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Abstract

Addition of NbCl5, or NbBr5, to a series of magnesium, lithium, or potassium allylic or propargylic

alkoxides directly provides allylic or allenic halides. Halogenation formally occurs through a metalla-

halo-[3,3] rearrangement although concerted, ionic, and direct displacement mechanisms appear to

operate competitively. Transposition of the olefin is equally effective for allylic alkoxides prepared

by nucleophilic addition, deprotonation, or reduction. Experimentally, the niobium pentahalide

halogenations are rapid, afford essentially pure E-allylic or allenic halides after extraction, and are

applicable to a range of aliphatic and aromatic alcohols, aldehydes, and ketones.

Introduction

Allylic halides are powerful, versatile electrophiles.1 The excellent electrophilicity stems from

stereoelectronic interactions between the σ*C-X orbital and the adjacent π system2 which

facilitates a range of efficient and predictable displacements.3 Numerous natural product

syntheses have harnessed the excellent electrophilicity of allylic halides to overcome difficult

displacements and challenging cyclizations.4

Allylic halide intermediates in total synthesis campaigns are frequently synthesized from

aldehydes through olefination-reduction-halogenation sequences (Scheme 1, 1→3→4→2).5

The three-step sequence is necessitated in part because the requisite Wittig reagents suffer

facile halide ejection,6 preventing a direct "halo-olefination," and partly because of the

predictable conversion of primary allylic alcohols 4 to allylic halides 2 without rearrangement.
7 In contrast, regioselective halogenation of secondary allylic alcohols is reagent8 and

structure9 dependent with many reactions channeling through both SN2 and SN2' displacement

manifolds.10
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Direct halogenation of propargylic alcohols similarly affords mixtures of regioisomeric

halides.10,11 Consequently a two step sequence of alcohol activation, usually sulfonylation,

followed by SN2' halide displacement is typically employed to convert propargylic alcohols

5 to terminal allenic halides 6 (Scheme 2, 5→7→6).12 Subsequent transition metal catalyzed

coupling allows a diverse range of bond constructions on these valuable synthetic partners.13

The inherent utility of allylic and allenic halides14 stimulated a direct15 synthesis from carbonyl

and alcoholic precursors. Conceptually the transformation centers on a metalla-halo-[3,3]

rearrangement16 predicated on metal oxide eliminations17 and the privileged nature of six-

membered transition structures (Scheme 3).18 Addition of a vinyl metal bearing an appropriate

halide was envisaged to access the allylic alkoxide 9 and trigger a concerted rearrangement to

the corresponding allylic halide 10. As sporadically happens in chemical research,19 the same

concept was being simultaneously pursued with allylic chlorotitanium alkoxides (9

MX=TiCl3).20 Mechanistic experiments with these titanium alkoxides implicated a stepwise

ionization-halogenation sequence rather than a concerted rearrangement, although in principle

tuning the metal oxophilicity and halogen nucleophilicity should favor a concerted halogen

transfer.21

Publication of the pioneering titanium-based allylic chloride synthesis20 was closely followed

by communication22 of a complementary niobium pentahalide procedure. Although

preliminary, the use of niobium broadened the substrate scope and offered the promise of a

general approach to both allylic and allenic halides through a concerted rearrangement.

Complete details of these niobium pentachloride and pentabromide rearrangements are

provided with an emphasis on: mechanistic insight; extended substrate scope to include allylic

alcohols, aldehydes, enals, ketones, and enones; cascade reduction-halogenation and addition-

halogenation strategies; and the synthesis of allenic bromides.

Results and Discussion

The metalla-halo-[3,3]-rearrangement strategy requires a metal halide capable of

simultaneously activating the allylic alcohol, delivering a halogen in an SN2' displacement,

and forming a stable metal oxide. Addition of vinylmagnesium bromide to 1-naphthaldehyde

(1a),23 as with aldehydes in general,24 forms an allylic magnesium alkoxide but does not trigger

an allylic rearrangement (Scheme 4, 1a→4a).25 Assuming that magnesium was insufficiently

Lewis acidic, the allylic alcohol 4a was deprotonated with an organometallic base and the

corresponding alkoxide 11a26 treated with one of a variety of a metal salts (Scheme 4).

Screening numerous metal halides quickly identified the Lewis acidic, oxophilic, high-valent

transition metals27 TiCl4, ZrCl4, NbCl4, and NbCl5 as being competent reagents.28 Sequential

addition of KH and either TiCl4, ZrCl4, NbCl4, or NbCl5 to a THF solution of 4a afforded

varying proportions of the allylic chloride 2a, unreacted allylic alcohol 4a, and 1,4-

dichlorobutane arising from the chlorination of THF (Scheme 4, 4a→2a).

