Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-00-17

2000-01-01

ALMI: An Application Level Multicast Infrastructure

Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel

The IP multicast model allows scalable and efficient multi-party communication, particularly for
groups of large size. However, deployment of IP multicast requires substantial infrastructure
modifications and is hampered by a host of unresolved open problems such as reliability, flow
and congestion control, security and access control. Motivated by these problems, we have
designed and implemented ALMI, an application level group communication middleware, which
does not rely on network infrastructure support and thus, allows accelerated deployment and
simplified configuration at the cost of a relatively small increase in traffic load. ALMI is tailored
toward support of multicast groups of relatively... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Pendarakis, Dimitrios; Shi, Sherlia; Verma, Dinesh; and Waldvogel, Marcel, "ALMI: An Application Level
Multicast Infrastructure" Report Number: WUCS-00-17 (2000). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/286

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/286?utm_source=openscholarship.wustl.edu%2Fcse_research%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/286

ALMI: An Application Level Multicast Infrastructure

Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel

Complete Abstract:

The IP multicast model allows scalable and efficient multi-party communication, particularly for groups of
large size. However, deployment of IP multicast requires substantial infrastructure modifications and is
hampered by a host of unresolved open problems such as reliability, flow and congestion control, security
and access control. Motivated by these problems, we have designed and implemented ALMI, an
application level group communication middleware, which does not rely on network infrastructure support
and thus, allows accelerated deployment and simplified configuration at the cost of a relatively small
increase in traffic load. ALMI is tailored toward support of multicast groups of relatively small size
(several 10s of members) with many to many semantics. Participants of a multicast session are
connected via a virtual multicast tree, i.e., a tree that consists of unicast connections between end hosts.
The tree is formed as a minimum spanning tree (MST) where the cost of each link is an application-
specific performance metric. The shift of multicast to end systems introduces certain performance
penalties, such as duplicate packets on physical links and larger end-to-end delay than IP multicast. Using
simulation, we show that the performance tradeoff is quite small and that ALMI multicast trees approach
the efficiency of IP multicast trees. We have also implemented ALMI as a Java based middleware
package and performed experiments over the Internet. The experimental results show that ALMI is able to
cope with network dynamics and keep the multicast tree efficient.

https://openscholarship.wustl.edu/cse_research/286?utm_source=openscholarship.wustl.edu%2Fcse_research%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/286?utm_source=openscholarship.wustl.edu%2Fcse_research%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages

ALMI: An Application Level Multicast
Infrastructure

Dimitrios Pendarakis, Sherlia Shi, Dinesh
Verma and Marcel Waldvogel

WUCS-00-17

July 2000

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

ALMI: An Application Level Multicast Infrastructure

Dimitrios Pendarakis Sherlia Shi
Tellium Optical Network Systems Department, of Computer Science
dpendarakis@tellium.com Washington University in St. Louis
sherlia@arl. wustl.edu
Dinesh Verma Marcel Waldvogel
IBM T.J.Watson Research Center Department of Computer Science
dverma@watson.ibm.com Washington University in St. Louis

mwa@arl.wustl.edu

Abstract

The IP multicast model allows scalable and efficient multi-party communication, particularly for
groups of large size. However, deployment of IP multicast requires substantial infrastructure modifica-
tions and is hampered by a host of unresolved open problems such as reliability, flow and congestion
control, security and access control. Motivated by these problems, we have designed and implemented
ALMI, an application level group communication middleware, which does not rely on network infras-
tructure support and thus, allows accelerated deployment and simplified configuration at the cost of a
relatively small increase in traflic load.

ALMI is tailored toward support of multicast groups of relatively small size (several 10s of members)
with many to many semantics. Participants of a multicast session are connected via a virtual multicast
tree, i.e., a tree that consists of unicast connections between end hosts. The tree is formed as a minimum
spanning tree (MST) where the cost of each link is an application-specific performance metric. The
shift of mulficast to end systems introduces certain performance penalties, such as duplicate packets
on physical links and larger end-to-end delay than IP multicast. Using simulation, we show that the
performance tradeoff is quite small and that ALMI multicast trees approach the efficiency of IP multicast
trees. We have also implemented ALMI as a Java based middleware package and performed experiments
over the Internet. The experimental results show that ALMI is able to cope with network dynamics and
keep the multicast tree efficient.

1 Introduction

This work is motivated by the need to support group communication among a small group of hosts
without relying on the IP multicast model. Traditional IP multicast, as defined by IGMP and related
standards, provides an excellent solution to the communication needs of multicast groups with a large
number of members. However, it requires fairly elaborate control support from network devices, such as
IP routers, in particular membership management (IGMP) and multicast routing protocols. Since control
information is group dependent and every group is maintained separately, the maodel is relatively less
scalable with respect to the number of concurrently active multicast groups. Widespread deployment of
IGMP and routing protocols requires substantial infrastructure modifications, and complex modifications
to IP routers’ software. Some of the issues associated with IP multicast, e.g. end-to-end reliability, flow
and congestion control schemes, offer significant challenges for which no clear solutions have emerged
thus far.

Internet service providers and corporate network administrators have usually been reluctant to deploy
IP multicast support on a wide-spread basis. This is due to a number of unresolved problems; there is
a lack of effective access control policies to limit the amount of multicast traffic in the network, there
is potential for traffic explosion and the networks could be vulnerable to denial of service attacks by
unauvthorized senders. As an example, the MBONE provides an excellent medium for video broadcast
of special events such as IETF meetings, but many large corporations block its transmission on their
internal networks, restricting such transmissions to a very small number of machines.

There are a large number of applications whose requirements are substantially different from the
design point of IP multicast. Such applications include video-conferencing, multi-party games, private
chat rooms, web cache replication and database/directory replication. These applications usually contain
a small number of group members, and the groups {(e.g. multi-party games) are often created and
destroyed relatively dynamically. The number of such groups that are concurrently active can be fairly
large. For a large number of such small and sparse groups, the benefits of IP multicast in terms of
bandwidth efficiency and scalability are quite often outweighed by the control complexity associated
with group set-up and maintenance.

