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1 Introduction

In four-dimensional general relativity, asymptotically flat, stationary black holes have
extremal limits with smooth horizons. This follows from the black hole uniqueness theorems
and the known properties of the Reissner-Nordström and Kerr solutions. Over the years,
various examples have been found showing that this is not always the case. A mild lack of
smoothness (where the metric is C2 but not C3) was first noticed in the static multi-black
hole solutions to D “ 5 Einstein-Maxwell theory [1]. This became more serious with the
discovery that in D ą 5, static multi-black hole solutions have curvature singularities on
the horizon [2]. These were null singularities in which tidal forces on infalling observers
diverge, but all curvature scalars remain finite.

Similar null singularities were also seen in the extremal limit of some black holes in anti-
de Sitter (AdS) space. This includes solutions with less symmetry [3–5], nonsupersymmetric
attractor flows [6] and even in some supersymmetric black holes [7]. A natural question
to ask is how common are these singular extremal solutions? Are they exceptional special
cases, or indicating a more general phenomenon?
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We will show that in AdS they are very common. In fact, almost all extremal black holes
are singular. This is true even in four dimensions (and becomes worse in higher dimensions).
We will focus on four dimensional solutions of Einstein-Maxwell theory with Λ ă 0. The
higher dimensional case will be discussed elsewhere [8]. There are many more stationary
black holes in AdS than in asymptotically flat spacetime since one has the freedom to choose
boundary conditions for the metric and vector potential at infinity. In particular, static
nonspherical charged black holes exist, but we will show they are generically singular. Our
results apply whenever rotational symmetry is broken, so for example, if one puts a cage
around a static AdS black hole it becomes singular.

If the horizon was smooth, it is known that in the extremal limit, the only possible
static near horizon geometry is AdS2 ˆ S

2 [9] so the horizon itself remains spherical. We
will see that in four dimensions, even when the horizon becomes singular, a well defined
near horizon geometry exists and remains AdS2 ˆ S

2. Intuitively, this is because the radial
distance (along a static hypersurface) from the horizon to any point outside is infinite and
thus any nonspherical perturbation1 should decay before reaching the horizon. But the key
point is how quickly do they decay. The symmetry of AdS2 ensures that all perturbations
should have power law behavior near an extremal horizon. If the exponent is not an integer,
the solution is not C8, and if the exponent is too small, the curvature will diverge. We
will show that for AdS black holes with topology S2, an ` “ 2 perturbation always falls off
slowly enough to produce a singularity on the horizon. So generic extremal black holes with
S2 topology are singular. This singularity is null, and all curvature scalars remain finite.
However, the tidal forces on infalling particles diverge.

As one increases the charge, this singularity becomes stronger and higher ` modes also
become singular. Similar results hold for static black holes of different topologies (with the
exception of small toroidal ones) and for Kerr AdS. In fact, for large hyperbolic black holes,
the singularity is so strong that some perturbations diverge at the horizon. Thus, we see
that almost all extremal black holes in AdS are singular. Smoothness of the known exact
solutions is an artifact of the symmetry rather than a basic physical feature. Solutions with
extremal AdS black holes in nonspherical backgrounds have been constructed before [11].
Although it was not noticed at the time, the current analysis shows that these “hovering”
black holes also have diverging tidal forces on their horizon.

A natural question is whether our assumption that the cosmological constant is negative
is needed at all. Even when Λ ě 0, if the horizon was smooth, the only static near horizon
extremal black hole geometry would be AdS2 ˆ S

2, so all perturbations must fall off like a
power law. However when Λ “ 0, one finds that all exponents are positive integers and so
the metric is indeed smooth. In this case, since there is no other scale and the exponents
are dimensionless, they cannot depend on the charge. They turn out to be integers in four
dimensions, but not in higher dimensions. When Λ is positive, the exponents are no longer
integers and small black holes are singular.

1One should note that in this work a “perturbation” does not mean any dynamical change, but rather
a change in boundary conditions for the elliptic problem of finding static black holes. In particular, our
work is different from the Aretakis instability of extremal black holes [10] which results from time dependent
perturbations (although both effects originate from the symmetries of the near horizon AdS2 factor).
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The program of systematic investigations of the spacetime near extremal horizons was
first proposed in [12] and was continued in [13–16]. Unfortunately, the starting point of
that analysis was the Taylor expansion in the distance from the horizon. This clearly
assumes smoothness and is generically not allowed. Thus, one should rather see these
results (at least with Λ ‰ 0) as a search for very special, fine-tuned solutions. This clarifies
the conclusion of [16] where it was shown that the transversal deformation of the extremal
Reissner-Nordström-(A)dS horizon are spherically symmetric unless the charge takes a
special value (depending on the cosmological constant).

