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1. Introduction

Contact metric manifolds with Riemannian metrics have been investigated by many
authors. In particular, Blair obtained complete and detailed results on this topic [1]. Contact
pseudo-Riemannian structures (η, g) are inherently generalizations of contact metric struc-
tures, where η is a contact one-form and g is a pseudo-Riemannian metric equipped with it.
Takahashi first investigated contact metric structures with associated pseudo-Riemannian
metric in Sasakian manifolds [2]. Calvaruso and Perrone introduced a systematic study
of contact structures with associated pseudo-Riemannian metrics [3]. The relevance of
the physics of contact pseudo-Riemannian structures was indicated in [4–7]. With the
help of the contact pseudo-Riemannian structure mentioned in [7], it may provide more
insight into the geometry of spacetime needed for physical problems in relativity. In recent
years, some authors have studied almost contact pseudo-Riemannian manifolds [8–11].
We should remember that the primary source and the greatest motivation for researchers
working on pseudo-Riemannian space is O’Neill’s book [12].

The class of almost contact metric manifolds, Kenmotsu manifolds, was first intro-
duced by Kenmotsu [13]. The Kenmotsu structure (φ, ξ, η, g) is normal and, in general,
these structures are not Sasakian. Kenmotsu manifolds can be characterized through
their Levi-Civita connection. Kenmotsu defined a structure closely related to the warped
product which was characterized by tensor equations. A Kenmotsu manifold M of di-
mension (2n + 1) is identified with a warped product space M = (−ε,+ε)× f M1

2n such
that (−ε,+ε) is an open interval, M1

2n is a Kaehler manifold, c is a positive constant, and
f (t) = cet. Given an almost Kenmotsu structure, an almost α-Kenmotsu structure can be
obtained using the following homothetic deformation:

η*=
(

1
α

)
η, ξ*=αξ, φ*=φ, g*=

(
1
α2

)
g
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where α is a non-zero real constant. It is important to note that almost α-Kenmotsu
structures are related to some special local conformal deformations of almost cosymplectic
structures [14].

On the other hand, a systematic study of almost α-Kenmotsu pseudo-Riemannian
manifolds has not been undertaken yet. In [11], Wang and Liu introduced the geometry of
almost Kenmotsu pseudo-Riemannian manifolds. The authors emphasized the analogies
and differences connected with the Riemannian metric tensor and obtained certain classifi-
cation results related to local symmetry and nullity condition. Besides, the authors studied
locally symmetric almost Kenmotsu manifolds of dimension (2n + 1) (n > 1) with CR-
integrable structure [15]. These structures are locally isometric to either the hyperbolic space
of constant sectional curvature -1 or the Riemannian product of an (n + 1)-dimensional
manifold of constant sectional curvature -4 and a flat n-dimensional manifold.

Kenmotsu pseudo-Riemannian manifolds were investigated by Naik et al. [8]. In par-
ticular, the authors established necessary and sufficient conditions for Kenmotsu pseudo-
Riemannian manifolds satisfying certain tensor conditions. Furthermore, Öztürk et al.
studied α-Kenmotsu pseudo-Riemannian manifolds satisfying conformally flat conditions
and the tensor conditions such as local symmetry, local φ-symmetry, global φ-symmetry,
and semi-symmetry [16]. Then, the authors obtained some results related to the Ein-
stein, η-Einstein manifolds, ξ-sectional, and φ-sectional curvatures on α-Kenmotsu pseudo-
Riemannian structures [9]. After these studies, the η-parallelity of the tensor fields h and
φh were investigated by the authors. They obtained some results with η-parallelity and
η-cyclic parallelity of the torsion tensor τ, as well as the deformation of almost α-Kenmotsu
pseudo-Riemannian structure [17].

The article is organized as follows. In Section 2, we focus on the concept of almost
α-Kenmotsu pseudo-Riemannian manifold. We shall describe the basic formulas of almost
α-Kenmotsu pseudo-Riemannian manifolds. In Section 3, we shall obtain some results on
CR-integrable almost α-Kenmotsu pseudo-Riemannian manifolds. Finally, we give some
illustrative examples of almost α-Kenmotsu pseudo-Riemannian manifold.

2. Materials and Methods

Let M be a (2n + 1)-dimensional smooth manifold endowed with a triple (φ, ξ, η).
Here, φ is a type of (1,1)-tensor field, ξ is a vector field, and η is a one-form on M which
defines [1].