Due to the increasing number of such applications, and a lack of ubiquitous deployment of IP mul-
ticast in all IP-based networks, there has been renewed interest in multicast protocols that can be
supported without relying on the IP multicast infrastructure. Some of the work has been motivated by
applications like Internet TV, which are single source applications with a very large group size. These
schemes, which include Simple Multicast [15] and EXPRESS [10], offer multicast routing schemes which
are less complex than their traditional IP multicast counterparts. However, these solutions are less
appealing for multi-sender applications such as video-conferencing or multi-party games, among others.

In order to meet the requirements of these new applications, we need a solution for multi-sender
multicast communication which scales for a large number of communication groups with small number
of members, and does not depend on multicast support in the routers. In this paper, we propose
an application level multicast infrastructure that addresses these concerns. This solution provides a
multicast middleware which is implemented above the sockets layer. Application level multicast offers
accelerated deployment, simplified configuration and better access control at the cost of additional (albeit
small} traffic load in the network. Since application level multicast is implemented in the user space, it
allows more fiexibility in customizing some aspects, e.g. data transcoding, error recovery, flow control,
scheduling, differentiated message handling or security, on an application-specific basis.

In our scheme, participants of a multicast session are connected via a virtual multicast tree, i.e. a tree
that consists of unicast connections between end hosts. The tree is formed as a. Minimum Spanning Tree
(MST), where the cost of each link is an application specific metric. The implementation we describe
in subsequent sections uses the round-trip application level delay between group members as this cost
metric. However, a plug-in architecture enables this metric to be changed easily by applications. In
this paper, we present the architecture of the multicast middleware we have developed, a Java based
implementation, and the results of some performance experiments conducted over a local area as well
as over the Internet. We have called this Java based package, ALMI for Application Level Multicast
Infrastructure.

The rest of the paper is organized as follows. We first present an overview of our architecture,
including the operation of control and data planes in section 2, followed by a design of application specific
components in section 3. Sections 4 and 5 present simulation analysis and experimental evaluation of
ALMI, respectively. Section 6 describes related work; we conclude in section 7.

2 ALMI Architecture and Operations

In this section, we describe the communication channels provided by ALMI and its related protocol
operations for both controller and group members. We also describe operations related to multicast tree
generation and criteria of tree updates and its stability issues. One of the advantage gained in ALMI is

its value-added application specific components. To simplify explanation, we defer our design of these
functionalities to next section.

2.1 Overview of ALMI Communication Architecture

Figure 1 depicts a high-level view of ALMI. An ALMI session consists of a session controller and multiple
session members. Session controller is a program instance, located at a place that is easily accessible.
It may be co-located with one of the session members, typically the session initializer, or it could reside
on a special purpose server or a multicast proxy installed within a corporate or an ISP network. Session
data is disseminated along the multicast tree, while control messages are unicast between each member
and the controller. A link in the multicast tree (solid line) represents a unicast connection between two
members. In order to avoid loops, two members incident on a link receive a designation of parent and
child. This parent-child relation only distinguishes the two member for reasons we will explain later in
this section; it does not indicate direction of data. flow, since the multicast tree is a shared-tree amongst
members and data can flow in either direction. The session controller handles member registration

e
M Mutticast

Tree

Figure 1: ALMI Architecture Overview

and maintains the multicast tree. In order to achieve the latter, the controller performs two important
functions:

» It ensures connectivity of the multicast tree when members join and/or leave the session and when
network or host failures occur.

o It ensures the efficiency of the multicast tree by periodically calculating a minimum spanning
tree based on the measurement updates received from all members. To collect measurements the
controller essentially instructs each member to monitor a set of other members.

A session member receives and sends data as it would in an IP multicast session; in addition, it also
forwards data to designated adjacent neighbors. Data eventually reaches all session members through this
relaying process, assuming all members are cooperative. This assumption that a group does not contain
any malicious member who intentionally blocks the data flow, is reasonable for our targeted applications
such as video conferencing, web replication, etc. Furthermore, since final responsibility for distribution
tree maintainance lies with the controller, a member that violates the cooperation requirement can be
identified by the controller, based on feedback from other members, and purged from the tree. Besides
forwarding data on the data plane, a session member also monitors the performance of unicast paths to
and from a subset of other session members. This is achieved by periodically sending probes to these
members and measuring an application level performance metric; in the current implementation the
roundtrip response delay. Delay measurements are then reported to the controller and serve as the costs
used to calculate a Minimum Spanning Tree.

The centralized control approach greatly simplifies the routing problem compared to the distributed
approaches used in IP multicast, where routing protocols have to maintain tree consistency and efficiency.
Since the session controller manifests itself only in the control path, it does not obstruct high data rate
transmissions among session members. We believe this ceniralized approach is adequate and efficient
for a large range of multicast applications. However, a centralized controller architecture has obvious
implications in control plane reliability and fault tolerance. Clearly, a single controlier would constitute
a single point of failure for all control operations related to the group. Two points should be made in this
respect. First, the centralized session controller could be augmented with multiple back-up controllers,
operating in “stand-by” mode, with addresses which are well known to all session members. In this case
the “stand-by” controllers periodically receive state from the primary controller, which would include
recent measurements, tree topology and current membership information. Second, even in the event that
no conirol operation is possible, the existing ALMI tree, and hence data path, will remain unaffected
and will continue operation until & membership change or a critical failure occurs. This leads to graceful
performance degradation and group termination. In summary, we believe the benefit of simplicity offered
by the centralized controller approach far outweigh any negative implications from the fault tolerance
perspective.

2.2 Control Plane Operation

ALMI relies on a control protocol for communication between session controller and session members.
This protocol handles tasks related to membership management, performance monitoring and routing.
ALMI uses a common packet format to carry both data and control packets, shown in Figure 2.

0] 7 15 31 _
Protocol Version Tree Incarnation Flags

ALMI Session ID

Source ID 20 bytes

Sequence Number

Payload Data Length

Figure 2: ALMI Packet Header Format

"The content, of this packet header is rather straight forward. Session ID and Source ID are generated
by controller and guaranteed to be collision free. The flag field in the header defines various types of
operation messages, including:

e Registration messages addressed from hosts to the controller. When a host joins a session, the
controller returns a list of peering points from which the member should accept connection requests
and the parent to which the new member is to initiate a connection.