If one considers a nonextremal black hole with temperature T , these singularities are
always removed. Thus, it is tempting to simply ignore them as an artifact of T Ñ 0 limit.
However, as we will show, even in this case tidal forces at the horizon grow as an inverse
power of the temperature and diverge in the limit. Thus even a tiny, symmetry breaking
perturbation at infinity becomes arbitrarily large near the horizon as we lower T . This
large curvature may lead to quantum corrections near the horizon, but we do not currently
understand the form of these corrections. In a holographic theory, we will show that there is
a clear signal of the singularity for large black holes: the specific heat (and other quantities)
has anomalous scaling with T near T “ 0.2

The reason these singularities exist and some of their properties can already be seen
by looking at a massless scalar field in an extremal black hole background. So we start by
discussing this simple example in the next section. In section 3, we begin our main analysis
of Einstein-Maxwell solutions, by studying linearized gravitational and electromagnetic
perturbations of the near horizon geometry of extremal black holes. section 4 contains
a discussion of the full nonlinear story, and shows that the singularities indicated by the
linearized analysis indeed arise in the full solutions as T Ñ 0. To see the anomalous
scaling of the specific heat, one needs to go to very low T , which is difficult to reach in the
Einstein-Maxwell theory. So in section 5 we introduce a simpler theory in which this effect
can be clearly demonstrated. We conclude in section 6 with a brief discussion.

2 Simple example

Before we get into the technical details, let us consider a very simple toy model which
will illustrate the main ideas. We will consider a massless scalar field on an extremal
Reissner-Nordström AdS (RN AdS) black hole. Recall that the RN AdS metric is

ds2 “ ´fprq dt2 ` dr2

fprq
` r2dΩ2 (2.1)

where dΩ2 is the line element on a unit radius round two-sphere,

fprq “
r2

L2 ` 1´ 2M
r
`
Q2

r2 (2.2)

and L is the AdS radius. In the extremal limit, the horizon is at

r` “

d

2Q2

1`
a

1` 12Q2{L2
(2.3)

2We thank Sean Hartnoll for suggesting this might occur.
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and
f2pr`q “

6
L2 `

2Q2

r4
`

(2.4)

We now perturb this spacetime by adding a static, massless scalar field φ. Since the
background is spherically symmetric, we may expand φ into the spherical harmonics:

φ “
ÿ

`,m

φ`mY`m. (2.5)

Then, the Klein-Gordon equation reads

pfφ1`mq
1 `

2fφ1`m
r

´
`p`` 1q
r2 φ`m “ 0 (2.6)

This is a simple ODE with r “ r` being a regular singular point. Thus, near r “ r` we
can approximate it by the Euler equation:

1
2pr ´ r`q

2f2pr`qφ
2
`m ` pr ´ r`qf

2pr`qφ
1
`m ´

`p`` 1q
r2
`

φ`m “ 0, (2.7)

and so near the horizon we have φ`m „ pr ´ r`qγ˘ , where

γ˘ “
1
2

«

˘

d

1` 4`p`` 1q
1` 6 r2

`{L
2 ´ 1

ff

. (2.8)

We, of course, choose γ` since the other choice would lead us to a highly singular
solution. Nevertheless, notice that when ` “ 1, we have 0 ă γ` ă 1 for all r` ą 0.
Thus, the field is only C0 at the horizon. Moreover, certain components of the associated
energy-momentum tensor:

Trr „ pφ,rq
2 „ pr ´ r`q

2pγ`´1q (2.9)

are divergent, so the backreaction on the metric will produce a singularity. Nevertheless,
all scalar quantities built from Tµν , such as T or TµνTµν are finite. Thus, one could be
tempted to blame our choice of coordinates for the apparent singularity. However, that
would be not justified since r is a good coordinate at the horizon. Moreover, if one replaces
t with an ingoing Eddington coordinate v, the calculation is the same, and now Br is
a vector field tangent to the affinely parametrized null geodesics and so it has a clear
geometrical meaning. Also in this case, Trr enters the Raychaudhuri equation and so its
divergence signifies that the family of null rays emanating from the horizon is singular. This
is going to be a general lesson for all the examples we consider later in this paper: generic
nonspherical perturbations produce a physical curvature singularity along the null horizon,
but all curvature scalars are finite. Thus, one needs to be extra careful with the choice of
coordinates to properly capture these divergences.

