
ar
X

iv
:2

30
1.

04
07

7v
2

 [
cs

.F
L

]
 2

6
M

ay
 2

02
3

ALMA: Automata Learner using Modulo 2

Multiplicity Automata

Nevin George

Yale University, New Haven CT 06511, USA
nevin.george@yale.edu

Abstract. We present ALMA (Automata Learner using modulo 2 Mul-
tiplicity Automata), a Java-based tool that can learn any automaton
accepting regular languages of finite or infinite words with an imple-
mentable membership query function. Users can either pass as input
their own membership query function, or use the predefined membership
query functions for modulo 2 multiplicity automata (M2MAs) and non-
deterministic Büchi automata. While learning, ALMA can output the
state of the observation table after every equivalence query, and upon
termination, it can output the dimension, transition matrices, and final
vector of the learned automaton. Users can test whether a word is ac-
cepted by performing a membership query on the learned automaton.

ALMA follows the polynomial-time learning algorithm of Beimel et al.
(Learning functions represented as multiplicity automata. J. ACM 47(3),
2000). ALMA also implements a polynomial-time learning algorithm for
strongly unambiguous Büchi automata by Angluin et al. (Strongly un-
ambiguous Büchi automata are polynomially predictable with member-
ship queries. CSL 2020), and a minimization algorithm for M2MAs by
Sakarovitch (Elements of Automata Theory. 2009).

ALMA is unique from other similar tools in that hypotheses during the
learning algorithm and the outputted learned automata are represented
using M2MAs. The tool enables researchers to explore the practical and
theoretical advantages of M2MAs, a relatively unexplored automaton
representation which we argue is useful in the verification community for
representing regular ω-languages.

Keywords: automata theory · finite automata · Büchi automata · mul-
tiplicity automata · learning

1 Introduction

Angluin’s exact learning model [1] has been studied extensively in the context
of learning theory, and it can be used to learn automata representing regular
languages of finite and infinite words. In the model, a learner interacts with an
oracle to learn a regular language using membership and equivalence queries.
In a membership query, the learner learns from the oracle whether a word is in

http://arxiv.org/abs/2301.04077v2

2 N. George

the language. In an equivalence query, the learner forms a hypothesis on what
the language is, and the oracle either confirms that the hypothesis is correct
or returns a counterexample, i.e, a word for which the hypothesis and language
differ.

As one application of the exact learning model, Beimel et al. [4] detail a
polynomial-time algorithm to learn multiplicity automata using membership and
equivalence queries. The algorithm can be generalized by replacing the member-
ship query function for multiplicity automata with that of any other automaton
accepting regular languages of finite or infinite words. We provide a high-level
overview of the algorithm: the algorithm begins with a trivial hypothesis of the
language, represented as a multiplicity automaton of dimension 1 defined over
some field K. On each iteration of a loop, the algorithm performs an equivalence
query. If the hypothesis is equivalent to the language, the algorithm terminates
and outputs the hypothesis. Otherwise, the algorithm receives a counterexam-
ple from the oracle, which is used to improve the hypothesis. The algorithm
terminates after d iterations, where d is the dimension of the smallest possible
multiplicity automaton that can represent the language.

Strongly unambiguous Büchi automata (SUBAs) (defined in Section 2.1) are
a type of non-deterministic Büchi automaton (NBA) first introduced by Bosquet
and Löding [6]. SUBAs are useful for modeling reactive systems, as they are fully
expressive, i.e., they can represent any regular ω-language, and can often rep-
resent regular ω-languages more succinctly than other NBA representations [2].
Angluin et al. [2] also showed that SUBAs are learnable in polynomial time,
further increasing their importance.

In this paper, we present ALMA, a Java-based tool that implements the al-
gorithm of Beimel et al. to learn any arbitrary automaton representing regular
languages of finite or infinite words with an implementable membership query
function. Hypotheses during the learning algorithm and outputted learned au-
tomata are represented using M2MAs. Membership query functions have been
implemented for M2MAs and NBAs, and users can enter as input any arbitrary
membership query function that 1) takes as input any possible word that can be
formed from the given alphabet, and 2) outputs 0 or 1 to indicate whether the
word is in the language.