» Connection request and acknowledgment between parent and child. This message exchanges parent
and child data port numbers, which are locally bound with either TCP accept sockets or with UDP
sockets. Members use these ports to initialize future data connection.

e Performance monitoring messages reported from members {o session controller, such as pairwise
delay measurements between group members. In each update message, members include a list of
< current neighbor ID, delay measuremeni> pairs. If the controller detects inconsistency between
a member’s view of neighbors with its own recording, it sets the corresponding measurement entry
for this pair of neighbors to infinity.

» Distribution tree messages, generated by the controller, are used to inform members of their peering
points in the data distribution tree. This message informs members of their new parent and
children’s ID. If a member detects that it needs to switch to a new parent, it sends a connection

4

request to the new parent and closes the connection to the old parent at the mean time. On the
other hand, if a parent detects a child is no longer in its children list, it will close the corresponding
data connection as well.

¢ Neighbor monitoring update messages, which are sent by the controller to members to inform them
a new list of neighbors they need to monitor. This message is triggered if the controller detects the
number of current monitoring pairs has dropped below a threshold due to accumulated network
errors. Or it is triggered due to the unsatisfaction of the current state of the multicast tree.

¢ Departure messages, are sent from group members to the controller and their current parent and
children. If a child member receives such a message from its parent, it needs to contact the
controller again to rejoin the group.

The Tree Incarnation field is to prevent loops and partitions in the multicast tree. Since a session
multicast tree is calculated centrally by the controller, assuming correct controller operation, a loop free
topology will always be generated. However, since tree update messages are independently disseminated
to all members, there is always a possibility that some messages might be lost or received out-of-order by
different groups members. In addition members might act on update messages with varying delay. All
of these events could result in loops and/or tree partition. In order o avoid these transient phenomena,
the controller assigns a monotonically increasing version number to each newly generated multicast tree.
To avoid loops, a source generating packets includes its latest tree incarnation in the packet header. In
order to guarantee tree consistency and at the same time ensure delivery of most packets, each ALMI
node maintains a small cache of recent multicast tree incarnations. Thus, an ALMI node simultaneously
keeps state about multiple trees, each with the corresponding list of adjacent nodes. The number of
cache entries is configurable. When receiving a packet with tree version contained in the cache, the
receiving node forwards it across the interfaces corresponding to this tree version. Packets with tree
versions not contained in the cache are discarded. On the other hand, if a member receives a data packet
with a newer tree version, it detects that its information is not up to date and therefore re-registers itself
with the controller to receive the new tree information.

2.3 Member Operation

Figure 3 shows a typical sequence of operations performed by a session member participating in an
ALMI tree.

One of the first tasks a session member has to perform is to locate the session controller. It is assumed
that initially, the session II), the controller’s address and port number are communicated or announced
to members through online or offline schemes, such as a URL, a directory service or an email message.
A session member is identified by its network address and port mumber, the combination of which will
subsequently be referred to as the member's address. Members register by sending a JOIN message to
the session controller. A member accepted to the group receives from the controller its member ID, as
well as the ID and address of its parent. The member then sends a GRAFT message to its parent and
in response obtains the data ports on which it receives and sends data.

Data distribution along the multicast session tree occurs on 2 hop by hop fashion. Depending on the
application, data transfer between two adjacent members can be reliable or unreliable by deploying TCP
or UDP, respectively. There are clear advantages in being able to use existing, widely deployed protocols:
first, it reduces system administration and configuration cost; and second, use of TCP and its associated
congestion mechanism offers hop-by-hop reliability and provides compatibility in sharing bandwidth with
regular flows. We stress that the last property is rather convenient since multicast congestion control
is an extremely hard problem especially for its deployment viability. Additionally, applying TCP on a
hop-by-hop basis implicitly creates back pressure for the source to slow down, resulting in end-to-end,
albeit simplistic, congestion management.

When TCP is used, a connection has to be established between two adjecent nodes with one end
initiating and the other end accepting the connection. Therefore, ALMI controller assigns parent and

Controller Child Parent

Join

Join ack

o
| grafi ack

update

Lidl
rejoin § New Farent

Join ack

graft

graft ack

Figure 3: ALMI Member Operation

child labels to two adjacent nodes: a TCP connection is always initialized in the direction from a child
to the parent. The parent-child relationship is also used in monitoring connectivity; if a child detects
failure of the connection to its parent, it considers itself disconnected from the graph and sends a REJOIN
message to the controller. On the other hand, if the parent detects a child connection failure, it simply
closes the connection. This relationship does not indicate directions of data flows, however, once the
multicast tree is formed, each member forwards data to all adjacent members, including all children and
the parent, except the one on which data is received.

As part of the evolving tree dynamics, a session member might be required to switch to a new
parent. Such an event can be initiated by either the controller (“push”) or the member (“pull”). In
the former case, the controller instructs the member to switch to a new parent because a substantially
better MST has been computed or a failure in the existing tree has been detected. In the latter case,
the member issues a AEJOIN message to the controller, repeating the steps as when joining an ALMI
group. REJOIN messages are issued when a member detects through the monitoring process that it’s
parent is not responding or receives a message directly from the parent informing it that the parent is
leaving the group. In all cases, determination of a new parent is made by the controller.

