)) ∪ B∪(rchild(u)). Each node u then represents the set of database entries
corresponding to the descendant leaves of u. Additionally, the SBT provides an interface to construct
the tree from a database, to query a k-mer set against the database, and to insert/delete a BF
into/from the database. An example of an SBT is shown in Figure 2.

SBT-SK: We call the implementation of the SBT interface provided in [34] as SBT-SK. In
SBT-SK, each node u is stored as a compressed version of B∪(u). The compression is done using
RRR [31] implemented in SDSL [11], which allows to efficiently test whether a bit is set to 1 without
decompressing the bitvector. To insert a BF B into a SBT T , SBT-SK does the following. If T is
empty, it just adds B as the root. Otherwise, let r be the root. If r is a leaf, then add a new root r′

that is the parent of B and r and set B∪(r
′) = B∪(r)∪B. Otherwise, take the child v of r that has

the smallest Hamming distance to B, recursively insert B in the subtree rooted at v, and update
B∪(r) to be B∪(r) ∪ B. Note that because RRR compressed bitvectors do not support bitwise
operations, each bitvector must be first decompressed before bitwise operations are performed and
then recompressed if any changes are made. The running time of an insertion is proportional to
the depth of the SBT. To construct the SBT for a database, SBT-SK starts with an empty tree
and inserts each element of the database one-by-one. Construction can take time proportional to
nd, where d is the depth of the constructed SBT. The left panel of Figure 1 provides an example
of the construction algorithm. To query the database for a k-mer set Q, SBT-SK first checks if Q
θ-matches the root. If yes, then it recursively queries the children of the root. When the query hits
a leaf node, it returns the leaf if Q θ-matches it.

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

Fig. 1. Example of the SBT-SK and SBT-ALSO construction algorithms for the database D = {D1 = 111000, D2 =
111010, D3 = 000100, D4 = 000011}. Leaves shown in blue, internal nodes in gray. In this example, the dataset can
be partitioned into two types: 000xxx and 111xxx, based on the first 3 bits. In the SBT-SK construction, after the
first two experiments are inserted (both of type 111xxx), they are destined to be in the two different sides of the tree
(regardless of future insertions). Any future 111xxx type query will have to examine all the nodes. The SBT-ALSO

construction, on the other hand, groups together the experiments so that future 000xxx type or 111xxx type queries
will have to examine only about half the nodes of the tree.

Since SBT is designed to work on very large databases, its implementation should avoid loading
the database into memory. In SBT-SK, each B∪(u) is stored on disk and only loaded into memory
when u is being θ-matched by a query. When there are multiple queries to be performed, SBT-

SK will batch them together so that the θ-matching of multiple queries to the same node will be
performed simultaneously. Hence, each node needs to be loaded into memory only once per batch.
We implement the same strategy in SBT-ALSO.

4 Methods

We propose the AllSome SBT as an alternative implementation of the SBT abstract data type. In
this section, we describe the construction and query algorithms. Insertion and deletion algorithms
are the same as in SBT-SK, though some special care is needed. For completeness, they are
described in the full version [36].

4.1 AllSome node representation and regular query algorithm

Define the intersection of leaves in the subtree rooted at a node u as B∩(u) =
⋂

i∈leaves(u)B∪(i). In-
tuitively, we can partition the 1 bits of B∪(u) into three sets: Ball(u), Bsome(u), and B∩(parent(u)).
Ball(u) are the bits that appear in all of leaves(u), excluding those in all of leaves(parent(u)).
Bsome(u) are the bits in some of leaves(u) but not in all. Both sets therefore exclude bits present
in B∩(parent(u)). Formally, define

Ball(u) = B∩(u) \B∩(parent(u))

Bsome(u) = B∪(u) \B∩(u)

5

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

Fig. 2. Example SBT on D = {1110001110000000, 1110111100000000, 1111110000000000, 1001000111001000,
1001000011110000, 1001000000001111}. Leaves shown in blue, internal nodes in gray. In SBT-ALSO, only Ball

and Bsome are explicitly stored, while in SBT-SK, only B∪ is stored. Bits present in Ball at one node are shown as
hyphens(’-’) in the Ball and Bsome of its descendants, but in the actual SBT-ALSO data structure they are zeros.

At the root r, define B∩(parent(r)) = ∅. Ball(u) and Bsome(u) are stored using two bitvectors of size
b compressed with RRR. B∪(u) and B∩(u) are not explicitly stored. We refer to this representation
of the nodes using Ball and Bsome as the AllSome representation (Figure 2 gives an example).