To improve the runtime of learning SUBAs, ALMA does not use the general
learning algorithm of Beimel et al., but rather the SUBA learning algorithm
of Angluin et al. [2]. Also when learning M2MAs, ALMA first implements the
algorithm of Sakarovitch [10] to minimize the M2MA before running the learn-
ing algorithm. This is because in the SUBA learning algorithm, converting the
input SUBA into an equivalent M2MA incurs a quadratic increase size. Minimiz-
ing M2MAs before learning enables the algorithm to learn significantly larger
SUBAs, especially because empirically the M2MAs have been seen to often min-
imize to M2MAs of much smaller dimension. The effect of the minimization
algorithm on a sample of input SUBAs can be seen in Table 2 in Appendix B.

ALMA: Automata Learner using Modulo 2 Multiplicity Automata 3

Usefulness/Novelty In the verification community, M2MAs can be useful for
representing regular ω-languages, as they are learnable in polynomial time and
often relatively succinct. They are also useful for tasks such as model checking,
since performing operations such as intersection, union, complementation, empti-
ness, and equivalence on M2MAs is cheap [3]. Through the minimization and
learning algorithms, ALMA enables researchers in the verification community to
easily test and verify these properties of M2MAs, promoting further exploration
into these useful automata. As an example, ALMA was used in the paper by
Angluin et al. [3] to explore the suitableness of representing regular ω-languages
using M2MAs. The authors used ALMA to convert SUBAs, NBAs, and DBAs
into equivalent M2MAs, and they compared the succinctness of these M2MAs
with that of DFAs accepting the same language. ALMA can similarly be used
by other researchers to gain insights into M2MAs and their benefits/drawbacks
as compared to other representations.

ALMA is the first publicly available implementation of the novel SUBA learn-
ing algorithm by Angluin et al. [2]. Using ALMA, users can run the algorithm to
learn any regular ω-language. Since learned automata are represented as M2MAs,
users can use the many desirable properties of M2MAs to gain insights into
the initial SUBA and regular ω-language. In addition, since membership query
functions are often relatively easy to implement and ALMA already provides a
membership query function for the general NBA case, the scope of what ALMA
can learn is large, promoting its usefulness in a wide variety of settings.

Many tools such as ROLL (ω-Regular Language Learning Library) [9] and
libalf [5] already exist that can learn automata representing regular languages
of finite and infinite words. However, ALMA is the first tool that uses M2MAs
to represent hypotheses and the learned automaton in the learning algorithm.
ALMA’s usefulness lies not with necessarily being the fastest tool available to
learn regular languages, but with exploring the practical benefits of M2MAs and
the features of the algorithms by Beimel et al., Angluin et al., and Sakarovitch.

2 Useful Definitions

2.1 Finite and Büchi Automata

Let Σ be a finite alphabet. Then Σ∗ and Σω are the sets of all finite and infinite
words, respectively, that can be formed using elements from Σ. A finite language
is a subset of Σ∗, and an ω-language is a subset of Σω. If w is a word in Σ∗ or
Σω, let |w| be the length of w and w[i] be the i’th character of w.

A finite-state automaton A is represented as a tuple (Σ,Q, I,∆, F), where
Σ is the alphabet, Q is the finite set of states, I ⊆ Q is the set of initial states,
∆ ⊆ Q × Σ × Q is the set of transitions, and F ⊆ Q is the set of final states.
The automaton A is deterministic if every pair (q, σ) ∈ Q × Σ appears as the
first two elements in at most one triple in ∆.

A run on A for a word w is a series of states q0, q1, . . . ∈ Q such that ∀i
satisfying 1 ≤ i ≤ |w|, (qi−1, w[i], qi) ∈ ∆. A run for a finite word is final if it

4 N. George

ends in a final state. For infinite words, a run is final if it passes infinitely often
through a final state. A run is accepting if it is final and begins at an initial state.
The automaton A accepts the finite/infinite word w if there exists an accepting
run for w.