2.4 Multicast Tree Generation and Update

We now turn to the computation of the ALMI distribution tree. A session multicast tree is formed as
a virtual Minimum Spanning Tree that connects all members. The minimum spanning tree calculation
is performed at the session controller and results are communicated to all members in the form of
a (parent, children) list. Link costs are representative of an application specific performance metric
which is computed by members in a distributed fashion and reported to the controller. Our current
implementation uses the roundtrip delay, measured at the ALMI layer, as the performance metric. Each
group member calculates roundtrip delay as an ezponential weighted moving average to smooth jitters
in the measurements. We choose latency as metric because it is important to most applicaitons and
is relatively easy to monitor. However, some applications may find other metrics such as available
link bandwidth, more useful and better suited to match its performance measure. As an example,
a bandwidth intensive application may prefer a high bandwidth, high delay link to a low delay, low
bandwidth linlk to carry its traffic. Design and development of these type of tools to obtain more
sophisticated measurements helps ALMI to provide more flexible services and these tools can be easily
plugged in as a module to ALMI. Nevertheless such instrumentation in a wide area network is non-trivial

Old Parent Child New Parent Old Parent Child New Parent

87,
&7 (/7]

i fin D groft 0
windowof _ ¥ .| _ _ _ _--m

duplicate packels | data .
i 1 ;
? \ . . . window of . —+— ,‘——/ﬁ/’x
Ve B lost packets ._____”..__.\..i_;____
" . B + Sin act
requiest)

rc[mnsm
. Da!a_ /
Transfer - Daa
)) Transfer. . -

Figure 4: Member Operation during Tree Transitions

and it is beyond the scope of this paper to discuss these mechanisms. In the rest of this paper, we will
simply use delay as the default performance metric.

Neighbor monitoring graph

In order to obtain monitoring results, ALMI connects all group members into a monitoring graph.
Members send ping messages to measure round trip delay to its neighbors in the graph. For small
groups, it is possible to create a mash and have O(n?) message exchanges to compute the best multicast
tree. However, as group size grows, it becomes unscalable to have large number of message exchanges
since the monitoring process is periodic and continous through the whole multicast session. To reduce
confrol overhead, we limit the degree of each node in the graph, i.e. the number of neighbors monitored
by a member, to be constant so as to reduce the number of message exchanges to O(n). The consequent
spanner graph results in sub-optimal multicast tree since it does not have a complete view of all possible
paths and its set of edges may not be a super set of all edges in MST. Such sub-optimality is reduced,
however, by occasionally purging the currently known bad edges from the graph and updating it with
edges currently not in the graph. Over time, the graph converges to include all edges in the optimal
degree-bounded spanning tree. Likewise, in a dynamic environment, the graph updates to trace the
better set of edges and to produce a more favorable multicast tree.

Moulticast tree and its stability

Once members start to report monitoring results to their session controller, ALMI is able to improve
the multicast tree from its initial random tree.! As described above, an ALMI multicast tree is a degree-
bounded optimal spanning tree. Since most end hosts tend to be on access links rather than at network
core, it is desirable to confine the number of packet copies traversing through access links to be small,
i.e a small degree bound. On the other hand, if servers use ALMI to construct a multicast session and
they have access to high speed network, the degree bound can be correspondingly configured higher.

A more crutial issue is how to achieve stability of the multicast tree since a change of tree is associated
with operational cost such as GRAFT, GRAFT ACK and re-initiaton of the data connection. More over,
data packet may be Jost or duplicated during a tree transition, as shown in figure 4, and recovery process
can be expensive for it incurrs additional delay and data buffering at the application. Therefore, our
goal of improving the performance of multicast tree is only on a long term basis and any potential path
oscillations are prevented. The controller calculates the overall performance gain of the new multicast

!By default, the set of neighbors in the multicast tree is a subset of neighbors in the monitoring graph, so a re-computation
can only result in performance improvement.

tree and switches tree only if the overall gain exceeds a threshold. Both the frequency and threshold of
switching tree are user configurable parameters.

3 Design of Application Specific Components in ALMI

Previous sections presented the architecture of control and data planes in ALML One of the advantages
in ALMI is its ease of deploying value-added services for applications, such as end-to-end reliability,
data integrity and anthentication, and quality of service. A complete design of building blocks to fulfill
these requirements is outside the scope of this paper. This section discusses briefly design points in
supporting some of these components and in particular, we present our design and protocols for a
reliable data distribution service which we have recently implemented.

¢
Application

Mapping Tablc : : : T
sequence - Naming Interfac
| sou 8 Jnteriace :

FECOVER(STE,Seq)

.

resei(sre, seq)

Duata
Channel

detect{sre.sei)
recvinack, ack, rdata}

Figure 5: ALMI Error Control and Naming Architecutre

3.1 End to End Data Reliability

Content distribution applications typically require data consistency and reliability. TCP has successfully
satisfied these requirements for unicast connectivity; a TCP-equivalent reliable transport protocol for
multicast communication has been the subject of active research in recent years [11]. In an ALMI
multicast group, the end-to-end reliability problem still exists; however, the cause of the problems
differs greatly from that over IP multicast. In ALMI, unicast TCP connections provide data reliability
on a hop-by-hop basis, which implies that packet losses due to network congestion and transmission
errors are eliminated. Instead, the main reason for packet losses in ALMI are due to multicast tree
transitions, fransient network link failures, or node failures.

In ALMI, implosion and exposure control happens naturally, it efficiently aggregate requests and
retransmit data without the need for router support as in [18, 12] or knowledge of session topology as
in [13]. Upon loss detection, a session member sends a request onto the interface where data is received
from. Requests are then aggregated at each hop so that only one of them escapes the loss subtree. When
applications can buffer data or regenerate data from disk, retransmission can happen locally. In this case,
the node above the lossy link will retransmit data to the requesting subtree. Otherwise, when upstream
node has reset its application naming states(explained below} and can no longer retransmit data locally,
a NODATA packet is sent back to the requestor, i.e. the head of the loss subtree. The requestor
then initiates an out-of-band connection directly to the source, and subsequent request and retransmit
are conducted over this out-of-band connection. In both local and out-of-band retransmission, upon

receiving retransmitted packets, requestor forwards them to downstream requestors. The out-of-band
connection is teared down after fufilling the request. The choice of out-of-band request versus relaying
request and retransmissions hop-by-hop is due to ALMI’s loss characteristics: they are infrequent but
usually happen in bulk. Typically, once a node loses its connection, it takes about 3 round trip time to
re-connect to the multicast tree and detect packet losses. Although relaying request all the way up to
the source can sometime aggregate more independent loss requests at higher up the tree, it adds per-
hop processing and transmission delay for each request and retransmission packet, and also disrupts the
normal data distribution process. On the contrary, an out-of-band connection seperates data distribution
from retransmissions and have much less processing delay.