When we receive a query k-mer set Q, we hash each k-mer to determine the list of BF bits
corresponding toQ. These are a multi-set of position indices (between 0 and b−1), stored as an array.
We call these the list of unresolved bit positions. We also maintain two counters: the number of bit
positions that have been determined to be 1 (present), and the number of bit positions determined
to be 0 (absent). These counters are both initially 0. The query comparison then proceeds in a
recursive manner. When comparing Q against a node u, each unresolved bit position that is 1 in
Ball(u) is removed from the unresolved list and the present counter is incremented. Each unresolved
bit position that is 0 in Bsome(u) is removed from the unresolved list and the absent counter is
incremented. If the present counter is at least θ|Q|, we add leaves(u) to the list of θ-matches and
terminate the search of u’s subtree. If the absent counter exceeds (1− θ)|Q|, we realize that Q will
not θ-match any of the leaves in the subtree rooted at u and terminate the search of u’s subtree. If
neither of these holds, we recursively pass the two counters and the list of unresolved bits down to
its children. When we reach a leaf, the unresolved list will become empty because Bsome is empty
at a leaf, and the algorithm will necessarily terminate.

The idea behind the AllSome representation is that in a database of biologically associated
samples, there are many k-mers that are shared between many datasets. In the SBT-SK repre-
sentation, a query must continue checking for the presence of these k-mers at every node that it
encounters. By storing at u all the bits that are present in all the leaves of its subtree, we can
count those bits as resolved much earlier in the query process – limiting the amount of bit look-
ups performed. Moreover, we will often prune the search space earlier and decrease the number of
bitvectors that need to be loaded from disk. A query that matches all the leaves of a subtree can
often be resolved after just examining the root of that subtree. In the extreme case, the number of
nodes examined in a search may be less than the number of database entries that are matched.

6

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

A second important point is that the size of the uncompressed bitvectors at each node is now
twice as large as before. Because query time has a large I/O component, this has potential negative
effects. Fortunately, we observe that the compressed size of these bitvectors is roughly proportional
to the number of 1s that are contained. By defining the AllSome reprsentation as we do, the
number of 1s in total in Ball(u) and Bsome(u) is no more than the number of ones in B∪(u).
Moreover, because we exclude B∩(u) from all of u’s descendants, the number of 1s is less.

4.2 Construction algorithm

Except for large queries or large batches of queries, the running time of the query algorithm is
dominated by the I/O of loading bitvectors into memory [34]. If the number of leafs that the query
θ-matches is localized within the same part of the SBT, then fewer internal nodes have to be
explored and, hence, fewer bitvectors have to be loaded into memory. The SBT-SK construction
algorithm is greedy and sensitive to the order in which the entries are inserted into the tree, which
can lead to trees with poor localization (see example in Figure 1).

To improve the localization property of the tree, we propose a non-greedy construction method
based on agglomerative hierarchical clustering [14]. Every Di is initially its own SBT, with its B∪

loaded into memory. At every step, two SBTs are chosen and joined together to form a new SBT.
The new SBT has a root node r with the left and right subtrees corresponding to the two SBTs
being joined. B∪(r) is computed as B∪(lchild(r)) ∪ B∪(rchild(r)). To choose the pair of SBTs to
be joined, we choose the two SBTs that have the smallest Hamming distance between the B∪ of
their roots. The right panel of Figure 1 shows how our construction algorithm works.

Since each B∪ is a large bitvector, computing and maintaining the pairwise distances between
all pairs is computationally expensive. Instead, we use the following heuristic. We fix a number
b′ ≪ b (e.g. b′ = 105 ≪ 109 = b) and then extract b′ bits from each Di, starting from a fixed but
arbitrary offset. We then run the above clustering algorithm on this smaller database of extracted
bitvectors.