Non-deterministic finite automata (NFAs) and non-deterministic Büchi au-
tomata (NBAs) are automata accepting finite and infinite words, respectively.
Deterministic finite automata (DFAs) are deterministic NFAs, and deterministic
Büchi automata (DBAs) are deterministic NBAs. Unambiguous finite automata
(UFAs) and unambiguous Büchi automata (UBAs) are NFAs and NBAs, respec-
tively, for which every word has at most one accepting run. A UBA is a strongly
unambiguous Büchi automaton (SUBA) if every word has at most one final run.

2.2 Modulo 2 Multiplicity Automata

Assume a field K and some dimension d. A multiplicity automaton A is repre-
sented as a tuple (Σ, vI , {µσ}σ∈Σ, vF), where Σ is the alphabet, vI is the initial
vector, each µσ is a transition matrix, and vF is the final vector. vI and vF have
dimension d × 1, and each µσ has dimension d × d. The set of states is all row
vectors v ∈ {0, 1}d, and the initial state is v⊤

I
. For a given word w = σ1σ2 . . . σn,

let µ(w) = µσ1
µσ2

. . . µσn
. The set of reachable states is all vectors of the form

v⊤
I
µ(w). Associated with the automaton A is a function fA : Σ∗ → K, where

∀w ∈ Σ∗,

fA(w) = v⊤I µ(w)vF .

A modulo 2 multiplicity automaton (M2MA) is a multiplicity automaton where
K = GF(2) and all calculations are done modulo 2. An M2MA A accepts a word
w ∈ Σ∗ if and only if fA(w) = 1.

As an example, consider the following M2MA M adapted from Angluin et
al. [2].

M = ({a, b},
(

1 0 0
)⊤

, {µa, µb},
(

1 1 0
)⊤

}

where

µa =

0 0 1
1 0 0
1 1 1

 and µb =

0 1 0
1 0 1
1 1 0

 .

M is equivalent to the DFA in Fig. 1. We explain Fig. 1: the computation begins
at the initial state

(

1 0 0
)

. On reading an a/b from the initial state, the DFA
visits the states

(

1 0 0
)

µa =
(

1 0 0
)

0 0 1
1 0 0
1 1 1

 =
(

0 0 1
)

(

1 0 0
)

µb =
(

1 0 0
)

0 1 0
1 0 1
1 1 0

 =
(

0 1 0
)

.

ALMA: Automata Learner using Modulo 2 Multiplicity Automata 5

Other states are visited similarly by multiplying the current state vector by µa

or µb.
(

1 0 0
)

,
(

0 1 0
)

, and
(

1 0 1
)

are accepting states since

(

1 0 0
) (

1 1 0
)⊤

=
(

0 1 0
) (

1 1 0
)⊤

=
(

1 0 1
) (

1 1 0
)⊤

= 1,

where vF =
(

1 1 0
)⊤

.

100start 010 101

001 111 110

b b

b

a

a a

b b

a

a a

b

Fig. 1. DFA for the M2MA M

M2MAs have many important properties described in Section 1 that make
them useful in verification communities, e.g., learnable in polynomial time and
cheap intersection, union, complementation, emptiness, and equivalence. For
more information on M2MAs, we recommend reading the paper by Angluin
et al. [3], which studies these properties of M2MAs extensively and performs
a detailed analysis of M2MAs’ ability to succinctly represent regular finite and
ω-languages.

2.3 L$ Language

Since Büchi automata accept infinite words and M2MAs accept finite words,
Büchi automata and M2MAs cannot accept words from the same language L.
However, Büchi [7] showed that two regular ω-languages are equivalent if and
only if they agree on a set of ultimately periodic words, i.e., words of the form
u(v)ω where u and v are finite words and v is non-empty. We then consider
the language of finite words L$ = {u$v | u(v)ω ∈ L}, which Calbrix et al. [8]
showed is regular. If a Büchi automaton accepts an infinite language L, a finite
automaton is said to also represent L if it accepts L$. The L$ language is used
by Angluin et al. [2] in their SUBA learning algorithm in order to obtain a finite
automaton equivalent to the initial SUBA, and the learned M2MA accepts words
from L$.