η(ξ) = 1, φ2 = −I + η ⊗ ξ (1)

φξ = 0, η ◦ φ = 0, rankφ = 2n (2)

A pseudo-Riemannian metric g on M is said to be compatible with the almost contact
structure (φ, ξ, η) if:

g(φX, φY) = g(X, Y)− εη(X)η(Y) (3)

where η(X) = εg(X, ξ), g(ξ, ξ) = ε, and ε = ±1 [11].
On such a manifold, the fundamental 2-form Φ of M is defined by Φ(X, Y) = g(X, φY)

for any vector fields X, Y on M. An almost contact pseudo-Riemannian manifold with
structure (φ, ξ, η, g) is considered, such that:

dη = 0, dΦ = 2α(η ∧Φ) (4)

is said to be an almost α-Kenmotsu pseudo-Riemannian manifold for α 6= 0, α ∈ R [17].
The identically vanishing of the following tensor defined by:

Nφ = [φ, φ] + 2dη ⊗ ξ (5)

which expresses the normality of almost contact metric structure, where [φ, φ] is the Ni-
jenhuis tensor of φ [18]. We notice that an α-Kenmotsu manifold is a normal almost
α-Kenmotsu pseudo-Riemannian manifold M with ε = +1, and the metric g is Riemannian.
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When an almost α-Kenmotsu pseudo-Riemannian manifold M has a normal almost contact
structure, we can say that M is an α-Kenmotsu pseudo-Riemannian manifold [11].

Throughout the paper, we shall denote by Γ(TM), ∇, and D the Lie algebra of all
tangent vector fields on M, the Levi Civita connection of pseudo-Riemannian metric g, and
the distribution orthogonal to ξ called the contact distribution, that is,

D = Ker(η) = {X : η(X) = 0} (6)

respectively. dη = 0, D is integrable and the (2n)-dimensional distribution is given by
φ(D) = D. Let N be a maximal integral submanifold of D. So, the vector field ξ restricted
to integral submanifold N is the normal vector of N. Hence, there exists a Hermitian
structure and φ induces an almost complex structure J

(
J2 = −I

)
on M by JX̃ = φX̃ for

any vector field X̃ tangent to N. Let G be the pseudo-Riemannian metric induced on
N defined by G

(
X̃, Ỹ

)
= g

(
X̃, Ỹ

)
. Then, (J, G) becomes an almost Hermitian structure

on N such that G
(

X̃, Ỹ
)
= G

(
JX̃, JỸ

)
for any vector fields X̃ and Ỹ tangent to N. The

fundamental 2-form Ω, Ω
(

X̃, Ỹ
)
= G

(
X̃, J̃Y

)
of (J, G) is induced on N. Additionally, we

have
(

X̃, Ỹ
)
= Φ(X, Y), i.e., Ω is the pull-back of the tensor field φ from M to N. Then,

Ω is closed, i.e., dΩ = 0. So, the pair (J, G) is an almost Kaehler structure on N of D. When
the structure J is complex, (J, G) becomes a Kaehler structure on N. Suppose the structure
(J, G) is Kaehler on every integral submanifold of the distribution D. In that case, this
manifold is said to be an almost α-Kenmotsu pseudo-Riemannian manifold with Kaehler
integral submanifold or a CR-integrable almost α-Kenmotsu pseudo-Riemannian manifold.

Proposition 1 [18]. Let M be an almost contact metric manifold and ∇ be the Riemannian
connection. Then, we have:

(∇XΦ)(Y, Z) = g(Y, (∇Xφ)Z) (7)

(∇Xη)Y = g(Y,∇Xξ) = (∇XΦ)(ξ, φY) (8)

(∇XΦ)(Y, Z) + (∇XΦ)(φY, φZ) = η(Z)(∇Xη)φY− η(Y)(∇Xη)φZ (9)

2dη(X, Y) = (∇Xη)Y− (∇Yη)X (10)

3dΦ(X, Y, Z) = ⊕X,Y,Z(∇XΦ)(Y, Z) (11)

Here, ⊕X,Y,Z denotes the cyclic sum over the vector fields X, Y and Z.