A few remarks are in order regarding (2.8):

• Although we assumed that φ is massless, similar conclusions would hold also for
massive but light fields. Thus, it is not just a result of an unfortunate fine-tuning of
the model.
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• If r`{L is large enough, γ` ă 1 also for higher `’s.

• The larger r` is, the smaller γ` and thus the solutions are more and more divergent. As
we will see, this and the previous remark hold also in the nonlinear Einstein-Maxwell
theory. This means that (counter-intuitively) large black holes, whose curvature
scalars at the horizon are much less than small black holes, nevertheless have stronger
singularities if we perturb them a little bit.

• Eq. (2.8) does not depend on any asymptotic conditions. It was derived locally, just
near the horizon. The only role of the asymptotic region is to provide a source for
non-symmetric modes.

• The case Λ “ 0 can be read off from eq. (2.8) by taking LÑ8. The result is γ` “ `,
so φ remains smooth.

• The case Λ ą 0 can be read off from eq. (2.8) by analytically continuing L2 Ñ ´L2.
One sees that φ is at least C1 but it is still not smooth. As we will see, for certain black
holes in dS, the singularity at the horizon may persists, although it will be milder.

Eq. (2.8) can be understood as a special case of a familiar result in gravitational
holography. The near horizon geometry of the extremal RN AdS solution is AdS2 ˆ S2

with AdS2 radius L2 “ r2{f2pr`qs1{2. The `th harmonic acts just like a field of mass
m2 “ `p`` 1q{r2

` in this AdS2 spacetime. In terms of L2 and m2, eq. (2.8) becomes

γ˘ “
´1˘

a

1` 4m2L2
2

2 (2.10)

This is a special case of a more general formula that gives the power law behavior of fields
with mass m in AdSD, which is the scaling dimension of the dual operator.3

3 Einstein-Maxwell: linear theory

3.1 General equations

We consider the following equations of motion

Rµν “ 2FµσF σ
ν ´

1
2gµνFαβF

αβ ´
3
L2 gµν , (3.1a)

dF “ 0, (3.1b)

d ‹ F “ 0, (3.1c)

where F “ dA is the Maxwell two-form, A is its potential and L is the radius of AdS4.
We are interested in the solutions to (3.1) which describe a stationary extremal black

hole. Near the horizon we may introduce Gaussian null coordinates pv, ρ, xaq in which the
3Eq. (2.10) differs from the usual scaling dimension by an overall sign, since we have defined it to be the

power of r ´ r`, rather than the more commonly used power of an inverse radius.
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metric and Maxwell field read:

g “ 2dv
ˆ

dρ` ρ ha dxa ´ 1
2 ρ

2C dv
˙

` qab dxa dxb (3.2a)

F “ E dv ^ dρ` ρWa dv ^ dxa ` Za dρ^ dxa ` 1
2 Bab dxa ^ dxb, (3.2b)

where nothing depends on v (so Bv is the Killing vector generating the horizon). It is often
useful to work with the near horizon geometry of the spacetimes of the form (3.2). To this
end we consider a one-parameter pε ą 0q family of diffeomorphisms

φεpv, ρ, x
aq “

`

ε´1v, ερ, xa
˘

. (3.3)

The limits of pull-backs
lim
εÑ0
pφ‹εg, φ

‹
εF q “ p̊g, F̊ q (3.4)

exist and provides us with a new smooth solution to the Einstein-Maxwell equations.
Then, (3.2) simplifies significantly

g̊ “ 2 dv
ˆ

dρ` ρ ha dxa ´ 1
2 ρ

2Cdv
˙

` qab dxa dxb (3.5a)

F̊ “ E dv ^ dρ` ρWa dv ^ dxa ` 1
2 Bab dxa ^ dxb, (3.5b)

where now all the ρ-dependence is explicit. Notice that g̊ posses a new Killing vector:
ρBρ ´ vBv. Also, (3.1) simplifies significantly for p̊g, F̊ q. This allowed for the classification
(under the assumption of smoothness and either staticity or axial symmetry) of geometries
of the extremal horizons in four dimensions. The only possible geometries are either
those of Reissner-Nordström-(AdS) or Kerr-Newman–(AdS) (in the static or the axially
symmetric case, respectively). Below we consider how stationary solutions to (3.1) behave
near those horizons.