Additionally, ALMI also deploys ACKs to synchronize data reception states at members. This is
necessary for applications that require total reliability but have limited buffer space. Before resetting
their buffers, members need to ensure all packets in buffer are correctly received by all members. An
ACK is a list of <source, sequence number> pairs, where sequence number is the highest contiguous
sequence number received locally from a data source. Initiated from leaf nodes, ACKs are sent upstream
towards the root. At each intermediate node, once a member received ACKs from all its children, it
forwards upstream an ACK containing the minimum of sequence numbers for each source. When the
ACK reaches root, it is multicasted back downstream and reset every nodes’ state to their common
minimum. A member is then free to clear up all packet buffers with sequence mumber less than the
minimum. The frequency of the ACK process depends on both the data rate and the smallest buffer
space at a member application.

3.2 Data Naming

An important question related to error recovery is that of date naming. Applications and ALMI require
a commonly understood naming convention so that they can communicate which data is requested.
Since losses in ALMI group are more likely to occur in batches over dispersed time intervals rather
than isolated packets on regular time intervals, sequence numbers as used by TCP, are insufficient to
specify a member’s data reception state and could hinder a members’ ability to request and retransmit
data efficiently. Furthermore, an application may decide to ignore certain packets, for example, packets
containing out-of-date information, and only recover others. A data naming component is thus more
desirable since it allows flexibility in tailoring application reliability semantics.

In ALMD’s data naming interface, an application can specify the mapping between its application
date units and ALMI packet sequence numbers. An ADU is solely defined by application protocol,
for example, for some database applications, it can be an object ID; or for a ftp application, a tuple
containing <file name, offset, length>. Other more sophisticated mechanisms such as hierarchical data
naming schemes [16, 5] can be incorporated as well, to achieve better flexibility and efficiency.

3.3 Other Components

There are many other functionalities that could be incorporated into ALMI, such as delay constraints
for real-time sessions, access control for private multicast sessions and etc. In ALMI, an application
delay bounds can be achieved by constraining the diameter of the computer MST tree. Similarly, the
multicast tree can be computed with constraints on the degree of session members, in order to achieve
better load balancing. Regarding access control, the session controller is naturally capable of controlling
which members are allowed to join; furthermore, the controller can act as a key distribution center,
distributing symmetric keys to encrypt the data, as well as certificates and signed public keys that
should be used for data authentication. We are currently underway adding these components to ALMI.

4 Simulation Analysis of ALMI Multicast Tree Efficiency

While ALMI achieves group communication without relying on network layer multicast support and
reduces the control load assoclated with group set-up and maintainance, it is bound to exhibit lower
transmission efficiency since nodes on the distribution tree have to be ALMI capable and, thus currently
confined to end hosts. Moreover, packet processing and forwarding at the application layer typically
incurs higher delay when compared to router processing at the IP layer. In this section we investigate
the extend of these ALMI performance constraints by conducting experiments which compare ALMI to
IP multicast. Results obtained provide insight onto the trade-offs associated with ALMI and allow us
to decide the applicability of ALMI for specific applications and deployment settings.

We examine the relative cost of an ALMI tree to those of source-rooted shortest path multicast trees
as well the cost of a mesh of unicast connections which would have to be used in the absence of any
multicast support. Trees are generated and costs computed over a set of random graphs with a variable
number of multicast group members. The algorithms for generating random graphs are similar to those
in [21], where a connected graph is generated with a specified edge connectivity probability.

In comparing the cost of an ALMI multicast tree to that of source-rooted shortest path multicast
trees we note that since ALMI constructs a shared multicast tree, the cost of distributing data is the
same independently of the location of the sender(s). However, this property does not hold for source-
rooted trees, in which data originating at different nodes will traverse paths of differing cost to reach all
group members. Therefore, to achieve a meaningful comparison, the cost of an ALMI multicast tree is
compared with the average cost of all shortest path trees rooted at each group member.

As mentioned in Section 2, ALMI provides a mechanism to further reduce control traffic load by
allowing members to collect delay measurements to only a subset of other group members. Obviously,
performing the MST calculation on a (connected) subgraph results in a sub-optimal ALMI distribution
tree. In this section, we analyze quantitatively the impact of this mechanism in terms of how much it
increases the cost of the actual ALMI multicast tree. The cost of an ALMI tree is defined to be the sum
of delays on each link of the shared multicast tree; all link delays are assumed to be symmetric.

Random Graph (500 nodes, p = 0.01)

400 T y T 55 T Ty T

% 350 [HG—E Avg. Shortast Path Tree - 50]
8 K-—¥e ALM| MST
e - ALMI Sparse MST (10%

T 300 = — Unicast J 45 E -
o (—0 Avg. Shortest Path Tree

+ F—4 ALME MST

2 a50 | 4 a0l < ALMI Sparse MST (10%] |
o -~ Unicast

(D B

. i Py ..
E’ 200 |- 35 P "‘)}

< Y
= T e e, .

8 160 - 480 | ‘ - Y
o L 3 T
= 100 - e 4 25 bneo o O—e—B—BH—a
2 s} 20 L 4
0] L 1 Pl 15 I | L I
] 100 200 300 400 1 10 100 1000
Group Size Leaf Link Cost Scale

Figure 6: Cost Comparison of ALMI MST and Shortest Path Tree in Random Graph

10

Transit-Stub Graph (~ 6000 nodes, 9000 edges

400 ¥ T . T 55 . T ety
% 850 @9 Avg. Shorlest Path Tree 4 50 J
8 *e—i ALMI MST
- ¢ ALMI Sparse MST (10%
® 300 |{ — Unicast = 45 -
0. O—©O Avg. Shortest Path Tree
@ X% ALMI MST
g 250 + - 40 F <~ ALMI Sparse MST (10%} _
2 Unicast
%]
9 200 - 4 85 L g T 1
Z T,
~ W,
W 150 -4 30 | e
8 *: kd ‘—-‘*—_,*__—\
=~ 100 25 F .
|._
f_g 4 L
F 50k 20 4 .
0 1 13 1 i " 15 1 L PRI | 1.
1} 100 200 300 400 1 10 100 1000

Group Size Leaf Link Cost Scale

Figure 7: Cost Comparison of ALMI MST and Shortest Path Tree in Transit-Stub Graph

Figures 6 and 7 depict multicast tree cost in a random graph and a transit-stub graph, respectively.
Each data point is derived by averaging over the results of 10 graphs. Random graphs in Figure 6 consist
of 500 nodes with an average node degree of 5, and transit-stub graphs in Figure 7 consist of about 6000
nodes, with an average node degree of 3. More details about the formation of transit-stub graphs can
be found in [21]. Link costs are uniformly distributed in the interval [0, 1].