Lemma 1 [11]. Let M be an almost contact pseudo-Riemannian manifold. Then, the following
equation holds:

2g((∇Xφ)Y, Z) = 3dΦ(X, φY, φZ)− 3dΦ(X, Y, Z)
+g
(

N(0)(Y, Z), φX
)
+ εN(1)(Y, Z)η(X)

+2εdη(φY, X)η(Z)− 2εdη(φZ, X)η(Y)
(12)

for any X, Y, Z ∈ Γ(TM), where N(0), N(1) is defined by:

N(0)(X, Y) = Nφ(X, Y) + 2dη(X, Y)ξ (13)

and
N(1)(X, Y) =

(
LφXη

)
Y−

(
LφYη

)
X (14)

respectively. Here, LX denotes the Lie derivative in the direction of X.
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Proposition 2 [17]. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold. Then, we have:

h(X) =
1
2
(

Lξφ
)
X, h(ξ) = 0 (15)

∇Xξ = −αφ2X− φhX (16)

∇ξ ξ = 0, ∇ξ φ = 0 (17)

(φ ◦ h)X = −(h ◦ φ)X (18)

(∇Xη)Y = α[εg(X, Y)− η(X)η(Y)] + εg(ϕY, hX) (19)

for any X, Y, Z ∈ Γ(TM).

Proposition 3. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold. For any X, Y, Z ∈
Γ(TM), we have:

2g((∇Xφ)Y, Z) = −2gα(εg(X, φY)ξ + η(Y)φX, Z)
+g
(

N(0)(Y, Z), φX
) (20)

Proof. By the help of N(1), it follows that:

N(1)(Y, Z) = 2dη(φY, Z)− 2dη(φZ, Y) (21)

From (12) and (21), it is easy to obtain:

2g((∇Xφ)Y, Z) = 3dΦ(X, φY, φZ)− 3dΦ(X, Y, Z)+g
(

N(0)(Y, Z), φX
)

(22)

Thus, make use of (22) and the definition of almost α-Kenmotsu pseudo-Riemannian
manifold, then the proof follows from (7) and (8). �

Proposition 4 [17]. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold. Then, we have:

R(X, Y)ξ = α2[η(X)Y− η(Y)X]− α[η(X)φhY− η(Y)φhX]+(∇Yφh)X− (∇Xφh)Y (23)

for any X, Y ∈ Γ(TM).

Proposition 5. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold. Then, the curvature
conditions are as follows:

R(X, ξ)ξ = α2φ2X + 2αφhX− h2X + φ
(
∇ξ h

)
X (24)(

∇ξ h
)
X = −φR(X, ξ)ξ − α2φX− 2αhX− φh2X (25)

R(X, ξ)ξ − φR(φX, ξ)ξ = 2
[
α2φ2X− h2X

]
(26)

S(X, ξ) = −2nα2η(X)− (div(φh))X (27)

S(ξ, ξ) = −
[
2nα2 + tr

(
h2
)]

(28)

divξ = 2αn, divη = −2αnε. (29)

Proof. By the hypothesis, using (23) with Y = ξ and considering the following equations,(
∇ξ φh

)
X = φ

(
∇ξ h

)
, (∇Xφh)ξ = h2X− φhX (30)
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we obtain (24). Applying φ to (24) and remarking that g
((
∇ξ h

)
X, ξ

)
= 0, we obtain (25).

Additionally, by the help of (24) for φX, we have:

R(φX, ξ)ξ = −α2φX− 2αφ2hX− φh2X + φ
(
∇ξ h

)
(φX) (31)

Then, we obtain:

R(X, ξ)ξ − φR(φX, ξ)ξ = 2α2φ2X− 2h2X + φ
(
∇ξ h

)
X + φ2(∇ξ h

)
(φX) (32)

which reduces to (26). We note that
(
∇ξ h

)
◦ φ = −φ ◦

(
∇ξ h

)
. Now, we may take a local

orthonormal φ-basis {E1, · · · , E2n, ξ} = {e1, · · · , en, φe1, · · · , φen, ξ}. From (23) and using
the definition of Ricci curvature tensor, we obtain

S(X, ξ) = −2nα2η(X) + αη(X)
[
∑n

i=1
[
εig(φhei, ei)− εi+ng

(
φ2hei, φei

)]]
+∑n

i=1[εig(∇Xφh)ei, ei) + εi+ng((∇Xφh)φei, φei)]

−
n
∑

i=1

[
εig((∇ei φh)X, ei) + εi+ng

((
∇φei φh

)
X, φei

)]
Then, the above equation reduces to:

S(X, ξ) = −2nα2η(X)−
2n+1

∑
i=1

εig(R(Ei, X)ξ, Ei)

such that

div(φh) =
2n+1

∑
i=1

εig
((
∇Ei φh

)
X, Ei

)
.

Since tr(φh) = 0, we deduce:

0 =
n

∑
i=1

[εig(φhei, ei) + εi+ng(φhφei, φei)].