Since we are interested only in the near horizon behavior, we may write our (generic
yet stationary) fields as

g “ g̊ ` δg, (3.6a)

F “ F̊ ` δF (3.6b)

where pδg, δF q are supposed to vanish on the horizon (and by continuity, are small nearby).
Thus, it seems reasonable to expect that pδg, δF q satisfies linearized Einstein-Maxwell
equations on the background of p̊g, F̊ q. Due to the symmetries, we may decompose our
perturbations into eigenspaces of ρBρ ´ vBv. They are thus of the form

δg “ ργ
´

δF ρ2 dv2 ` 2 ρ δha dv dxa ` δqab dxa dxb
¯

(3.7a)

δF “ ργ
ˆ

δE dv ^ dρ` ρ δWa dv ^ dxa ` ρ´1δZa dρ^ dxa ` 1
2 δBab dxa ^ dxb

˙

.

(3.7b)
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The scaling symmetry implies

δCρaρb „ γpγ ´ 1qργ´2 (3.8a)

δRρρ „ γpγ ´ 1qργ´2, (3.8b)

where Cαβµν is the Weyl tensor. Thus, we see that if 1 ‰ γ ă 2, then our linearized solutions
are singular. We will show that there are indeed solutions with 0 ă γ ă 1 which strongly
suggests that generically the spacetime is singular at the horizon.4

One might hope that our results are just an artifact of the linearized approximation
and the full nonlinear solution would behave differently. However, this is not the case. Even
though the curvature diverges, the metric perturbation is small near the horizon, so higher
order corrections to the metric will be even smaller. One can show that the same scaling
results hold in the full theory, as long as fields fall off like a power law near the horizon. In
section 4, we will verify (numerically) that this is indeed the case for asymptotically AdS
black holes. For the rest of this section, we will determine γ using a linearized analysis.

Notice that since the diverging components always involve a ρ index and the inverse of
the metric in (3.5) has g̊ρρ “ ´Cρ2, all curvature invariants will remain finite at the horizon.

3.2 Reissner-Nordström AdS

As we mentioned above, the only static near horizon geometry is given by the limit of the
extremal Reissner-Nordström AdS solution. Since in four dimensions there is a duality
between electric and magnetic fields, we may assume that our black hole has only an electric
charge. The fields simplify significantly and they read:

g̊ “ 2 dv
ˆ

dρ´ 1
2 ρ

2C dv
˙

` qab dxa dxb (3.9a)

F̊ “ E dv ^ dρ, (3.9b)

where now C,E are constants and q is a two-dimensional metric of constant curvature. The
first term is just AdS2 with a length scale set by C. The field equations require:

R “ ´
6
L2 ` 2E2 (3.10a)

C “
3
L2 ` E

2, (3.10b)

where R is the Ricci scalar of q. In short, this says that the near horizon solution has a
product structure AdS2 ˆH, where H has a constant curvature (of any sign).

4If 0 ă γ ă 1, the metric is continuous, but not differentiable at the horizon. Nevertheless, it still makes
sense to ask if the norm of the timelike Killing field has a double zero at the horizon (so extremal black holes
are well-defined) since this function remains C2. Weak solutions of the Einstein-Maxwell equations can be
defined if the curvature is integrable. This requires the Christoffel symbols to be square integrable. If γ ą 1

2
this is the case, so one can extend the fields inside the horizon as a weak solution, but the extension is not
unique. As we will see, for sufficiently large black holes, that condition is not satisfied and no extension
is possible.
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Although it is possible to derive and solve equations for the ansatz (3.7), it is not
the most convenient way to find exponents γ. Indeed, we perturb a highly symmetrical
background so one should take an advantage of that. We may thus decompose δg and δF into
the eigentensors of the Laplacian on H and then use the Kodama-Ishibashi formalism. Since
our usage of these methods is rather simple, for the sake of completeness, we will provide
a short introduction here. We will restrict ourselves to the scalar-derived perturbations.
Inclusion of the vector perturbations is rather immediate and does not change anything.