Niobium pentachloride was selected for further optimization because of a greater tolerance to

ethereal solvents,29 the precedent for chlorinating aliphatic alcohols under forcing conditions,
30 and the convenience of using commercial, anhydrous, powdered NbCl5.31 Employing the

strong Lewis acid32 NbCl5 under basic conditions is unusual and contrasts with related

reactions of high-valent metal halides33 which may well be promoted by adventitious acid

produced by partial hydrolysis.34 The non-protic solvents CH3CN, DMF, PhCH3 and CCl4
were significantly inferior to THF whereas Et2O and t-BuOMe afforded comparable results.

Reasoning that a bidentate ethereal solvent might be more effective led to the use of 1,4-dioxane

which allowed essentially complete conversion to spectroscopically pure 2a in 10 minutes.

Aqueous extraction readily removes the spent niobium salt providing pure chloride 2a upon

concentration, a significant advantage over related phosphonium-based reagents.35
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Deprotonating the naphthyl alcohol 4a with KH in dioxane followed by addition of niobium

pentachloride affords the E-allylic chloride 2a in 98% yield. Bulb-to-bulb distillation does not

change the spectral purity but decreases the yield to 70% as a result of polymerization in the

still pot.36 Rapidly eluting the crude allylic chloride 2a through a short pad of silica or alumina

decreases the purity with a concomitant 30–40% mass loss, presumably through irreversible

adsorption on silica gel.37

An efficient displacement of the allylic chloride was pursued as an additional proof of reaction

efficiency. Initially the anion of malononitrile was selected with the naïve hope of performing

an in situ deprotonation-displacement sequence.38 No displacement occurs in dioxane39

whereas THF provided the substituted malononitrile 13a in 65% yield accompanied by 24%

of the product of double malononitrile displacement (Scheme 4). Although the overall yield

was high, attention was shifted to phenyl sufenylate as a potent nucleophile40 capable of only

a single displacement. Not only is the overall chlorination-sulfenylation very efficient (Scheme

4, 2a→14a) but x-ray crystallography41 of the resulting sulfide 13a secured the unequivocal

assignment of the olefin stereochemistry.42

The trans-stereochemistry of the allylic chloride 2a formally arises from a metalla-halo [3,3]

rearrangement although concerted, ionic, and direct displacement mechanisms appear to

operate competitively depending on the structure of the allylic alcohol (Table 1). Geraniol

(4b), linalool (4c), and nerol (4d) generate mixtures of allylic chlorides accompanied by

terpenyl chloride (2e). Principal conversion of geraniol (4b) to geranyl chloride (2c, Table 1,

entry 1) likely occurs through a direct displacement30 whereas formation of terpenyl chloride

(2e) requires a change in olefin stereochemistry. Isomerization of geraniol (4b) to linaloyl

chloride (2b) is precedented43 and would facilitate an ionic or NbCl5-promoted cyclization to

terpenyl chloride (2e).44

A signature of a concerted metalla-halo[3,3] chlorination, dictated by the cyclic transition

structure, is preferential formation of an E-allylic chloride (Scheme 3). Linalool (4c)

participates in the chlorination to afford some terpenyl chloride but mainly E-geranyl chloride

(2c). The absence of Z- neryl chloride (2d) is consistent with a metalla-halo[3,3] rearrangement

although the presence of multiple products from these terpenes strongly implies ionization as

a significant pathway (Table 1, entry 2).45 Nerol (4d) affords a mixture of all four allylic

chlorides with terpenyl chloride (2e) predominating, presumably because the Z-olefin

geometry facilitates cyclization (Table 1, entry 3). Although these chlorinations can formally

be viewed as metalla-halo-[3,3]-rearrangements, the formation of regioisomeric mixtures

suggests that direct displacement and ionization mechanisms operate at least competitively and

possibly predominate in some cases.