Thus, the proof of (27) completes. Moreover, putting X = ξ in (27), we have:

S(ξ, ξ) = −2nα2 − (div(φh))ξ (33)

where (div(φh))ξ = tr
(
h2). So (33) reduces to (28). It is well known that

divη = −tr(∇η) = −
n

∑
i=1

{
(∇ei η)ei +

(
∇φei η

)
φei
}

.

follows from the above equation, and so we deduce

divξ = α
(
∑n

i=1 g(ei − φhei, ei) + g
(

φei + φ2hei, φei

))
and

divη = −tr(∇η) = −εdivξ.

Thus, we complete the proof. �

3. Results

This section is devoted to study almost α-Kenmotsu pseudo-Riemannian manifolds
whose integral submanifolds of D are Kaehler.
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3.1. CR-Integrability

Proposition 6. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold. Then, we have

(∇Xφ)Y +
(
∇φXφ

)
φY = −α[η(Y)φX− 2εg(φX, Y)ξ]− η(Y)hX (34)

φ
(
∇φXφ

)
Y− (∇Xφ)Y = 2αη(Y)φX− ε(g(αφX + hX, Y)ξ) (35)

for any X, Y ∈ Γ(TM).

Proof. Using Koszul formula, we have:

2g((∇Xφ)Y, Z) = 2η(X)Φ(φY, φZ)− 2[η(X)Φ(Y, Z) + η(Y)Φ(Z, X) + η(Z)Φ(X, Y)]
+g
(

N(0)(Y, Z), φX
)

.
(36)

Replacing X and Y with φX and φY in (36), respectively, so we obtain:

2g
((
∇φXφ

)
φY, Z

)
= −2η(Z)Φ(φX, φY) + g

(
N(0)(φY, Z), φ2X

)
. (37)

Next, from (36) and (37), it follows that:

g
(
(∇Xφ)Y +

(
∇φXφ

)
φY, Z

)
= 2{η(X)Φ(φY, φZ)− η(X)Φ(Y, Z)− η(Y)Φ(Z, X)

−η(Z)Φ(X, Y)− η(Z)Φ(φX, φY)} − g
(

N(0)(φY, Z) + φN(0)(Y, Z), X
)

+(1/ε)η(X)η
(

N(0)(φY, Z)
)

(38)
Here, the sum of N(0)(φY, Z) + φN(0)(Y, Z) is given by:

N(0)(φY, Z) + φN(0)(Y, Z) = −ε[g(φY,∇Zξ)ξ + g
(
Y,∇ϕZξ

)
ξ − g(φY,∇Zξ)ξ

−g(φZ,∇Yξ)ξ]+η(Y)[φ∇Zξ −∇φZξ].

Simplifying the last equation, it reduces to:

N(0)(φY, Z) + φN(0)(Y, Z) = 2η(Y)hZ. (39)

Moreover, using (13) and (20), we have:

η
(

N(0)(φY, Z)
)
= ε
[
g(φZ,∇Yξ)− g

(
Y,∇φZξ

)]
. (40)

Following from (40), we obtain:

η
(

N(0)(φY, Z)
)
= −α

[
g
(

φZ, φ2Y
)
+ g(Y, φZ)

]
+ g(Y, hZ) + g

(
Z, φ2hY

)
. (41)

In view of (39) and (41), it is easy to see that:

η
(

N(0)(φY, Z)
)
= 0. (42)

Taking into account of (38), (39) and (42), we have

2g
(
(∇Xφ)Y +

(
∇φXφ

)
φY, Z

)
= −2αη(Y)g(φX, Z)− 2η(Y)g(hX, Z)

+4εαη(Z)g(φX, Y).
(43)

Then, it follows from (43), and we lead to (34). Additionally, we consider the follow-
ing formula (

∇φXφ
)
φY = ∇φXφ2Y− φ

(
∇φXφY

)
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for any X, Y ∈ Γ(TM) and then applying the covariant derivation (∇Xφ)Y in the above
equation by the help of (34), we obtain:

(∇Xφ)Y− φ
(
∇φXφ

)
Y = −2αη(Y)φX + εg(αφX, Y)ξ + εg(hX, Y)ξ.