The resulting topology is then extracted and used for constructing the Ball and Bsome bitvectors
for all the nodes. We process the nodes in a bottom-up fashion. Initially, for all leaves u, we set
Ball(u) = B∪(u) and Bsome(u) = ∅. For the general case, consider an internal node u whose children
ℓ and r have already been processed. All bits that are set in both Ball(l) and Ball(r) go into Ball(u):

Ball(u) = Ball(l) ∩Ball(r)

Additionally, the Ball bits of ℓ and r must exclude those that are set in the parent Ball(u). After
computing Ball(u), we can unset these bits:

Ball(v) = Ball(v) \Ball(u),where v ∈ {ℓ, r}. (1)

Note that this is the only necessary update to the bitvectors of nodes in the subtree rooted in ℓ
or r. Next, we must compute Bsome(u), which is the set of bits that exist in some of u’s children
nodes but not all:

Bsome(u) = Bsome(ℓ) ∪Bsome(r) ∪Ball(ℓ) ∪Ball(r)

Note that here we are using the Ball after the application of Equation (1). This completes the
necessary updates to the tree for a node u. These updates can be efficiently computed using bitwise

7

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

operations on uncompressed bitvectors, so we keep them uncompressed in memory and only com-
press them when they are written to disk and are no longer needed. The total time for construction
is proportional to n and not to nd, as with SBT-SK. For completeness, we provide a more formal
algebraic derivation of the update formulas in the full version [36].

4.3 Large query algorithm

The “regular query” algorithm (Section 4.1) is designed with relatively small queries in mind (e.g.
thousands of k-mers from a transcript). However, after performing a new sequencing experiment, it
might be desirable to query the database for other similar samples. In such cases, the query would
itself be a whole sequencing experiment, containing millions of k-mers. Our experimental results
show that neither SBT-SK nor our own regular query algorithm is efficient for these large queries.

While for small queries, the running time is dominated by the I/O of loading bitvectors into
memory, for large queries, the time taken to look up the query k-mers in the Ball and Bsome of a
node becomes the bottleneck. Let BQ be the Bloom filter of size b for the k-mers in the query Q.
We propose an alternate “large query” algorithm that can be used whenever the number of k-mers
in the query exceeds some pre-defined user threshold. This large query algorithm is identical to the
regular one except in the way that the unresolved list is maintained and updated. The basic idea
is that instead of checking each k-mer in Q one-by-one, we can do bitwise comparisons using BQ.
Assume for the moment that there are no two k-mers in Q that hash to the same position (recall
that our BFs have only one hash function). In this case, the list of unresolved bit positions can be
represented as the set of 1 positions in BQ. At a node u, we first increment the present counter by
the number of ones in BQ∩Ball(u) and update the unresolved bit positions to be B′

Q = BQ\Ball(u).
Then we increment the absent counter by the number of ones in B′

Q \ Bsome(u) and update the
unresolved bit positions to be B′′

Q = B′
Q ∩Bsome(u). If the counters do not exceed their respective

thresholds, then we pass them and the remaining unresolved bits (B′′
Q) down to the children.

When there are k-mers that hash to the same bit positions, the above algorithm can still be
used as a heuristic. In fact, it can be shown that the hits returned by the above heuristic algorithm
are always a subset of the hits that are returned by an exact algorithm, since the heuristic’s counter
values are never greater than those of the exact algorithm. But, we can obtain an exact algorithm
by modifying the above heuristic to also maintain a list of bit positions that have multiple k-mers
hashing to them. An entry of the list is a bit position and the number of k-mers that hash to it.
Whenever we make a bitwise comparison involving BQ, this list is scanned to convert numbers of
bits to numbers of k-mers. When the list is small, this exact algorithm should not be significantly
slower than the heuristic one.

Unfortunately, computing bitwise operations cannot be efficiently done on RRR compressed
bitvectors. To support the large query algorithm, the bitvectors are compressed using the Roar-
ing [5] scheme (abbreviated ROAR). Roaring bitmaps are compressed using a hybrid technique
that allows them to efficiently support set operations on bitvectors (intersection, union, difference,
etc). However, we found that they generally do not compress as well as RRR on our data, leading
to longer I/O times. In cases where both small and large queries are common, and query time is
more important than disk space, both a ROAR and an RRR compressed tree can be maintained.

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

5 Results

We implemented SBT-ALSO, building on the SBT-SK code base [1]. Solomon and Kingsford
already explored the advantages, disadvantages and accuracy of the SBT approach as a way of
finding experiments where the queried transcripts are expressed [34]. Since SBT-ALSO gives iden-
tical query results as SBT-SK, we therefore focus our evaluation on its resource utilization. We
used the same dataset for evaluation as in [34]. This is the set of 2,652 runs representing the entirety
(at the time of [34]) of human RNA-seq runs from blood, brain, and breast tissues at the SRA, ex-
cluding those sequenced with SOLID. In [34], each sequencing run was converted to a k-mer Bloom
filter (b = 2 · 109, k = 20) by the Jellyfish k-mer-counting software (containing k-mers that occur
greater than a file-dependent threshold, typically at least 3 occurrences). We downloaded these BFs
from [1] and used them as our database. Per the results of [34], this Bloom filter size leads to a
false positive rate of 0.5 for an individual Bloom filter. We performed experiments on an OpenStack
instance with 12 vCPUs (Intel Xeon E312xx), 128 GB memory, and 4 TB network-mounted disk
storage.