If qab has a positive (negative) curvature, we may normalize it qab “ r2
`q̊ab in such a

way that R̊ P t´2,`2u. (We set R̊ “ 0 for a torus.) Let S be a non-constant eigenfunction
of the Laplacian ∆̊:

´

∆̊` k2
¯

S “ 0 (3.11)

and

Sa “ ´
1
k
D̊aS, (3.12a)

Sab “
1
k2 D̊aD̊bS`

1
2qabS. (3.12b)

Then, we may decompose our perturbation as:

δF “ f S , δha “ hSa , δqab “ hL γ̊abS` hT Sab (3.13a)

δE “ q S , δWa “ w Sa , δZa “ z Sa , δBab “ 0, (3.13b)

where all new variables are simply constants. In this way, the problem of solving linearized
Einstein-Maxwell reduces to solving a system of linear (algebraic) equations:

„

k2

2 ´
1
2 C r

2
`γ p1` γq ´ r2

`E
2 `

3r2
`

L2



hT ´
4E r2

`k

γ
z ` k2hL “ 0, (3.14a)

k2 ´ 2R̊
2k E γ hT `

“

C r2
` p1` γq γ ´ k2 ´ 4E2r2

`

‰

z ` k E

ˆ

3
2 ´ γ

˙

hL “ 0, (3.14b)

γpγ ´ 1qhL “ 0, (3.14c)

pγ ` 1qw ` qk “ 0, (3.14d)

q “
k

γ r2
`

z ´
E

r2
`

hL, (3.14e)

1
2γp1` γqh`

k2 ´ R̊

4kr2
`

γ hT ´ 2E z “ 0, (3.14f)

1
2p1` γqp2` γqf `

1
2r2
`

p1` γq k h´ 1
r2
`

C γhL ` 2E q “ 0. (3.14g)

Let us also mention that nonscalar derived perturbations would not introduce anything
new. Indeed, there are no tensor perturbations in 4-dimensional spacetimes and an analogous
calculation shows that the exponents for the vector perturbations are the same as for the
scalar ones.
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Notice also that the case γ “ 1 is somewhat peculiar because then the system above is
underdetermined. This is not a problem because there is also an additional gauge symmetry.
All solutions with γ “ 1 on a sphere were found in [16] — they exist only for a fine-tuned
values on Q. Our final formula (eq. (3.15a) below) reproduces this result and so to simplify
the discussion we will assume below that γ ‰ 1 and consequently hL “ 0. This allows us to
solve the first and the second equations which are decoupled from the rest. This is a system
of two homogeneous equations for two unknowns and so it admits non-trivial solutions only
when an appropriate determinant vanishes. Having found hT and z, we may solve all the
other equations and every other variable is determined uniquely. We will now go through
the solutions in different cases, corresponding to the different topologies of H.

3.2.1 Spherical black holes

We start by considering the case H “ S2. Then, k2 “ `p` ` 1q, and r` is related to the
electric charge Q by (2.3). Solutions to (3.14) exist only when

γ˘˘ “
1
2

»

–´1˘

d

4`p`` 1q ` 5σ ˘ 4
a

σ2 ` 2`p`` 1qp1` σq
σ

fi

fl , (3.15a)

where
σ ” 1` 6 r2

`

L2 . (3.15b)

There are a total of four solutions for each ` and r`. We are free to choose a boundary
condition at the horizon to remove two of them. If we choose combinations ´` and ´´, the
exponent γ is always negative so the solution blows up at the horizon. Thus, the physical
perturbations are `` and `´. The values of γ for a few `s are plotted in figure 1. As
one may see, for ` “ 2, 3 and for `´ modes, the Weyl tensor is divergent for any value
of r`. Moreover, the larger r`

L , the stronger the divergence. In particular, for sufficiently
large black holes, the perturbation is not even a weak solution, and the region where
no weak solutions exist is represented in gray. Since a generic nonspherical perturbation
includes the ` “ 2 mode, we see that a generic perturbation would replace the horizon by a
null singularity.

One may notice from eq. (3.15a) that γ`´ “ 0 for ` “ 1 (and any r`). Since it does
not decay, one might be tempted to interpret it as a deformation that changes the horizon
geometry itself (and not just a neighborhood of it). This is however not justified since the
system of equations (3.14) was derived using a decomposition into S,Sa and Sab. When
` “ 1, Sab “ 0 and so all equations proportional to it are automatically satisfied. Instead,
we are left with a simpler constraint (k2 “ 2):

“

´2` Cr2
`p1` γqγ ´ 4E2r2

`

‰

z “ 0, (3.16)

which has non-trivial solutions only when

γ˘ “
1
2

˜

´1˘
c

16` 9σ
σ

¸

. (3.17)
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Figure 1. Scaling exponents for different ` as a function of Q{L. The shaded region indicates
values of γ for which no weak solution exits. The solid red line is a `´ mode with ` “ 2, the blue
dash-dotted line is a `´ mode with ` “ 3 and the black dashed line is a `` mode with ` “ 2. All
γ ă 2 (except γ “ 1) lead to a singularity on the horizon via eq. (3.8a).