Thus, it completes the proof. �

Proposition 7. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold. Then, we have

g
(

RξXY, Z
)
− g
(

RξXφY, φZ
)
+ g
(

RξφXY, φZ
)
+ g
(

RξφXφY, Z
)

= 2(∇hXΦ)(Y, Z) + 2α2η(Y)g(X, Z)− 2α2η(Z)g(X, Y)
−2αη(Y)g(φhX, Z) + 2αη(Z)g(φhX, Y)

(44)

for any X, Y, Z ∈ Γ(TM). Here, g
(

RξXY, Z
)
= R(ξ, X, Y, Z) = g(X, RYZξ).

Proof. Making use of (23) and consider the definition of Riemannian curvature tensor, the
left side of (44) takes the form

2α2η(Y)g(X, Z)− 2α2η(Z)g(X, Y) + G(X, Y, Z)− G(X, Z, Y), (45)

such that G is defined by

G(X, Y, Z) = g(X,−(∇Yφh)Z + φ(∇Yφh)φZ))
+g
(
X,
(
∇φYφh

)
φZ
)
− g
(
φX,

(
∇φYφh

)
Z
)
.

(46)

On the other hand, the following formulas can be written as

g
(
X,
(
∇φYφh

)
φZ + φ

(
∇φYφh

)
Z
)
= g

(
φX, φ

(
∇φYφh

)
φZ
)

η(X)g
(
ξ,
(
∇φYφh

)
φZ
)
−
(
∇φYφh

)
Z

(47)

φ(∇Yφh)φZ− (∇Yφh)Z = h(∇Yφ)Z− (∇Yφ)hZ (48)

and
g
(
ξ,
(
∇φYφh

)
φZ
)
= ε[g(hY, hZ)− g(hZ, φY)]. (49)

Taking into account of (34), (35), (47), (48) and (49) in (46), it follows that:

G(X, Y, Z) = −αη(X)g(φY, hZ)− αη(X)g(hZ, hY) + 2g(hX, (∇Yφ)Z)
+2αη(Z)g(φY, hX)− αη(X)εg(hZ, φY) + αη(X)εg(hZ, hY).

(50)

Finally, by the help of (50), we arrange (45) with the following formula:

3dΦ(Y, Z, hX) = (∇YΦ)(Z, hX) + (∇ZΦ)(hX, Y) + (∇hXΦ)(Y, Z)

Thus, we obtain (44). This ends the proof. �

Proposition 8. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold. Then, we have

Aφ + φA = −2αφ, η ◦ A = 0, η ◦ h = 0 (51)

h = A ◦ φ + αφ, hA + Ah = −2αh (52)

tr(A) = −α
2n

∑
i=1

εi, tr(φA) = 0 (53)

for any X, Y ∈ Γ(TM). Here, A is defined by A = −∇ξ.
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Proof. For any X, Y ∈ Γ(TM), we have

g(X, AY) = g
(
X, φ2Y + φhY

)
g(X, AY) = −g(X, Y) + η(Y)η(X)− g(φX, hY)

and
g(AX, Y) = g

(
φ2X + φhX, Y

)
g(AX, Y) = −g(X, Y) + η(X)η(Y)− g(φX, hY)

Here A is given by A = φ2 + φh. Also, using the definition of h, it yields

g
(

1
2
(

Lξ φ
)
X, Y

)
= g

(
X,

1
2
(

Lξφ
)
Y
)

.

We also note that φ is a (1,1)-type tensor field. Otherwise, the above equality does not
provide. So A and h are the symmetric operators. Then, taking the sum of Aφ and φA,
we deduce

Aφ + φA = 2αφ3 + φhφ + φ2h

which ends the proof of the first side of (51). By considering the one-form and A, we get

(η ◦ A)X = η(AX) = εg(X, Aξ) = 0

and
(η ◦ h)X = η(hX) = εg(X, hξ) = 0.

Hence, the rest of the proof of (51) is obvious. It is clear that Aξ = hξ = 0. Furthermore,
by substituting X for φX, we have

AφX = −αφX + hX

and
hAX + AhX = αφ2hX− φh2X + αφ2hX + φh2X.

Thus, the proof of (52) ends. Finally, the trace of A can be written as

tr(A) = ∑2n+1
i=1 εig(AEi, ei) = ∑2n+1

i=1 εig
(
αφ2Ei + φhEi, Ei

)
= −α ∑2n+1

i=1 εig(φEi, φEi) + εitr(φh)

where tr(φh) = 0. Analogously, the trace of φA is as follows:

tr(φA) = ∑2n+1
i=1 εig(−αφEi − hEi, Ei).