To choose the appropriate number of bits to use for clustering (b′), we randomly sampled 5,000
bitvector pairs from the dataset and computed their pairwise distances. We then computed distances
for the same pairs using only b′ bits, for various values of b′. The two distance metrics showed a
high correlation (r2 = 0.9999874) for b′ = 500, 000.

We then constructed SBT-SK and SBT-ALSO, as well as two other trees to help us separate
out the contributions of the clustering algorithm from the AllSome representation. These two trees
are SBT-SK+CLUST, which uses the B∪ node representation of SBT-SK but the SBT-ALSO

clustering construction, and SBT-SK+AS, which uses the greedy construction of SBT-SK but
the AllSome node representation of SBT-SK.

First, we compared the space and time used to construct SBT-SK and SBT-ALSO (Table 1).
SBT-ALSO reduces the tree construction time by 52.7% and resulting disk space by 11.4%. It
requires twice as much intermediate space, due to maintaining two uncompressed bitvectors for
each node instead of just one.

To study the regular query performance, we downloaded all known transcripts at least k bases
long (198,074 of them) from Gencode (ver. 25). We then queried several subsets of transcripts
against both trees, and measured the number of nodes examined for each query (Figure 3) as well
as the running time (Table 2). The results of all query experiments in this paper were verified to
be equivalent between the tested data structures. SBT-ALSO reduces the runtime by 39 - 85%,
depending on the size of the batch, likely due to the fact that the number of nodes examined
per query is reduced by 52.7%, on average. Notably, SBT-ALSO was able to query a very large
batch (198,074 queries) in under 8 hours, while SBT-SK took over 2 days. SBT-ALSO uses more
memory than SBT-SK on larger batches.

To study the performance of the large query algorithm, we selected an arbitrary run from our
database (SRR806782) and used Jellyfish [22] to extract all 20-mers that appear at least three
times. These 27,546,676 k-mers formed one query. In heuristic mode, the large query algorithm was
22 times faster than the regular one, but only detected 47 hits, which is a subset of the 50 hits by
regular algorithm(Table 3). In the exact mode, the large query algorithm recovered all the hits (as
expected) and was 18 times faster. Compared to SBT-SK, it was 155 times faster.

The clustering construction, even without the AllSome representation, significantly reduces
the number of nodes that need to be examined per query (36.5% on average when comparing SBT-

SK to SBT-SK+CLUST in Figure 3). The improvement seems to be uniform regardless of the

9

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

Fig. 3. Number of nodes examined per query for SBT-SK, SBT-ALSO, as well two intermediate SBTs. A set of
1,000 transcripts were chosen at random from Gencode set, and each one queried against the four different trees. A
dot represents a query and shows the number of matches in the database (x-axis) compared to the number of nodes
that had to be loaded from disk and examined during the search (y-axis). For each tree (color), we interpolated a
curve to show the pattern. The dashed horizontal line represents the hypothetical algorithm of simply checking if
the query θ-matches against each of the database entries, one-by-one. For θ, we used the default value in the SBT
software (θ = 0.9).

Table 1. Construction time and space. Times shown are wall-clock times. A single thread was used. Note the SBT-SK

tree that was constructed for the purposes of this Table differs from the tree used in [34] and in our other experiments
because the insertion order during construction was not the same as in [34] (because it was not described there).