Since we have only two solutions, our boundary conditions get rid of γ´ (which would lead
to the mode diverging at the horizon). Since γ` ą 1, the solution is at least C1 (but not
necessarily C2).

For completeness, let us now discuss here what happens when Λ ě 0. If Λ “ 0, we
have simply γ`˘ “ ` ˘ 1 P N and so perturbations are perfectly smooth. If Λ ą 0, γ`˘
are generically not going to be integers so the perturbations have only finite degree of
smoothness. In this case, the singularity is stronger for small black holes. In particular,
if r2

`

L2 is small enough, it is only C1 and it still suffers from the diverging tidal forces at
the horizon. A static extremal black hole in our universe would certainly have small r2

`

L2 ,
and nonspherical perturbations from other galaxies, so if they existed, they would have
singular horizons.

3.2.2 Toroidal black holes

Analogous analysis can be performed in the toroidal case. This was done previously in [4]
for flat, non-compact cross-sections. As we will see, compactness changes the results
qualitatively for small enough black holes. For definiteness we compactify the space
directions in such a way that the cross-section of the horizon has volume Lx Lyr2

`, where x
and y are periodic coordinates with x „ x`Lx and y „ y`Ly. From (3.10a), it follows that

E “

?
3
L

(3.18)
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and
C “

6
L2 . (3.19)

Consequently, the charge confined within a black hole is:

Q “

?
3Lx Lyr2

`

4πL (3.20)

Note that in contrast to a sphere, we have a larger family of geometries on a two-dimensional
torus — it is encoded in periods of x and y coordinates and the angle between Bx and By.

We may now repeat our scheme and calculate the associated exponent. Perturbations
are again scalar derived, however this time we need to decompose them into eigenfuctions
of the Laplacian on T2, namely Re eipkxx`kyyq and Im eipkxx`kyyq. The exponent turns out
to be5

γ “
1
6

¨

˚

˝

g

f

f

e45` 6rk2 ´ 36

d

1`
rk2

3 ´ 3

˛

‹

‚

, (3.21)

where rk ” kL{r` with k “
b

k2
x ` k

2
y . As usual, the (linearized) Weyl tensor diverges when

γ ă 2. Not surprisingly, for k large enough, γ given by the expression above is larger than 2
and thus modes with high momenta are not singular, just as in the spherical case. However,
if the black hole is toroidal, we can make it arbitrarily small and then γ is arbitrarily large.
Thus, the toroidal black holes which are small enough are not going to become singular
under an arbitrary (small) perturbation. It happens when

rk2 ą 36` 12
?

3 (3.22)

for all non-zero eigenvalues of the minus Laplacian ∆̊. In particular, for a torus which is
obtained from a square with Lx “ Ly “ 2π, the minimal k is 1 and this translates into

r`
L
ă

1
a

36` 12
?

3
(3.23)

This explains the ‘almost all’ in the title of this paper — there is a finite volume in the
moduli space of extremal black holes which are singularity-free. On the opposite end of
this spectrum are planar black holes for which there are infinitely many singular modes (of
small momentum), as pointed out in [4].

3.2.3 Hyperbolic black holes

Let us now consider a case when H has a constant negative curvature. All such surfaces are
given by a quotient of a hyperbolic space H2 by a discrete group. As follows from eq. (3.10a),
such solutions exist even without a Maxwell field. To begin, we will restrict ourselves to
this case. As we noticed earlier, the larger the charge on a black hole, the more singular it
becomes so we can expect that the inclusion of charge will make the perturbations even

5As before, there are four values of γ. Two of them are excluded automatically since they are negative.
Below we focus only on the smaller positive value since we are interested in possible singularities.
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more divergent. This will be confirmed below. With E “ 0, it follows from (3.10a) that
R “ ´ 6

L2 and so r` “ L?
3 . The analysis follows exactly in the same way as in the spherical

case (except that only gravitational modes are included).
We find that the perturbed solutions (for gravity modes) exist only when

γgrav “
1
2

´

´1`
a

9` 4k2
¯

. (3.24)

As before, the perturbation is singular if γgrav ă 2, or equivalently k2 ă 4. The first
non-zero eigenvalue of the Laplacian on a compact Riemann surface is bounded by [17, 18]

k2 ď
2

g ´ 1 t
g ` 3

2 u ď 4, (3.25)

where g is a genus of H and tzu denotes the largest integer in z. Note that the last inequality
is saturated only when g “ 2. We thus see that for g ą 2 and for any geometry of the
horizon, at least one mode in the perturbation is singular. For g “ 2, a recent bootstrap
calculation has shown that k2 ď 3.839 [19, 20], so generic gravitational perturbations of all
extremal hyperbolic black holes are singular. It is immediate to see that the same holds true
also when the cross-section of the horizon is non-compact. Indeed, then the first non-zero
eigenvalue is 1