Here, tr(h) = 0 and {E1, · · · , E2n, ξ} is a local orthonormal φ-basis. �

Theorem 1. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold and h = 0. Then, M
is expressed by a locally warped product such that Mξ ×g M̃ where Mξ is an open interval with
coordinate t, M̃ is a 2n-dimensional indefinite almost Kaehler manifold, and g = λeαt for λ > 0.

Proof. First, we consider the contact distribution defined by D = Kerη = Imφ. For X ∈ D,
(16) takes the form ∇Xξ = αX when h = 0. Let M̃ and ∇̃ be the integral submanifold of
D and the Levi-Civita connection of M̃, respectively. Then, the second fundamental form
B(X, Y) of pseudo-Riemannian immersion M̃→ M is defined by

η(B(X, Y)) = η
(
∇XY− ∇̃XY

)
= −g(∇Yξ, X) = −αg(X, Y)

for any X, Y ∈ D. Thus, M̃ is a totally umbilical submanifold of M. Additionally, the
mean curvature vector field defined by H = −αεξ. Following from (51), it is obvious
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that ∇ξξ = 0. Accordingly, M is locally a warped product space such that Mξ ×g M̃,
where Mξ is an integral curve of ξ. It is well known that the mean vector field H is π

related to −(1/g)grad g. Here, the projection π : Mξ ×g M̃→ Mξ is a pseudo-Riemannian
submersion. In other words, we have

αεgξ = gradg. (54)

Then, (54) shows that we can obtain ξ = (∂/(∂t)) with coordinate t in local sense. So,
we can write grad( f ) = αε((∂ f )/(∂t))∂t, where g(ξ, ξ) = ε. Thus, the general solution of
this differential equation takes the form g = λeαt, where λ is a positive constant. After all,
we denote by J the restriction of φ on contact distribution, then we can see that (M̃, J) is an
indefinite almost Kaehler manifold of dimension 2n. �

Theorem 2. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold such that the integral
manifolds of D are indefinite Kaehler. Then, M is an α-Kenmotsu pseudo- Riemannian manifold if
and only if ∇ξ = −αφ2.

Proof. With the help of similar technique in [19], we obtain that N(X, ξ) = 2αφ(hX) for any
X ∈ Γ(TM). If the structure is normal, then h(Y) vanishes for Y ∈ D. Since h(ξ) = 0, we
have h = 0. Then from (16), it implies that ∇Xξ = −αφ2X. Conversely, if ∇Xξ = −αφ2X,
then we obtain h = 0. So, we say that N(X, ξ) = 0 for any X ∈ Γ(TM). Furthermore, it
is clear that NJ(X, Y) = N(X, Y) = 0 for X, Y ∈ D. Thus, the integral manifolds of D are
Kaehler manifolds. �

Theorem 3. If M is an almost α-Kenmotsu pseudo-Riemannian manifold, then the integral
manifolds of D are indefinite almost Kaehler manifolds given by the mean curvature vector field
H = −αεξ. Additionally, these integral manifolds are totally umbilical submanifolds if and only if
h = 0.

Proof. Let denote by M̃ and ∇̃ the integral manifold of contact distribution D and the
Levi-Civita connection of the integral manifold, respectively. Then, we take into account
the pseudo-Riemannian immersion such that M̃ → M , denoting by B(X, Y) the second
fundamental form for any X, Y ∈ Γ(TM). In view of (16), we may write

g(B(X, Y), ξ) = g
(
∇XY− ∇̃XY, ξ

)
= −g(Y, αX− φhX) (55)

which reduces to
B(X, Y) = −εg(Y, αX− φhX)ξ. (56)

Thus, it follows from (56) that we can say that M̃ is totally umbilical submanifold
of M if and only if h = 0. Therefore, for h = 0, we obtain B(X, Y) = −εαg(Y, X)ξ. By a
straightforward calculation, the mean curvature vector field H takes the form H = −αεξ.
Thus, we complete the proof. �

3.2. (κ, µ)-Spaces

The notion of (κ, µ)-spaces was introduced by Blair as defined in the following equation

R(Y, Z)ξ = −η(Y)(κ I + µh)Z + η(Z)(κ I + µh)Y (57)

for κ and µ constants [1]. Furthermore, Dileo and Pastore investigated (κ, µ)′-spaces
on almost Kenmotsu manifolds [19]. The characteristic vector field ξ belongs to the
(κ, µ)′-space if

R(Y, Z)ξ = −η(Y)
(
κ I + µh′

)
Z + η(Z)

(
κ I + µh′

)
Y (58)
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for any X, Y, Z ∈ Γ(TM). Here, we remark that h′ = h ◦ φ. Following this study, Öztürk
generalized the nullity condition on almost α-cosymplectic manifolds

R(Y, Z)ξ = −η(Y)(κ I + µh + vφh)Z + η(Z)(κ I + µh + vφh)Y (59)

for the smooth functions, such that dκ ∧ η = dµ ∧ η = dv ∧ η = 0 [20].
Now, we obtain some results satisfying (57) and (58) on almost α-Kenmotsu pseudo-

Riemannian (κ, µ)-spaces.