Chlorinating the cyclic allylic alcohol 4e and the acyclic alcohols 4f–4h with different

propensities toward ionization confirm the presence of several competing chlorination

mechanisms (Table 1, entries 4–7). Myrtenol (4e) exhibits a three-fold preference for the

rearranged chloride 2f despite having a less stable exocyclic olefin compared to the endocyclic

chloride 2g (Table 1, entry 4). Benzyl alcohol (4f) in which a metalla-halo-[3,3]-rearrangement

is prevented, undergoes halogenation considerably slower and requires two equivalents46 of

NbCl5 implying displacement via a bis-niobium complex.47 Activation of the alcohol by an

adjacent π-system seems to be significant as the attempted chlorination of 4g was not successful

(Table 1, entry 6). In contrast, the hydroxyalkenenitrile 4h bearing two adjacent π-systems

affords exclusively the rearranged chloride 2j (Table 1, entry 7). Although several mechanisms

appear to compete in the NbCl5 chlorination, the metalla-halo-[3,3]-rearrangement seems to

dominate when olefin migration leads to a more stable allylic chloride.
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The ability to chlorinate benzyl alcohol stimulated a direct nucleophilic addition-chlorination

with aldehydes (Scheme 5). Adding BuMgCl or BuLi to benzaldehyde affords metal alkoxides

15a that are readily transformed into the secondary benzylic chloride 2k upon exposure to 2.5

equivalents of NbCl5. An analogous addition of the chlorine-containing Grignard reagent

1648 efficiently provides the dichloride 2l indicating that NbCl5 tolerates additional

chlorination in the substrate (Scheme 5).

The sequential addition-chlorinations with benzaldehyde (Scheme 5) provided an excellent

foundation for the direct halo-olefination of aldehydes and ketones (Table 2).49 In the

optimized procedure, vinylmagnesium bromide50 was added to a THF solution51 of the

aldehyde and then four volumes of dioxane and solid NbCl5 were added. After 10 min the

crude chloride52 was isolated and subjected to phenylsulfenylate displacement in THF to afford

the corresponding sulfide. In each case, 1H NMR analysis of the crude chloride and sulfide

reaction mixture identified the E-alkene as the sole geometric isomer.

Aromatic aldehydes (1a–1d), enals (1e), and ketones (8f and 8g) are smoothly converted to

the corresponding chlorides and sulfides (Table 2, entries 1–7). p-Cyanobenzaldehyde (1c)

reacts sluggishly with NbCl5 whereas NbBr5 was more significantly reactive,53 a trend

apparent in the addition-halogenations with aliphatic aldehydes and ketones (Table 2, entries

8–11).54 The substrates tolerate a nitrile group, a methoxy ether, and adjacent unsaturation in

the aldehyde (Table 2, entries 3, 4, 5, respectively). Despite NbCl5 being able to cleave methyl

ethers,55 the methyl ether-containing aldehyde 1d is smoothly converted to the allylic chloride

provided that the temperature is lowered to 0 °C.56 Acetals are not well tolerated57 suggesting

that the method is best suited to the synthesis of hydrocarbon scaffolds bearing limited

heteroatom substituents.

The niobium-mediated halogenation of metal alkoxides is equally effective for the addition of

organometallics to unsaturated carbonyl compounds (Scheme 6). Sequential addition of

hexyllithium or PhMgCl and NbCl5 to acrolein (1l) efficiently provides the allylic chloride

2m and cinnamyl chloride (2n), respectively. Reducing ketone 8m with LiBH4 and adding

NbCl5 affords the corresponding chloride that was displaced with sulfenate in an overall

reductive-sulfenylation with translocation of the double bond. Collectively these addition-

chlorination and reduction-chlorination sequences imply significant scope for halogenating

allylic alkoxide intermediates.

The proclivity of allylic alcohols to participate in the formal metalla-halo-[3,3]-rearrangement

stimulated expanding the substrate scope to include propargylic alcohols (Table 3). Sequential

deprotonation and chlorination of the propargylic alcohol 5a afforded only a trace of the allenyl

chloride at room temperature, whereas coaxing the reaction through heating caused

considerable decomposition. NbBr5 proved to be a more efficient halogenating agent triggering

a smooth rearrangement at room temperature (Table 3, entry 1).

The NbBr5 rearrangement is of reasonably broad scope and provides rapid access to

synthetically versatile bromoallenes (Table 3).58 Secondary and tertiary propargylic alcohols

react with similar efficiency in affording 1,2-disubstituted and 1,1,2-trisubstituted allenes,

respectively (Table 3, entries 1–4 and entry 5). The bromination is equally applicable to

alcohols with adjacent aromatic or aliphatic substituents (Table 3, compare entry 1 with entries

2–5). Formally, the allenyl bromide synthesis is envisaged through the hexacoordinate niobiate