4 which is clearly less than 4.
If we next consider a test Maxwell field on this neutral extremal black hole, the

appropriate exponent reads

γEM “
1
2

´

´1`
a

1` 4k2
¯

ă γgrav. (3.26)

Notice that this perturbation may cause a singularity through its backreaction. Thus,
the metric would be singular only if γEM ă 1 which translates to k2 ă 2. Thus, there
are geometries on H (for example, the Bolza surface which nearly saturates the above
g “ 2 bound) for which the Maxwell field would not produce a singularity. Nevertheless,
when the black hole is charged, the situation is very different. Gravitational and Maxwell
perturbations are then coupled to each other, and the two physical exponents become:

γ`˘ “
1
2

»

–´1`

d

5` 4k2 ˘ 4
a

σ2 ` 2pσ ´ 1qpk2 ` 2q
σ

fi

fl , (3.27)

where σ “ 6 r
2
`

L2 ´ 1. The minimal radius of the hyperbolic extremal horizon is obtained
with no charge, r` “ L?

3 , so σ ě 1. Notice that when σ ą 1
4
`

4` 2k2 ` k4˘, γ`´ becomes
negative. Thus the perturbation blows up on the horizon and our perturbative scheme
breaks down. It is likely that some curvature invariants will now diverge. This also signals
an RG instability — a small change in the boundary conditions at asymptotic infinity (UV)
would lead to a drastic change in the near horizon (IR) region. At the moment we are
not sure what the endpoint of this instability is. Indeed, all smooth static near horizon
geometries are classified in four dimensions [9] so the endpoint cannot be described by a
single component extremal black hole with a smooth horizon. Most likely, the horizon just
develops a strong singularity in which the metric is not even continuous.
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3.3 Kerr AdS

So far, we have considered only static solutions and their perturbation. This is of course far
from any reasonable notion of ‘all extremal black holes’. To gain more completeness, let us
now consider perturbations of the extremal Kerr AdS with a mass M

p1´a2{L2q2 , an angular
momentum Ma

p1´a2{L2q2 , and an angular velocity Ω. It will be convenient to express these

parameters in terms of the horizon radius r`
´

ă L?
3

¯

:

M “
r`

´

1` r2
`

L2

¯2

1´ r2
`

L2

, a “ r`

d

3r2
` ` L

2

L2 ´ r2
`

, Ω “

b

L4 ` 2r2
`L

2 ´ 3r4
`

2r`L2 (3.28)

Though very useful, r` has no geometric meaning per se. Indeed, it is simply the location
of the horizon measured in a particular coordinate system. We thus introduce the areal
radius, defined as the square root of the area of the spatial section of the event horizon,
divided by 4π

R` ”

b

r2
` ` a

2
b

1´ a2

L2

. (3.29)

It is convenient to use the Teukolsky formalism [21]. This is especially useful since one
works directly with the Weyl tensor. We want to consider only stationary perturbations.
However, stationarity is ambiguous in this context since one could consider perturbations
annihilated either by Bt (which are stationary at infinity) or by the helical Killing vector
Bt `ΩBφ (which are stationary at the horizon). Since we are interested in the behavior near
the horizon, we choose the latter. Notice that this is the choice which corresponds to the
black resonators at finite temperature [22]. Following [21] we use the Kinnersly tetrad and
Boyer-Lindquist coordinates for a non-rotating frame at infinity for the Kerr AdS. Rather
than restrict to pure gravitational perturbations, it is no more difficult to consider a spin s
perturbation (with s “ ˘2 corresponding to pure gravity). We want to separate variables
for the spin s field:

Ψpsq “ e´iωteimφΦpsqlmωprqSlmωpθq. (3.30)

Then, the radial (homogeneous) equation reads:

∆´s
r Br

”

∆s`1
r BrΦpsqprq

ı

`HprqΦpsqprq “ 0 (3.31)

and the angular equation is

1
sin θBθ psin θ∆θBθSlmωq `

«

paω cos θq2 Ξ
∆θ

´ 2saω cos θ Ξ
∆θ

` s` Λ̂ωlm

´

ˆ

m` s cos θ Ξ
∆θ

˙2 ∆θ

sin2 θ
´ 2δs

a2

L2 sin2 θ

ff

S
psq
ωlmpθq “ 0,

(3.32)
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where

∆r “ pr
2 ` a2q

ˆ

1` r2

L2

˙

´ 2Mr , Ξ “ 1´ a2

L2 , ∆θ “ 1´ a2

L2 cos2 θ, (3.33a)