In both figures, the x-axis of the graph on the left depicts multicast group size; groups of variable
size are formed by selecting a random subset of network nodes as group members. It is assumed that
every network node can be co-located with a host. The graphs on the left plot the average cost of all
source-rooted trees, one for each multicast group node, the ALMI MST cost and the cost of a mesh of
O(n®) unicast connections among all group members. We also compute the cost of an ALMI multicast
tree calculated from incomplete information, denoted as *ALMI sparse MST”. This tree corresponds to
the case where every ALMI node monitors the delay to just 10% of the total number of group nodes.

We first concentrate on the results depicted in the left graphs of figures 6 and 7. It is interesting to
observe that for the random graph, at all group sizes the ALMI MST cost is smaller than the average
source-based tree cost. This is essentially due to the fact that an ALMI multicast tree is an MST tree;
optimal source based trees are computed based on information local to each node and, therefore, are
not globally optimal. On the other hand, in a transit-stub graph, the ALMI multicast tree is about
20% more expensive. This difference is due to the distinct characteristics of the two types of graphs.
Since an ALMI multicast tree consists of a collection of unicast paths between hosts, some network links
will be typically traversed multiple times. In a transit-stub graph, since hosts reside in stub networks,
the links between transit domains and stub domains will most certainly be traversed multiple times,
whereas in the random graph topology, since hosts are co-located with network nodes and uniformly
distributed throughout the graph, the number of such links are fewer, hence lowering the cost of the
ALMI multicast tree. Finally, as expected, the ALMI sparse MST has a higher total cost since it is
derived using a subset of link metrics. Still, the cost difference in all cases is within 50%, which could
be considered a reasonable price to pay for a 90% reduction in performance monitoring traffic.

11

Thus far, we have assumed that all network links have equal cost and that hosts are co-located with
network nodes; in other words host are attached to the network with zero cost. In practice, however,
this assumption might not be accurate; typically “last mile” links have lower bandwidth and thus result
in higher delays and MST costs. Higher “last mile” costs could adversely impact ALMI, since all data
flows in and out of non-leaf nodes in the ALMI tree at least twice and hence, the cost of link connecting
hosts to a network aggregation point will contribute more to the total tree cost. In the right side graphs
of Figure 6 and 7, we plot tree costs against the cost of the “last-mile” links. We include the same
comparisons; ALMI MST, ALMI “sparse MST”, average of all shortest path trees and meshed unicast
connections. In this simulation, multicast group size is fixed to 50 and the “last-mile” link cost is
uniformly distributed between 0 and scale, shown on the x-axis.

The results demonstrate that, even for a moderate group size of 50 members, the benefit of ALMI
over pure unicast is still significant, reducing tree cost to only half. Furthermore, it is observed that as
the cost of “last-mile” links increases, ALMI multicast tree cost decreases and approaches the cost of
the average shortest path tree. This is due to the fact that MST calculation results in a tree which tends
to prefer inclusion of low-cost links. This is similar to the behavior that would be observed if servers
were deployed in the network to help relay data to other parts of the network. Overall, the simulation
clearly shows the advantage of an ALMI multicast tree over O(n?) unicast connections. The fact that
ALMI is almost as efficient as the shortest path trees even in the presence of incomplete measurements,
argues that it is a rather attractive solution for many multicast applications.

In this simulation, we have focused on comparison of ALMI multicast tree with source-rooted
shortest path trees. Compliment to SPTs, shared multicast tree, as constructed from CBT [1] and
PIM-SM [7] optimizes the total cost of the multicast tree. Although it is known that finding the optimal
center for the multicast group is an NP-complete problem, there are heuristic placement strategies to
select one of the group member or network node to be the core. In {20}, it shows that a resulting shared
multicast tree from a feasible heuristic method has an average cost of 95% of the cost of shortest path
tree for a varied number of group sizes, average node degree and different node distributions. Therefore,
we infer that the cost difference between ALMI multicast tree and CBT or PIM-SM will be comparably
small as well.

5 Experimental Evaluation of ALMI

We have implemented ALMI as a Java-based middleware package using JDK1.2 [19]. In the next two
experiment sets, we evaluate the performance of an actual operational group of ALMI nodes over sither
a WAN or a LAN. These two scenarios have fundamental differences; in a LAN environment most of
the delay between two ALMI nodes is due to host processing while over a wide area network, delay is
mostly due to transmission, propagation and queuning delay over the network.

5.1 Experiment Over WAN

Over a wide area network, ALMI has to cope with the dynamics of network paths, such as distortion of
delay measurements and transient link failures. ALMI needs to prevent the multicast tree from diverging
from an efficient construction. To demonstrate that ALMI is able to achieve a cost-efficient tree, we
have conducted experiments over 9 sites scattered in both US and Europe. Figure 8 shows an example
topology during the experiment. Link delays is measured from traceroute output.

The experiment was run as follows. We started ALMI at all 9 sites and configured the ALMI
controller to re-calculate the multicast tree every 5 minutes. Simultaneocusly, we run traceroute from
each site to every other site periodically, every 5 minutes. The output from traceroute provides us with
a benchmark of the network delay experienced between nodes during our experiment. We then compare
the total delay of an MST computed from the tracercute measurements to that of the ALMI multicast
tree computed by the ALMI controller. For this experiment, we used the traceroute measured delay as

12

198.81.209.246

193.55.114.63

131.179.96.19

128.252.153.149
\3 ms

128.125.3.175
66 ms 128.252.169.100

66 ms

34 ms

142 ms :
/E29.132.66.33

]

130.207.8.68

‘NS m&

132.239.17.113

Figure 8: Example WAN Topology (Path delay measured from traceroute)

1500 T 1 T

G—EMST from Tracemute
[1 s—x ALMI M5T

1000 i

500

Total Delay of Multicast Tree (ms)

0
10 20 30 40 50
Time (unit = 10 minutes)

Figure 9: Evaluation of ALMI MST in WAN Test

the ALMI tree link cost in order to achieve a fair comparison. In other words, the comparison reflects
only the difference of tree composition, excluding the distortion caused by delay measurements at the
application level.