6 N. George

3 Usage

3.1 Access and How to Run

ALMA is an open-source library freely available at the following GitHub reposi-
tory: https://github.com/nevingeorge/Learning-Automata. The repository
contains the executables, source files, and sample input files for ALMA, and the
README document contains detailed information on how to use the executables
and the required format for the input files.

ALMA is a Java-based tool designed to be used on the command line. To
run for example the executable M2MA.jar, a user should enter the command java
-jar M2MA.jar within a Terminal/Command Prompt window. This will start the
program, and the program will then print instructions on how to input the
desired input file and flags.

3.2 Executables

ALMA consists of five main executables: 1) M2MA.jar, 2) SUBA.jar, 3) mini-
mize.jar, 4) NBA.jar, and 5) arbitrary.jar. We provide a basic overview of each
of the jar files and their use cases. For each executable, the output is always
the dimension, final vector, and transition matrices of the learned/minimized
M2MA. Also after the algorithms terminate, each executable allows users to
check whether a word is accepted by the outputted M2MA. Infinite words are
represented using the L$ language explained in Section 2.3.

M2MA.jar is used to minimize and learn M2MAs. The alphabet, dimension,
final vector, and transition matrices of the input M2MA must be specified (the
initial vector is always the vector with all zeros except for a 1 in the first row).

SUBA.jar is used to learn SUBAs using the algorithm of Angluin et al. [2].
The alphabet, number of states, final states, and transitions of the input SUBA
must be specified (the only initial state is the first state).

minimize.jar is used to minimize M2MAs using the algorithm of Sakarovitch [10].
The input is the same as that for M2MA.jar. minimize.jar can also be used to
output the minimized M2MA equivalent to the input SUBA in the SUBA learn-
ing algorithm (i.e., it runs every step of the SUBA learning algorithm except
for learning the final M2MA). In this case, the input is the same as that for
SUBA.jar.

NBA.jar is used to learn NBAs. The alphabet, number of states, final states,
and transitions of the input NBA must be specified (the only initial state is
the first state). NBA.jar uses approximate equivalence queries (described in Sec-
tion 4.5), which requires as input the number of tests to run, maximum length
of a test, and maximum limit on the number of equivalence queries.

arbitrary.jar is used to learn arbitrary automata representing regular languages
of finite and infinite words with an implementable membership query function.
The membership query function must be defined in MQ.java. The only con-
straints on the function is that it must accept as input any possible word formed
from letters in the alphabet, and it must output 0 or 1 depending on whether the

https://github.com/nevingeorge/Learning-Automata

ALMA: Automata Learner using Modulo 2 Multiplicity Automata 7

word is contained in the language. arbitrary.jar also uses approximate equivalence
queries, which requires the same input parameters as described for NBA.jar.

3.3 Flags

Users can enter the following optional flags to add or remove information from
the output of the algorithm.

-v: The algorithm outputs the state of the observation table (a matrix consist-
ing of the words whose membership in the language is known) after every
equivalence query in the learning algorithm.

-m: The algorithm outputs detailed information on the progress of the mini-
mization algorithm. It gives status updates at different points in the algo-
rithm, such as when it finishes creating the state/co-state spaces and the
observation table. It also outputs the initial M2MA to be minimized and the
final minimized observation table.

-d: When running minimize.jar on a SUBA, the algorithm outputs only the di-
mension of the minimized M2MA instead of the dimension, final vector, and
transition matrices of the M2MA.

-a: After minimizing the M2MA, the algorithm outputs the number of states of
the minimal deterministic finite automaton (DFA) that represents the same
language as the M2MA.