1747 although full or partial ionization may occur during the olefin transposition. Internal

delivery of the halogen to the olefin terminus is likely promoted by concomitant formation

trichloroniobium oxide.59

Ravikumar et al. Page 4

J Org Chem. Author manuscript; available in PMC 2010 October 2.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Conclusion

Allylic and allenic halides are readily generated by adding NbCl5 or NbBr5 to allylic or

propargylic alkoxides. The halogenation formally occurs through a metalla-halo[3,3]

rearrangement although ionization and direct displacement mechanisms appear to operate

competitively. The intermediate allylic alkoxides can be prepared by deprotonation or, equally

as effectively, through an organometallic addition or reduction allowing the direct conversion

of an aldehyde or ketone to the corresponding allylic chloride. Particularly useful is the direct

"halo-olefination" of aromatic and aliphatic aldehydes by sequential addition of

vinylmagnesium bromide and NbCl5 or NbBr5. Secondary or tertiary propargylic alcohols react

similarly with NbBr5 to afford allenylic bromides. The halides are readily isolated in pure form

through simple extraction and can be used in subsequent displacements without prior

purification.

Experimental Section

General Chlorination Procedure for Allylic Alcohols

Potassium hydride (30% dispersion in mineral oil 1.2 equiv) was washed with hexane (3 mL)

and then a dioxane solution of the allylic alcohol (1 equiv) was added dropwise. After 5 minutes

solid NbCl5 (1.2 equiv) was added as a dry powder. After 10 min60 the reaction mixture was

poured into 2 M HCl and then extracted with ethyl acetate.

General procedure for the direct synthesis of allylic chlorides from aldehydes

A THF solution of vinyl magnesium bromide (0.7 M solution) was added to a 10 °C, THF

solution (0.75–0.85 M) of the aldehyde. After 15 min. 1,4-dioxane (4 volumes relative to THF)

and solid NbCl5 (2.5 equiv) were added sequentially. After 10 min the reaction mixture was

poured into 2 M HCl, extracted with ethyl acetate, and the combined organic extract was then

washed with brine and dried (Na2SO4).

General Addition-Chlorination-Sulfide Displacement Procedure

A THF solution of vinyl magnesium bromide (0.7 M solution) was added to a 10 °C, THF

solution (0.75–0.85 M) of the aldehyde or ketone. After 15 min. 1,4-dioxane (4 volumes relative

to THF) and solid NbCl5 (1.2 equiv) were added sequentially. After 10 min the reaction mixture

was poured into 2 M HCl, extracted with ethyl acetate, and the combined organic extract was

then washed with brine and dried (Na2SO4). A THF solution (0.2 M) of the crude, essentially

pure allylic chloride was added to a 10 °C, THF suspension of sodium hydride (2.0–2.5 equiv)

to which had been added thiophenol (2.0–2.5 equiv). The reaction mixture was allowed to

warm to rt over 16 h, poured into an aqueous sodium hydroxide solution (2% by weight) and

then extracted with ethyl acetate. The combined organic extract was washed with brine, dried

(Na2SO4), and concentrated under reduced pressure to furnish an oily residue that was purified

by radial chromatography to furnish the pure sulfide.

General Allenyl Bromide Rearrangement Procedure

A dioxane solution of the propargyllic alcohol (1 equiv.) was added to a dioxane solution of

potassium hydride (1.2 equiv.). After 10 min, the solid niobium bromide (1.2 equiv.) was added.

After 2 h, the reaction mixture was poured into HCl (2M), and the phases were separated. The

aqueous phase was extracted with EtOAc, and then the combined organic phase was washed

with brine, dried (NaSO4), and concentrated to provide an oil which was purified by radical

chromatography.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.

Typical Allylic Halide Synthesis
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Scheme 2.

Typical Allenic Halide Synthesis
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Scheme 3.

Vinyl Addition-Metalla-Halo-[3,3]-Rearrangement
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Scheme 4.

Optimizing the Metalla-Halo-[3,3]-Rearrangement
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Scheme 5.

Organometallic Addition-Chlorination with NbCl5
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Scheme 6.

Organometallic-Addition- NbCl5 Chlorination.
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Table 1

Allylic Alcohol Chlorinations with NbCl5

entry alcohol allylic chloride
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Table 2

Direct Halo-Olefination-Sulfide Displacement of Aldehydes and Ketones
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a
Isolated yields of the sulfides. The yields in parentheses are for the corresponding halide which was isolated in cases where the material was stable to

distillation or rapid purification on silica gel.

b
Prepared with NbBr5.
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Table 3

Metala-halo-[3,3] rearrangement of Propargylic Alcohols
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