SBT-SK SBT-ALSO

construction of tree topology (i.e. clustering) N/A 27m
construction of internal nodes 56h 54m 26h 3m
peak memory usage 726 MB 908 MB
temporary disk space 1,235 GB 2,469 GB
final disk space 200 GB 177 GB

Table 2. Query wall-clock run times and maximum memory usage, for batches of different sizes. For the batch of
1,000 queries, we used the same 1,000 queries as in Figure 3. For the batch of 100 queries, we generated three replicate
sets, where each set contains 100 randomly sampled transcripts without replacement from the 1,000 queries set. For
the batch of 10 queries, we generated 10 replicate sets by partitioning one of the 100 query sets into 10 sets of 10
queries. For the batch of 1 query, we generated 50 replicate sets by sampling 50 random queries from Gencode set.
The shown running times are the averages of these replicates. For θ, we used the default value in the SBT software
(θ = 0.9).

query SBT-SK SBT-SK+AS SBT-SK+CLUST SBT-ALSO

1 1.2m / 301MB 2.7m / 301MB 0.9m / 299MB 0.5m / 301MB
10 4m / 305MB 8.3m / 319MB 3.3m / 304MB 2m / 313MB
100 7.7m / 315MB 13.7m / 346MB 6.5m / 317MB 4.7m / 353MB
1,000 25.5m / 420MB 20.8m / 575MB 17.3m / 418MB 8.3m / 639MB
198,074 3082m / 22GB 1286m / 51GB 1910m / 23GB 463m / 63GB

10

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

Table 3. Performance of different trees and query algorithms on a large query. We show the performance of SBT-

SK and three query algorithms using SBT-ALSO compressed with ROAR: the regular algorithm, the large exact
algorithm, and the large heuristic algorithm. We show the wall-clock run time and maximum RAM usage. We used
θ = 0.8 for this experiment. The ROAR compressed tree was 190 GB (7.3% larger than the RRR tree).

SBT-SK SBT-ALSO

regular alg regular alg large exact alg large heuristic alg

query time 1397m 18s 195m 33s 10m 35s 8m 32s
query memory 2.3 GB 4.7 GB 1.3 GB 1.2 GB

number of leaf hits. As expected, this leads a significant improvement to the running time (19-32%,
Section 5).

The AllSome representation, without the clustering construction, also gives the benefit of
allowing earlier query resolution, but the effect only becomes pronounced for queries that hit a
lot of leaves. For instance, queries that hit more than 800 leaves examined 27.4% less nodes in
SBT-SK+AS then in SBT-SK. In the extreme case, there are seven queries out of 1,000 where
the number of nodes examined is less than the number of leaf hits, something that is not possible
with SBT-SK. However, the benefits of clustering construction and AllSome representation are
synergistic: the multiplicative effect of their individual contributions (42.3% decrease in number of
examined nodes) is less than the observed effect of their combined contributions (52.7%). In terms
of the running time performance, the AllSome representation incurs the overhead of making two
queries per active bit, instead of just one. This is more than compensated by a decrease in the
amount of active bits when the tree is clustered well. But, as the SBT-SK+AS column of section 5
shows, the running time can actually deteriorate when the tree is not clustered.

6 Discussion

In this paper we present an alternate implementation of the SBT that provides substantial im-
provements in query and construction time. We are especially effective for large batches of queries
(6 times faster) or for large queries (155 times faster). Solomon and Kingsford make a convincing
case that an efficient SBT implementation translates to an efficient and accurate solution to the
broader problem of identifying RNA-seq samples that express a transcript of interest. They study
the best parameter values of SBT (θ, k, b, p) to achieve accuracy and speed for the broader prob-
lem. The focus of this paper is on improving resource performance, and hence we do not revisit
these questions, however, a more thorough exploration of the biological questions that the SBT can
answer will be important moving forward.

The implications of using the SBT for queries which are themselves sequencing experiments were
not explored in SBT-SK or here. The BFT [13], if adapted to multi-k-mer queries with θ-matching,
could prove to be powerful in this context. In general, the question of whether the percentage of
matching k-mers is a good metric for comparing sequencing experiments is still open, and more
investigation into how to best measure similarity is needed (e.g. see [27]). However, our large query
algorithm opens the door for efficiently exploring the parameter space of k-mer-based approaches.

In contrast to SBT-SK, we do not currently support multiple hash functions. For the type
of application considered in this paper, [34] demonstrated that one hash function is optimal. Yet,

11

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

there may be other applications where multiple hash functions offer advantages. This may make
SBT-ALSO, in its current state, less broadly applicable then SBT-SK. However, multiple hash
functions could be implemented within the AllSome representation using partitioned Bloom filters
(where each hash function maps to a different bit array) [15]. This remains as future work.
Acknowledgements: This work has been supported in part by NSF awards DBI-1356529, CCF-
551439057, IIS-1453527, and IIS-1421908 to PM.