4 Implementation Details

4.1 Architecture

M2MA Input
Minimization
Algorithm

[Section 4.2]

Learning
Algorithm

[Section 4.3]

Final Check
[Section 4.6]
and Output

Fig. 2. M2MA.jar Architecture

SUBA Input
SUBA
to UFA

[Section 4.4]

UFA to
M2MA

[Section 4.4]
M2MA.jar

Fig. 3. SUBA.jar Architecture

8 N. George

M2MA Input
Minimization

Algorithm
[Section 4.2]

Final Check
[Section 4.6]
and Output

Fig. 4. minimize.jar Architecture

NBA/Arbitrary
Input

Learning
Algorithm

[Section 4.3]

Final Check
[Section 4.6]
and Output

Fig. 5. NBA.jar and arbitrary.jar Architecture

Figures 2-5 provide a high-level overview of the architecture for each of the
five executables. The learning algorithm of Beimel et al. [4], described in more
detail in Section 4.3, is implemented in every executable except for minimize.jar.
The M2MA minimization algorithm of Sakarovitch [10] (described in Section 4.2)
is implemented in M2MA.jar, SUBA.jar, and minimize.jar. All five executables first
take in as input from the command line the name of the input file and optional
flags. The input is passed to a parser, which then reads the input and sends the
parameters of the automaton to be learned/minimized to the algorithms. The
executables also all run final checks (described in Section 4.6) on the outputted
M2MA. Once the checks complete, users can test whether a word is accepted by
the automaton.

4.2 M2MA Minimization Algorithm

The M2MA minimization algorithm, implemented in the minimize function of
M2MA.java, is described in abstract terms in the work by Sakarovitch [10] and
in more concrete detail in the appendix of [3]. The implemented minimization
algorithm follows the pseudo-code in the appendix of [3] closely.

The algorithm requires a heavy use of linear algebra, much of which is done
using the Apache Commons Math package. While testing the executables, how-
ever, many of the unminimized M2MAs were seen to be relatively sparse with
few 1’s in the transition matrices. To take advantage of the sparseness, ALMA
implements custom linear algebra functions that use a sparse representation of
matrices. Matrix rows are represented using arrays containing the locations of
the 1’s in the row. For example, the row

[

0 1 0 0 0 1
]

is represented as
[

2 6
]

,
indicating that the row has a 1 in columns 2 and 6. Matrix multiplication, dot
products, and tests for linear independence are implemented using the sparse
matrix representation. Since the minimization function deals with M2MAs, the
custom linear algebra functions perform all calculations modulo 2, which further
improves the runtime.

ALMA: Automata Learner using Modulo 2 Multiplicity Automata 9

4.3 General Learning Algorithm

The learning algorithm of Beimel et al. [4] is the core algorithm underpinning
ALMA, and it is implemented in the learn function of M2MA.java. We provide
a high-level overview of the algorithm in Section 1, and more details on the
algorithm are found in [4]. Like the minimization algorithm, the linear algebra
is implemented using a combination of the Apache Commons Math package and
custom functions using the sparse representation for matrices.

The default membership query function the learning algorithm uses is that
for M2MAs. As described in Section 2.2, an M2MA A = (Σ, vI , {µσ}σ∈Σ , vF) ac-
cepts a word w if v⊤

I
µ(w)vF = 1. Equivalence queries for M2MAs are easy, since

as a by-product of running the minimization algorithm we get a complete obser-
vation table for the automaton. The equivalence query function checks whether
the current hypothesis agrees with the M2MA being learned on every word in
the observation table, as well as all possible one-letter extensions of the words.
If they agree on every word and one-letter extension, the algorithm terminates;
otherwise, the algorithm returns a word for which they disagree on as a coun-
terexample.

4.4 SUBA Learning Algorithm

The SUBA learning algorithm of Angluin et al. [2] works as follows: the input
SUBA is first converted into an equivalent UFA using a simple construction by
Bosquet and Löding [6]. If the SUBA has n states, the constructed UFA has
size 2n2 + n. Next, the UFA is converted to an equivalent M2MA of the same
size. Lastly, the M2MA is learned using the algorithm of Beimel et al. [4]. The
algorithms for the SUBA to UFA and UFA to M2MA conversions are found in
SUBA.java, and the outputted M2MA is sent to M2MA.java to be minimized and
learned.