Theorem 4. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold whose ξ belongs to the
(κ, µ)-space. Then, κ = −εα2 and h = 0. Additionally, Theorem 1 holds.

Proof. Letting Y ∈ Kerη and Z = ξ. In view of (57), we have

R(Y, ξ)ξ = ε(κY + µhY). (60)

Then, substituting (60) into (26) gives:

h2Y = −
(

εκ + α2
)

Y. (61)

In fact, by using (24) and (26), we obtain:

lφY = ε(κφY + µhφY), φlφY = ε(−κY + µhY)

and
lY− φlφY = 2εκY = −2α2Y− 2h2Y

where l = R(., ξ)ξ is the Jacobi operator with respect to the characteristic vector field ξ. Let
Y be the eigenvector field of h with respect to the eigenvalue ρ defined by hY = ρY ∈ Kerη.
Then, it follows from (23) that:

lY = −α2Y + 2αφhY− h2Y−
(
∇ξ hφ

)
Y. (62)

Taking account of (60)–(62), we obtain:

εµρY− 2αρφY +
(
∇ξ hφ

)
Y = 0. (63)

Next, taking scalar product with φY on both sides of (63), we have:

ρ = 0. (64)

This implies that h = 0. Moreover, by the help of (61) and (64), we deduce:

εκ + α2 = 0. (65)

Thus, the proof of the rest of the theorem is obvious by using Theorem 1. �

Theorem 5. Let M be an almost α-Kenmotsu pseudo-Riemannian manifold whose ξ belongs to the
(κ, µ)′-space and hφ 6= 0. Then, the integral manifolds of D has indefinite Kaehler structure.

Proof. Taking Y, Z ∈ Kerη and from (58) we have R(Y, Z)ξ = 0. Again taking Y, Z, W ∈ Kerη,
by the help of Proposition 7, we obtain:

(∇hYΦ)(Z, W) = 0. (66)

On the other hand, from Proposition 3, we obtain

2(∇hYΦ)(Z, W) + g
(

Nφ(Z, W), φhY
)
= 0 (67)
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such that (∇YΦ)(Z, W) = −g(W, (∇Yφ)Z). We note that g
(

Nφ(Z, W), φhY
)
= 0 for

Y, Z, W ∈ Kerη. By the hypothesis, using (58) in (26), the following is yielded:

(hφ)2 = −
(

εκ + α2
)

Y. (68)

Here, we have h2 = (hφ) ◦ (hφ) = (hφ)2. Since φh 6= 0 (εκ + α2 6= 0), then, we observe
that g

(
Nφ(Z, W), Y

)
= 0 for Y, Z, W ∈ Kerη. This implies that Nφ(Z, W) = 0. Thus, it

completes the proof. �

4. Examples
4.1. Example of an Arbitrary Dimensional Case

Let M = M1 × I, where M1 is an open connected subset of R2n and I is an open
interval in R. Let (u1, . . . , un, v1, . . . , vn, z) be the Cartesian coordinates such that

M =
{
(u1, . . . , un, , v1, . . . , vn, z) ∈ R2n+1 : z 6= 0

}
.

The global basis {U1, . . . , Un, , V1, . . . , Vn, ξ} on M defined by

Ui = 2z
(

∂

∂ui

)
, Vi = −

(
2
z3

)(
∂

∂vi

)
, ξ =

(
∂

∂z

)
for i = 1, 2, . . . , n. Now, we define the structure (φ, ξ, η, g) on M as follows:

φ
((

∂
∂ui

))
= −

(
1
z4

)(
∂

∂vi

)
, φ
((

∂
∂vi

))
= z4

(
∂

∂ui

)
, φ
(

∂
∂z

)
= 0

η = dz, ξ = ∂
∂z

and
g = (1/4)∑n

i=1

(
1/z2du2

i + z6dv2
i

)
+ εdz2.