Figure 9 shows the result of a six hour test run of a single multicast session. Initially, the cost of ALMI
multicast tree is very high, since the ALMI controller does not have a priori topological knowledge about
group menmbers and randomly connects members to each other at the beginning of the session. However,
the ALMI tree cost was quickly brought down at the next re-calculation of the tree and stays close to
the real MST cost, as the controller periodically gathers measurement reports from group members and
updates the ALMI MST. There are two spikes in the ALMI MST, at time units 22 and 36 respectively.
Analyzing the traces, we found that both points are caused by transient network failures. In the first
case, one of a pair of two nodes, who are very close to each other, detects the other end as unreachable
and connects to a much higher cost neighbor. In the second case, one node experiences temporary
network failure and is timed out at the controller. The network recovers after approximately 15 minutes
and the node re-joins the group but is randomly assigned a new parent. The presence of a new member,

13

either at the session beginning or during the session, always introduces sub-optimality of the tree since
they are randomly connected to the rest of the ALMI multicast tree. A more intelligent controller may
be able to use one of the Internet services such as in [9, 17, 14] to estimate the topological information
of a new member and initialize its connection more efficiently. We conclude from this experiment that
ALMI is able to use application perceived delay to construct an efficient multicast distribution tree in a
highly dynamic network environment.

5.2 Experiment Over LAN

In this experiment, we test a scenario where network bandwidth is higher than what end-systems can
consume, and test the forwarding processing delay caused by ALMI processing. We used a Sun Ultra-1
attached to a 10Mb/s ethernet network as a source sending data to several Pentium IIT - class PCs
connected over a 100 Mb/s Lan. We vary the number of intermediate data relaying hops and measure
the throughput at the last hop. In this experiment, we use TCP connection between nodes and confine
the controller to connect members as a chain in order to capture the effect of ALMI member node
forwarding.

packet size | Zero Hop (KB/S) | One Hop (KB/S) | Two Hops (KB/S)

64 156.83 154.83 153.994

128 278.57 206.98 190.56

256 489.26 439.19 422.69

512 657.81 642.83 609.13
1024 752.47 732.85 769.74
2048 800.55 797.33 788.63
4096 813.84 813.18 336.82

Table 1: Experiment of ALMI forwarding delay in end systems

From Table 1, we observe that the throughput achieved in all cases remains stable regardless of
the number of intermediate hops. This shows that ALMI processing delay does not increase with the
higher number of data relaying hops. From a scalability point of view, this means that the overall TCP
throughput achieved in a session is decided by the slowest network path or intermediate hop, but is not
affected by the aggregation of bottlenecks if there are multiple. On the other hand, if we look at Table 1
vertically, we see that the processing delay associated with each packet is relatively high, especially for
small size packets. This is due to the fact that the Java virtual machine is still comparably slow even in
the presence of JIT. However, we believe this gap will be reduced in the near future with the advances
of better compilers and faster CPUs.

6 Related Work

Challenging the conventional wisdom of IP multicast, ALMI explores an alternative architecture to apply
multicast paradigm in the current Internet. There are two closely related projects emerging indepen-
dently at the same time which have very similar objectives as ALMI does. Yallcast [8], aims to extend
the Internet multicast architecture and defines a set of protocol for host-based content distribution either
through tunneled unicast connections or IP multicast wherever available. It uses a rendezvous host to
bootstrap group members into the multicast tree. The functionality of the rendesvous host is similar to
ALMT’s group controller, it is only used to inform new members about several current members in the
tree and is not connected to the multicast data paths. Yallcast creates a shared multicast tree using a
distributed routing protocol. It also maintains a mesh topology among group members to ensure that

14

the multicast group is not partitioned. Overall, Yallcast envisions the deployment of IP multicast into
small and disjunct network islands and provides a rudimentary architecture for global multicast. In
contrast to Yallcast, Endsystem Multicast [4] is more similar to ALMI in aiming towards small and
sparse group communication applications. In Endsystem Multicast, group members are self-organized
into multicast trees using a DVMRP [6] like routing protocol and creates source-based multicast tress.
It require members to periodically broadcast refresh messages to keep the multicast tree partition free.
A companion protocol of Endsystem Multicast is called Narada, which focuses on optimizing the effi-
ciency of the overlay, in terms of delay bounds, based on end-to-end measurements. Both Yallcast and
Endsystem Multicast are still in their initial evaluation stage and at this point, we are not aware of
any performance reports. Although, Yallcast and Endsystem Multicast have their end goals align with
those of ALMI, the tree construction algorithms are very different in all three protocols. Both Yallcast
and Endsystem Multicast try to leverage the existing multicast routing protocols and re-apply them
at the application level. However, we argue that one of the fundamental complexities comes with IP
multicast is its complication in routing protocols. Although, at the application level, such complexity
can be greatly reduced, due to the number of nodes involved is much fewer than the number of routers
all over the Internet, a fully distributed algorithm may still cause excessive control overheads and incur
reliability problems, which are the same problems as existed in current multicast routing protocols. A
centralized control protocol as the one in ALMI, with careful design of redundancy, can simplify the
matter greatly and provides a more reliable mechanism to prevent tree partitions and routing loops.

There are other relevant projects that also deploy multicast at the application level, with more em-
phasis on each specific applications. RMX [3] is a project that installs multicast proxies to connect
islands of IP multicast with co-located homogeneous receivers. Besides relaying data, an RMX proxy
also adapts to the heterogeneous environment using detailed application knowledge. For example, an
RMX proxy can act as a transcoder to accommodate the low bandwidth receivers. The tree configuration
among RMX proxies are static right now and there is no self-configuration and adaptation aspects of
the multicast overlay as of this writing. AMRoute [2] is a protocol for host-based multicast over mobile
wireless networks. It assumes the existence of an underlying broadcast mechanism for configuration
purposes. AMRoute continuously creates a mesh of bidirectional tunnels between a pair of group mem-
bers. Additionally, each multicast group has a core node which is responsible for the initial signaling
and tree creation. The AMRoute core uses a source routing approach, where source is the core node
itself, and selects a subset of the available virtual mesh links to form a multicast distribution tree. The
core can also migrate dynamically according to group membership and network connectivity. Both of
these projects bear similarities to ALMI, yet ALMI is defined as a more general infrastructure for a wide
range of applications rather than for a specific application or environment.