4.5 Learning NBA and Arbitrary Automata

In M2MA.jar, minimize.jar, and SUBA.jar, the learning algorithm runs member-
ship and equivalence queries on M2MAs. The learning algorithm for NBA.jar,
however, uses a membership query function designed specifically for NBAs which
we detail in Appendix A. arbitrary.jar passes to the learning algorithm a member-
ship query function specified by the user from MQ.java. Also since the equivalence
query function for M2MAs doesn’t work in the general setting, NBA.jar and ar-
bitrary.jar use approximate equivalence queries that rely on testing a random
sample of words from the language.

Approximate Equivalence Queries The approximate equivalence query func-
tion is defined in arbitrary.java. Along with the hypothesis, it requires two param-
eters n and l as input. The function generates n random words of length at most
l, and it tests whether the hypothesis and automaton being learned agrees on

10 N. George

these words. Increasing n improves the accuracy of the function at the expense
of the runtime. In the input file, users also give a limit m on the number of
equivalence queries that can be run. Since there are no guarantees on the size of
the learned M2MA, the parameter m prevents the algorithm from running for
an arbitrarily long length of time.

4.6 Checks

The code performs checks at various points of the algorithm. If a check fails, the
code throws an exception and terminates the program. Example checks include
checking the validity of the input (e.g., correct number of transition matrices,
matrices only contain 0’s and 1’s, etc.), whether a matrix is invertible before
running a linear equation solver, and if the dimension of the minimized M2MA
equals that of the final learned M2MA.

After learning an M2MA, the code checks whether the outputted M2MA
agrees with the input automaton on the membership of a random sample of
words. By default, the code generates 1000 random words of length at most
25, but these constants can be modified. To perform this check, the code uses
the previously described membership query functions for M2MAs, NBAs, and
arbitrary automata, as well as a membership query function for SUBAs described
in a paper by Bosquet and Löding [6]. Users can also run membership queries on
the outputted M2MA to manually confirm whether the M2MA accepts a given
word.

5 Conclusion

In Appendix B, we perform an experimental evaluation of ALMA and analyze
its practical capabilities. ALMA has limitations - for example, the runtime of
M2MA.jar becomes impractical for random M2MAs of size much larger than 100,
and ALMA doesn’t implement an exact equivalence query function for learn-
ing NBAs and arbitrary automata. However, ALMA is highly efficient for most
standard use cases, and it can be used to promote further research into M2MAs
and their properties. For example, in the paper by Angluin et al. [3], ALMA is
used to find the dimension of the minimum M2MA that can represent a reg-
ular ω-language. Angluin et al. compare this dimension with the size of other
finite automata that represent the same language to analyze the succinctness of
the M2MA representation. Along with serving as a useful tool for investigating
M2MAs, ALMA confirms the theoretical results of Beimel et al. [4] and Angluin
et. al [2,3], and is the first publicly available tool that can be used to explore
these learning algorithms.

Acknowledgements I would like to thank Dana Angluin, Timos Antonopoulos,
and Dana Fisman for their help with this paper and all the feedback and advice
they gave. Dana Angluin especially helped me significantly during the entire
process of creating ALMA, and I would like to thank her greatly for her support
and mentorship.

ALMA: Automata Learner using Modulo 2 Multiplicity Automata 11

References

1. Angluin, D.: Queries and concept learning. Machine Learning 2(4), 319–342 (1987)
2. Angluin, D., Antonopoulos, T., Fisman, D.: Strongly unambiguous Büchi automata

are polynomially predictable with membership queries. In: 28th EACSL Annual
Conference on Computer Science Logic, CSL. pp. 8:1–8:17 (2020)

3. Angluin, D., Antonopoulos, T., Fisman, D., George, N.: Representing regular lan-
guages of infinite words using mod 2 multiplicity automata. In: Foundations of
Software Science and Computation Structures - 25th International Conference,
FOSSACS. p. 1–20 (2022)

4. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning
functions represented as multiplicity automata. J. ACM 47(3), 506–530 (May 2000)