References

1. SBT-SK software and data. http://www.cs.cmu.edu/%7Eckingsf/software/bloomtree/, Accessed: 2016-07-01
2. Baier, U., Beller, T., Ohlebusch, E.: Graphical pan-genome analysis with compressed suffix trees and the Burrows–

Wheeler transform. Bioinformatics p. btv603 (2015)
3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7),

422–426 (1970)
4. Bray, N.L., Pimentel, H., Melsted, P., Pachter, L.: Near-optimal probabilistic RNA-seq quantification. Nature

biotechnology 34(5), 525–527 (2016)
5. Chambi, S., Lemire, D., Kaser, O., Godin, R.: Better bitmap performance with roaring bitmaps. Software: practice

and experience 46(5), 709719 (2015)
6. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms

for Molecular Biology 8(1), 1 (2013)
7. Consortium, C.P.G., et al.: Computational pan-genomics: status, promises and challenges. Briefings in Bioinfor-

matics p. bbw089 (2016)
8. Crainiceanu, A., Lemire, D.: Bloofi: Multidimensional Bloom filters. Information Systems 54, 311–324 (2015)
9. Dolle, D.D., Liu, Z., Cotten, M.L., Simpson, J.T., Iqbal, Z., Durbin, R., McCarthy, S., Keane, T.: Using reference-

free compressed data structures to analyse sequencing reads from thousands of human genomes. bioRxiv p. 060186
(2016)

10. Ernst, C., Rahmann, S.: PanCake: A data structure for pangenomes. In: German Conference on Bioinformatics.
vol. 34, pp. 35–45 (2013)

11. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play with succinct data structures.
In: International Symposium on Experimental Algorithms. pp. 326–337. Springer (2014)

12. Heo, Y., Wu, X.L., Chen, D., Ma, J., Hwu, W.M.: BLESS: Bloom filter-based error correction solution for
high-throughput sequencing reads. Bioinformatics p. btu030 (2014)

13. Holley, G., Wittler, R., Stoye, J.: Bloom filter trie–a data structure for pan-genome storage. In: Algorithms in
Bioinformatics, pp. 217–230. Springer (2015)

14. de Hoon, M.J., Imoto, S., Nolan, J., Miyano, S.: Open source clustering software. Bioinformatics 20(9), 1453–1454
(2004)

15. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: Building a better Bloom filter. Random Struc-
tures & Algorithms 33(2), 187–218 (2008)

16. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nature methods 9(4), 357–359 (2012)
17. Leinonen, R., Sugawara, H., Shumway, M.: The sequence read archive. Nucleic acids research p. gkq1019 (2010)
18. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint

arXiv:1303.3997 (2013)
19. Liu, B., Zhu, D., Wang, Y.: deBWT: parallel construction of Burrows-Wheeler Transform for large collection of

genomes with de Bruijn-branch encoding. Bioinformatics 32(12), i174–i182 (2016)
20. Loh, P.R., Baym, M., Berger, B.: Compressive genomics. Nature biotechnology 30(7), 627–630 (2012)
21. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm Design. Cambridge University

Press (2015)
22. Marçais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.

Bioinformatics 27(6), 764–770 (2011)
23. Marchet, C., Limasset, A., Bittner, L., Peterlongo, P.: A resource-frugal probabilistic dictionary and applications

in (meta) genomics. arXiv preprint arXiv:1605.08319 (2016)
24. Marcus, S., Lee, H., Schatz, M.C.: SplitMEM: A graphical algorithm for pan-genome analysis with suffix skips.

Bioinformatics 30(24), 3476–3483 (2014)
25. Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in DNA sequences using a Bloom filter. BMC bioinfor-

matics 12(1), 333 (2011)

12

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

26. Minkin, I., Pham, S., Medvedev, P.: TwoPaCo: An efficient algorithm to build the compacted de Bruijn graph
from many complete genomes. Bioinformatics p. btw609 (2016)

27. Murray, K.D., Webers, C., Ong, C.S., Borevitz, J.O., Warthmann, N.: kWIP: The k-mer weighted inner product,
a de novo estimator of genetic similarity. bioRxiv p. 075481 (2016)

28. Navarro, G., De Moura, E.S., Neubert, M., Ziviani, N., Baeza-Yates, R.: Adding compression to block addressing
inverted indexes. Information retrieval 3(1), 49–77 (2000)