Here, g(ξ, ξ) = ε = ∓1. This means that M is an almost contact pseudo-Riemannian
structure with (φ, ξ, η, g). In order to check, whether it is almost α-Kenmotsu pseudo-
Riemannian or not, we verify the condition dΦ = 2α(η ∧Φ). On the other hand, all Φij’s
vanish except for

Φii = g
((

∂

∂ui

)
, φ

(
∂

∂vi

))
= z2/4.

Hence, we obtain
Φ =

(
z2/4

)
∑n

i=1(dui ∧ dvi)

and

dΦ =
( z

2

)
(du ∧ dv ∧ dz) =

(
2
z

)
(η ∧Φ).

We remark that Nφ 6= 0. Hence, M is an almost α-Kenmotsu pseudo-Riemannian
manifold with the above (φ, ξ, η, g) structure. Since the structure is not normal, the tensor
field h does not have to be zero. So, the integral submanifold of D is almost Kaehler
manifold [20,21], and then Theorems 1–3 are held.

4.2. Example of a Three-Dimensional Case

Let us denote the Cartesian coordinates of R3(x, y, z) and consider three-dimensional
manifold M ⊂ R3 defined by

M =
{
(x, y, z) ∈ R3 | z 6= 0

}
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where M = M1 × I, where M1 is an open connected subset of R2 and I is an open interval
in R. The arbitrary vector fields are given by

E1 = L1(z)(∂/∂x) + L2(z)(∂/∂y)
E2 = −L2(z)(∂/∂x) + L1(z)(∂/∂y)

E3 = (∂/(∂z))

such that
L1(z) = c2e−αzcosλz− c1e−αzsinλz,
L2(z) = c1e−αzcosλz + c2e−αzsinλz.

Here, it is noted that c1
2 + c2

2 for constants c1, c2, λ and α 6= 0. We define the structure
(φ, ξ, η, g) on M as follows:

φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0

η = dz, ξ = ∂
∂z

g =
(

L1
2 + L2

2)−1(dx2 + dy2 + εdz2)
Let η be the one-form defined by

η(X) = εg(X, e3)

for any vector field X on M. Let h be the (1,1)-tensor field defined by

h(e1) = −λe1, h(e2) = λe2, h(e3) = 0.

Then using linearity of g and φ, we obtain

φ2X = −X + η(X)e3, η(e3) = g(ξ, ξ) = ε
g(φX, φY) = g(X, Y)− εη(X)η(Y)

for any X, Y ∈ Γ(TM). Hence, M is an almost α-Kenmotsu pseudo-Riemannian manifold
with the (φ, ξ, η, g) structure. However, it is sufficient to check that the only non-zero
components of the second fundamental form Φ are

Φ(∂/∂x, ∂/∂y) = −
(

L1
2 + L2

2
)−1

= −e2αz
(

c1
2 + c2

2
)−1

.

So, the above equation takes the form

dΦ =
(
−4αe2αz

)(
c1

2 + c2
2
)−1

(dx ∧ dy ∧ dz)

which implies
dΦ = 2α(η ∧Φ)

on M. Additionally, the Nijenhuis torsion tensor of φ does not vanish. Because the structure
is not normal, the tensor field h does not have to vanish. In three-dimensional case, for
the D distribution on M to have Kaehler leaves, if and only if the following equation
holds [20,21]:

(∇Xφ)Y = εg(αφX + hX, Y)ξ − η(Y)(αφX + hX).

By the help of the above equation, Theorems 1–3 are verified. In the case of dimension
3, the integral submanifolds of the D distribution are almost Kaehler regarding dimension 2.

5. Discussion

This article deals with almost α-Kenmotsu pseudo-Riemannian manifolds whose
integral submanifolds are Kaehler. In other words, the main object of this article is to
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give some results about CR-Integrable α-Kenmotsu pseudo-Riemannian manifolds. It is
well known that an almost CR-structure is said to be a CR-structure if it is integrable. In
particular, we have planned our future works using some tensor conditions thanks to the
studies on these subjects, which are the sources of our motivation [3,8,10,15,22].

The theory of solitons on manifolds is currently quite popular. Exciting results con-
tinue to be obtained in this topic. Ricci solitons have been studied extensively in various
frameworks and from different perspectives. In particular, the physical applications of
these subjects are interesting. The Ricci and gradient Ricci solitons play a crucial role
in developing mathematics and physics. For this reason, in our further studies, we will
study almost α-Kenmotsu manifolds endowed with different metric connections admitting
some solitons. Moreover, all curvature and tensor products on (κ, µ, ν)-spaces will be
investigated by using the soliton theory.
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