5. Bollig, B., Katoen, J.P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
The automata learning framework. In: Computer Aided Verification - 22nd Inter-
national Conference, CAV. pp. 360–364 (2010)

6. Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly un-
ambiguous Büchi automata. In: Language and Automata Theory and Appli-
cations, 4th International Conference, LATA. Proceedings. pp. 118–129 (2010).
https://doi.org/10.1007/978-3-642-13089-2_10

7. Büchi, J.: On a decision method in restricted second order arithmetic. In: Interna-
tional Congress on Logic, Methodology and Philosophy. pp. 1–11. Stanford Univ.
Press (1962)

8. Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w-
languages. In: Proceedings of the 9th International Conference on Mathematical
Foundations of Programming Semantics. pp. 554–566. Springer-Verlag (1994)

9. Li, Y., Sun, X., Turrini, A., Chen, Y.F., Xu, J.: Roll 1.0: ω-regular language learning
library. In: Tools and Algorithms for the Construction and Analysis of Systems -
25th International Conference, TACAS, Part I. pp. 365–371 (2019)

10. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, USA
(2009)

https://doi.org/10.1007/978-3-642-13089-2_10

12 N. George

A Appendix

NBA Membership Query Function The NBA membership query function
is described in Algorithm 1. As explained in Section 2.1, an NBA accepts a word
if there exists a path for the word that begins at an initial state and passes
infinitely often through a final state. The input parameters u, v represent a word
w = u$v in the L$ language.

Algorithm 1. NBA Membership Query Function

1: function main(u, v)
2: Su ← states reachable from the initial state on reading u

3: Suv ← Su∪ reachable(Su, v)
4: for all s ∈ Suv do

5: S
′

uv
← reachable({s}, v)

6: if s ∈ S
′

uv
& passed a final state to reach s then

7: return 1
8: end if

9: end for

10: return 0
11: end function

12:
13: function reachable(S, v)
14: Sv ← states reachable from a state in S on reading v

15: S
′

v
← ∅

16: repeat

17: Sv ← Sv ∪ S
′

v

18: S
′

v
← states reachable from a state in Sv on reading v

19: until S′

v
⊆ Sv

20: return Sv

21: end function

In Algorithm 1, the reachable function finds all the states reachable from a
set of initial states S on reading some positive number of v’s. On every iteration
of the loop defined in line 16, the function finds the states reachable on reading
another v, and the function terminates after an iteration of the loop where no
new states are found.

In the main function, in lines 2-3 Algorithm 1 stores in Suv all the states
reachable from the initial state on reading a u and a non-negative number of v’s.
Then in lines 4-10, the algorithm determines whether there is an accepting loop
on any of the states in Suv (i.e., a path from a state in Suv to itself that passes
through a final state).

Runtime Analysis Let n be the number of states, m be the number of tran-
sitions, and l be the length of u$v. Line 2 runs in O(nml) - we read each of the

ALMA: Automata Learner using Modulo 2 Multiplicity Automata 13

O(l) characters in u one at a time, and with each character we calculate the
new states that can be reached using the O(m) transitions from the O(n) states
reached so far. reachable runs in O(n2ml) - the loop runs at most n times
since there are at most n states to add to S, and line 18 runs in O(nml). The
loop in line 4 terminates after O(n) iterations, and since reachable is called
in line 5, the loop runs in O(n3ml). Therefore, Algorithm 1 runs in O(n3ml).

B Experimental Evaluation

The GitHub repository contains many input files that can be used to test each
of the executables. There exist input files for many different sizes of M2MAs,
SUBAs, and NBAs, as well as input files for different edge cases (e.g., M2MAs
of dimension 1).

M2MA Dimension Average Runtime

10 0.33s

20 2.44s

30 9.76s

40 28.57s

50 82.57s

60 177.00s

70 355.09s

80 657.82s

90 1084.85s

100 1819.80s

Table 1. M2MA.jar Runtime

Tables 1-3 give a sense of the runtimes for M2MA.jar, SUBA.jar, and NBA.jar.
The experiments were run on a standard laptop with 8 GB RAM, 8 cores, and
a CPU frequency of 3200 MHz.