7 Conclusions and Future Work

"This paper presented ALMI, an application level multicast infrastructure, that has been designed and
build to provide a solution for multi-sender multicast communication which scales to a large number of
communication groups with small number of members, and does not depend on multicast support at the
IP layer. This solution provides a multicast middleware which is implemented above the sockets layer.
Application level multicast offers accelerated deployment, simplified configuration and better access
control at the cost of small additional traffic load in the network. Simulation results, along with initial
experimentation results indicate that the performance tradeoff is quite small and that ALMI multicast
trees are close to the efficiency of IP multicast trees. Since application level multicast is implemented
in the user space, it allows more flexibility in customizing some application related modules, e.g. data
transcoding, error recovery, flow control, scheduling, differentiated message handling and security.

We plan to extend this work in multiple ways. We are enhancing the performance evaluation work
to include experiments with a larger number of nodes, as well as integrating with real life applications so
that, besides control, data performance characteristics can be studied in detail. In addition, we plan to

15

implement and study in more detail application specific modules such as end-to-end reliability, naming
and security. In terms of speeding the performance of our middleware, we will explore options of moving
parts of the forwarding functionality to an OS kernel and defining an interface between ALMI and the
QS specific parts.

8 Acknowledgment

Our sincere thanks to the following people for their generosity of letting us use their computing resources
for conducting our experiments: Ernst Biersack of Eurecom, France; Andreas Festag of TU Berlin, Ger-
many; Aiguo Fei of University of California, Los Angeles; Ralph Keller of ETH Zurich; Manamohan
Mysore of University of California, San Diego; Christos Papadopoulos of University of Southern Califor-
nia; Injong Rhee of North Carolina State University; Ellen Zegura and Peter Wan of Georgia Institute
of Technology. Without their help, this work would never have been completed.

References

[1] A. Ballardie. Core Based Trees (CBT version 2) Multicast Routing - Protocol Specification. RFC
2189, 1997.

[2] E. Bommaiah, L Mingyan, A. Mcauley, and R. Talpade. Amroute: Adhoc multicast routing proto-
col. Internet Draft, August 1998.

[3] Y. Chawathe, S. McCanne, and E. Brewer. RMX: Reliable Multicast in Heterogeneous Networks.
In Proc. IEEE INFOCOM 2000, Tel Aviv, Israel, March 2000.

[4] Y. Chu, S. Rao, and H. Zhang. A Case For EndSystem Multicast. Internet End-to-End Research
Meeting, June 1999,

(5] J. Crowcroft, Z. Wang, A. Gosh, and C. Diot. RMFP: A Reliable Multicast Framing Protocol.
Internet Draft, March 1997.

[6] Distance Vector Multicast Routing Protocol - DVMRP. RFC 1812.

(7] D. Estrin, V. Jacobson, D. Farinacci, L. Wei, 8. Deering, M. Handley, D. Thaler, C. Liu, Sharma
P., and A. Helmy. Protocol Independent Multicast-Sparse Mode (PIM-SM): Motivation and Archi-
tecture. Internet Engineering Task Force, August 1998.

[8] P. Francis. Yallcast: Extending the Internet Multicast Architecture. http://www.yallcast.com,
September 1999.

[9] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. Gryniewicz, and Y. Jin. An Architecture for a Global
Internet Host Distance Estimation Service. In Proc. IEEE INFOCOM, 1999.

[10] H. Holbrook and D. Cheriton. IP Multicast Channels: EXPRESS Support for Large-scale Single
Source Applications. In Proc. ACM SIGCOMM, Boston, MA, September 1999.

[11] Katia Obraczka. Multicast Transport Mechanisms: A Survey and Taxonomy. In IEEE Communi-
cations Magazine, January 1998.

[12] C. Papadopoulos, G. Parulkar, and G. Varghese. An Error Control Scheme for Large-Scale Multicast
Applications. In Proc. IEEE INFOCOM, 1898.

(13] S. Paul, K. K. Sabnani, J. Lin, and S. Bhattacharyya. Reliable Multicast Transport Protocol
(RMTP). In Proc. IEEE INFOCOM, 1996.

[14] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An Architecture for Large-Scale Internet
Measurement. IEEE Communicetions, pages 48-54, August 1998.

16

[15] R. Perlman, C. Lee, A. Ballardie, J. Crowcroft, Z. Wang, T. Maufer, C. Diot, J. Thoo, and M. Green.
Simple Multicast: A Design for Simple, Low-Overhead Multicast. IETF draft, draft-perlman-
simple-multicast-03.txt, October 1999,

[16] S. Raman and S. McCanne. Scalable Data Naming for Application Level Framing in Reliable
Multicast. In Proc. ACM Multimedia ’98, Bristol, UK, September 1998.

[17] S. Seshan, M. Stemm, and R. Katz. SPAND: Shared Passive Network Performance Discovery. In
Proc 1st Useniz Symposium on Internet Technologies and Systems (USITS ’97), Monterey, CA,
December 1997.

(18] T. Speakman, D. Farinacci, S. Lin, and A. Tweekly. PGM Reliable Transport Protocol. Internet
Draft, August 1998.

[19] JavaT™ 2 Platform. http://www.javasoft.com.
[20] L. Wei and D. Estrin. The Trade-offs of Multicast Trees and Algorithms. In Proc. of ICSN, 1994.

[21] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an Internetwork. In Proc. IEEE
INFOCOM, San Francisco, CA, 1996.

17

	ALMI: An Application Level Multicast Infrastructure
	Recommended Citation
	ALMI: An Application Level Multicast Infrastructure

	tmp.1439924045.pdf.L8J4D