29. Nellore, A., Collado-Torres, L., Jaffe, A.E., Alquicira-Hernndez, J., Wilks, C., Pritt, J., Morton, J., Leek, J.T.,
Langmead, B.: Rail-RNA: scalable analysis of RNA-seq splicing and coverage. Bioinformatics p. btw575 (2016)

30. Patro, R., Mount, S.M., Kingsford, C.: Sailfish enables alignment-free isoform quantification from RNA-seq reads
using lightweight algorithms. Nature biotechnology 32(5), 462–464 (2014)

31. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees and
multisets. In: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms. pp. 233–242.
Society for Industrial and Applied Mathematics (2002)

32. Rozov, R., Shamir, R., Halperin, E.: Fast lossless compression via cascading Bloom filters. BMC bioinformatics
15(9), 1 (2014)

33. Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading Bloom filters to improve the memory usage for de
Brujin graphs. In: Darling, A., Stoye, J. (eds.) Algorithms in Bioinformatics, Lecture Notes in Computer Science,
vol. 8126, pp. 364–376. Springer Berlin Heidelberg (2013)

34. Solomon, B., Kingsford, C.: Fast search of thousands of short-read sequencing experiments. Nature biotechnology
34(3), 300–302 (2016)

35. Stranneheim, H., Käller, M., Allander, T., Andersson, B., Arvestad, L., Lundeberg, J.: Classification of DNA
sequences using Bloom filters. Bioinformatics 26(13), 1595–1600 (2010)

36. Sun, C., Harris, R.S., Chikhi, R., Medvedev, P.: Allsome sequence bloom trees. bioRxiv (2016),
http://biorxiv.org/content/early/2016/12/02/090464

37. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L.,
Pachter, L.: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cuf-
flinks. Nature protocols 7(3), 562–578 (2012)

38. Yu, Y.W., Daniels, N.M., Danko, D.C., Berger, B.: Entropy-scaling search of massive biological data. Cell systems
1(2), 130–140 (2015)

39. Ziviani, N., de Moura, E.S., Navarro, G., Baeza-Yates, R.: Compression: A key for next-generation text retrieval
systems. IEEE Computer 33(11), 37–44 (2000)

13

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

A Appendix

A.1 Insertion

If a tree is modified by the addition (or removal) of a leaf, the only nodes for which B∪ and B∩

can change are along the path from the leaf to the root. This fact, along with the definitions of
Ball and Bsome, shows that it is sufficient to only consider changes in Bsome along that path, and
in Ball along that path and the siblings of those nodes.

To insert a new Bloom filter B, we follow the same strategy as SBT-SK. We insert B starting
at the root and recursively pass it down to the child u that has the smallest Hamming distance
between B∪(u) and B. Though B∪(u) is not explicitly stored in the SBT-ALSO, it can be recovered
on the fly using the equations:

B∩(u) = Ball(u) ∪B∩(parent(u)) (2)

B∪(u) = Bsome(u) ∪Ball(u) ∪B∩(parent(u)) (3)

As we proceed down the tree, we must also update the appropriate bitvectors. Consider the
insertion of B into the subtree rooted at a node u. We inductively assume that the bitvectors of
nodes outside the subtree rooted at u have already been updated, that the bitvectors of nodes
inside this subtree have been unchanged, and that B∩(parent(u)) is available in memory. We use
the superscript new to denote the bitvectors of the nodes after B is recursively passed down to one
of the child’s subtrees.

At u, observe that Bnew
∪ (u) = B∪(u) ∪ B and Bnew

∩ (u) = B∩(u) ∩ B. This formula, together
with B∩(parent(u)), is used to update Ball(u) and Bsome(u), using their corresponding definitions.
Assuming without loss of generality that B will be passed down to the left child of u, the only other
node that needs to be updated is the right child. Even though B∪(rchild(u)) and B∩(rchild(u))
remain unchanged, we need to update Bnew

all (rchild(u)) = Ball(rchild(u)) \B.

A.2 Deletion

Consider the deletion of an entry from the database. Let v be the leaf representing the deleted
entry, and let v′ be its sibling. We set parent(v′) = parent(parent(v′)) and delete v and parent(v)
from the tree, Next, we need to update the bitvectors of the tree.