Table 1 details the runtime of M2MA.jar. Fifty random M2MAs with the
alphabet {a, b, c} were generated for each of the dimensions 10, 20, . . . , 50, and
the average runtimes were calculated. For the dimensions 60, 70, . . . , 100, ten
random M2MAs were generated. These results can be reproduced using the
executable M2MA_experiments.jar in the Experimental Evaluation folder of the
GitHub repository. Instructions on how to use the jar file are printed to standard
output once the executable is run.

Table 2 details the runtime of SUBA.jar. The SUBA input files used to gen-
erate the results are found in the Experimental Evaluation folder of the GitHub
repository.

Table 3 details the runtime of NBA.jar. The NBAs in the table were randomly
generated, with one NBA generated per size. Since NBA.jar uses approximate
equivalence queries, the table contains a column for the number of tests to run

14 N. George

SUBA Language SUBA Size
Unminimized
M2MA Dim

Learned
M2MA Dim

Runtime

aΣ
∗(Σ∗

bΣ
∗)ω 2 10 5 0.20s

Σ
∗
aΣ

5
ab

ω 8 136 10 0.30s

((a+ b)∗(a(a+ b)a(a+ b)c
+b(a+ b)b(a+ b)d))ω

9 171 92 50.86s

(a∗
a
4
b)ω 5 55 32 0.57s

(a∗
a
5
b)ω 6 78 44 2.04s

(a∗
a
6
b)ω 7 105 58 6.72s

a
ω 1 3 3 0.05s

(ab5)ω 6 78 43 0.45s

(ab10)ω 11 253 133 25.11s

(ab15)ω 16 528 273 411.48s

(ab20)ω 21 903 463 3064.32s

Table 2. SUBA.jar Runtime

NBA Size
Number of
tests/EQ

Learned M2MA
Dimension

Runtime

2 10000 3 1.02s

4 10000 7 0.25s

6 10000 24 1.80s

8 100000 27 14.00s

10 100000 83 983.39s

Table 3. NBA.jar Runtime

*The learned M2MA dimensions and runtimes for NBA.jar can vary widely due to the
inherent randomness.

for every equivalence query. The maximum length of a test for every NBA in the
table is 25. The NBA input files used to generate the results are found in the
Experimental Evaluation folder of the GitHub repository.

Practical Capabilities The runtimes for M2MA.jar increase at a roughly cubic
rate. For smaller M2MAs, the program runs quickly, but for M2MAs of dimension
larger than 100, the program can take hours to terminate. For the purpose of
using ALMA to explore the properties of M2MAs, it is unlikely that one will
need to work with M2MAs of dimension much larger than 100, so the program’s
runtime should not pose a significant constraint.

One may think that experimenting with the SUBA learning algorithm, which
incurs a 2n2 + n blow up in size going from the initial SUBA to the converted
M2MA, will be impractical when dealing with SUBAs of size even greater than
10. However, as can be seen in Table 2, the unminimized M2MA in the SUBA
learning algorithm often minimizes to a much smaller M2MA, which is why the

ALMA: Automata Learner using Modulo 2 Multiplicity Automata 15

tool implements the minimization algorithm of Sakarovitch [10]. For example,
the SUBA of size 21 representing the language (ab20)ω converts into a large
unminimized M2MA of dimension 903. However, it minimizes to an M2MA of
dimension 463, and SUBA.jar runs in less than an hour for this SUBA.

The learned M2MA dimensions and runtimes for NBA.jar depend heavily on
the number of tests performed every equivalence query. To get decent approxi-
mations on the learned M2MA dimension for NBAs of size larger than 10, the
number of tests per equivalence query should be at least on the order of 10 to
the 5th or 6th power. One can try to change the maximum length of the tests
to get better results. For randomly generated NBAs of size much larger than 10,
the trade-off between the runtime and accuracy becomes much more apparent,
and the number of tests per equivalence query may have to be decreased for the
runtime to be practical.

	ALMA: Automata Learner using Modulo 2 Multiplicity Automata