Let p be the path from the root down to v′. Let p′ be the nodes of p along with the children
of nodes in p. We use the superscript new to denote the bitvectors after the deletion, and omit
the superscript to indicate bitvectors prior to the deletion. We will update the bitvectors in three
passes. In the first pass, we will go down from the root to recover B∩ and B∪ for nodes in p′ and
store them in active memory. In the second pass, we will go up from v′ and use the output of
the first pass to calculate Bnew

∪ (u) and Bnew
∩ (u) for nodes in p. Note that Bnew

∩ (u) = B∩(u) and
Bnew

∪ (u) = B∪(u) for nodes not in p. In the the third pass, will go up from v′ and use the output
of the second pass to calculate Bnew

all (u) and Bnew
some(u) for all nodes on p′.

In the first pass, we can recover B∩ using the equations Equations (2) and (3) above. In the
second pass, we can compute (going up from the leaf)

Bnew
∪ (u) = Bnew

∪ (lchild(u)) ∪Bnew
∪ (rchild(u))

Bnew
∩ (u) = Bnew

∩ (lchild(u)) ∩Bnew
∩ (rchild(u))

14

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

In the third pass, we can compute:

Bnew
all (u) = Bnew

∩ (u) \Bnew
∩ (parent(u))

Bnew
some(u) = Bnew

∪ (u) \Bnew
∩ (u)

We note that with a smart implementation, the second and third pass can be combined and
the computation of B∪(u) in the first pass can be done instead on the fly in the second pass. The
above algorithm also requires maintaining O(d) bitvectors in memory, where d is the depth of the
tree. If memory is limited, then it is possible to read and write the bitvectors to disk for each node
as it is being covered in a pass.

The running time of both an insertion or deletion is on the order of the depth of the tree.
Performing an insertion/deletion requires performing bitwise operation on bitvectors, which can be
done efficiently on a ROAR compressed tree or an uncompressed tree. If RRR is being used, then,
similar to SBT-SK, we need to uncompress nodes before processing them and recompress them
after.

Finally, we note that if there are many modifications to the tree, the advantages of the initial
clustering construction may dissipate. In this case, the tree can be reconstructed from scratch,
incurring a time penalty but reducing the run time of future queries.

A.3 Formal derivation of update formulas for construction

In Section 4.2, we presented the update rules for constructing Ball and Bsome for the internal nodes
of a SBT. Here, we give a formal derivation of the rules’ correctness. First, let DB(u) denote the
database entries corresponding to the descendant leaves of a node u. Note that the subtree rooted at
u is, by definition, an SBT of DB(u). At any point of the construction, we will have the invariant
that if node v was processed then the subtree rooted at v is a correct SBT-ALSO for DB(v).
For the base case, for all leaves u we set Ball(u) = B∪(u) and Bsome(u) = ∅. For the general case,
consider an internal node u whose children have already been processed. We will use the superscript
new to denote the values of the bitvectors for the new subtree rooted at u, to distinguish it from
those values passed up inductively from the trees of the children. An important point is that, for a
child v, Bnew

all (v) may be different from Ball(v). This is because once the SBT-ALSO of DB(v) is
incorporated into the SBT-ALSO of DB(u), any bits that are set in Bnew

all (u) need to be unset in
Bnew

all (v). Also, observe that for a root r of an SBT-ALSO tree (e.g. v in DB(v) or u in DB(u)),
Ball(r) = B∩(r) and B∪(r) = Ball(r)∪Bsome(r). Applying our observations and definition, we can
derive formula for Bnew

all (u), Bnew
some(u), and Bnew

all (v):

15

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

Bnew
all (u) = Bnew

∩ (u)

= B∩(lchild(u)) ∩B∩(rchild(u))

= Ball(lchild(u)) ∩Ball(rchild(u))

Bnew
all (v) = Bnew

∩ (v) \Bnew
∩ (parent(v))

= B∩(v) \B
new
∩ (u)

= Ball(v) \B
new
all (u)

Bnew
some(u) = Bnew

∪ (u) \Bnew
∩ (u)

=

(

⋃

w is a child of u

B∪(w)

)

\Bnew
all (u)

=
⋃

w

(B∪(w) \B
new
all (u))

=
⋃

w

((Ball(w) ∪Bsome(w)) \B
new
all (u))

=
⋃

w

((Ball(w) \B
new
all (u)) ∪ (Bsome(w) \B

new
all (u)))

=
⋃

w

((Ball(w) \B
new
all (u)) ∪Bsome(w))

=
⋃

w

(Bnew
all (w) ∪Bsome(w))

16

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/090464doi: bioRxiv preprint

https://doi.org/10.1101/090464
http://creativecommons.org/licenses/by-nd/4.0/