Hprq “
K2
T ´ is∆1

rKT

∆r
` 2isK 1

T `
s` |s|

2 ∆2
r ´ λ̂ωlm (3.33b)

´ |s|p|s| ` 1qp2|s| ´ 1qp2|s| ´ 7q r
2

3L2 ´ |s|p|s| ´ 2qp4s2 ´ 12|s| ` 11q a
2

3L2 ,

KT “ ωpr2 ` a2q ´ma

ˆ

1` r2

L2

˙

, (3.33c)

λ̂ωlm “ Λ̂ωlm ´ 2amω ` a2ω2 ` s` |s|, (3.33d)

Λ̂ωlm is a separation constant and δs “ 1 for s ‰ 0 and δs “ 0 for s “ 0.
Since we want the perturbation to be invariant under Bt ` ΩBφ, we only consider fields

satisfying ω “ Ωm. Given m P Z, one first solves (3.32) (treating it as an eigenproblem for
Λ̂ωlm) and then inserts the obtained values of that constant into the radial equation (3.31).
This equation for the extremal Kerr AdS has a regular singular point at r “ r`. Thus, one
finds that Ψ0 „ pr ´ r`q

γ and Ψ4 „ pr ´ r`q
γ1 .6 As usual, there are two possible values of

γ and γ1 — one is always negative, so must be discarded. In general, s “ 2 modes (which
describe the perturbation of Ψ0) have smaller exponent. Their values for the ` “ 2,m “ 0
mode are depicted in figure 2. It is clear that this particular mode is always divergent.
Since Ψ0 measures the tidal forces in the direction transversal to the horizon, this is the
same type of singularity as the one encountered for static black holes. In general, increasing
` increases γ, so ` “ 3,m “ 0 mode is non-singular for small black holes. If m ‰ 0, γ may
become complex (even with Λ “ 0) — this is a sign of the superradiant instability.

For completeness, let us discuss what happens when one changes the cosmological
constant. For simplicity, we restrict to m “ 0 perturbations. In the Ricci flat Λ “ 0 case,
all the exponents are (with reasonable accuracy) integers. For Λ ą 0, we found all γ to be
positive (at least while real). Thus, Kerr-(dS) seems to be free of this type of singularities
at the horizon. However, even a small charge appears to change this conclusion. In the
Kerr-Newman dS background, the electromagnetic and gravitational perturbations are
intertwined. On the neutral background, the former has a smaller scaling dimension γ.
Since the introduction of a small charge will not change its value too much, it follows that
this will cause diverging curvature for Kerr-Newman dS black holes. At the same time,
when the cosmological constant vanishes, both scaling dimensions remain integer and thus
no singularity develops.

4 Einstein-Maxwell: nonlinear results

In this section we show that the singularities we found in the linearized approximation
actually occur in fully nonlinear solutions. In fact, they leave a strong imprint on nonextremal

6Note that here γ, γ1 denote the exponents for the curvature perturbation, not the metric perturbation.
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Figure 2. Curvature exponent γ as a function of the area radius, R`{L, for the ` “ 2, m “ 0 mode
of extremal Kerr AdS. The fact that it is negative shows that the curvature diverges on the horizon.

black holes. In particular, we will see that although tidal forces are finite for T ą 0, they
become arbitrarily large as T Ñ 0. For simplicity, we will restrict our attention to static,
topologically spherical black holes, but the results hold more generally. We start by
explaining a scaling argument which allows us to relate powers of ρ near an extremal horizon
to powers of T at a nonextremal horizon. We then explain how we numerically compute
the nonlinear solutions. Finally, we present our results.

4.1 Scaling argument

Let us fix a charge Q and a temperature T « 0. In Schwarzschild coordinates, the horizon
is now located at rh « r0 ` 2πTL2

2, where

L2 “
Lr0

a

L2 ` 6r2
0

(4.1)

is the AdS2 radius and r0 is the radius of the horizon of the extremal black hole with the
same charge. In the region ρ ” r ´ r0 ! r0, the metric can be approximated as

g «
ρ2 ´ prh ´ r0q

2

L2
2

dt2 ` L2
2

ρ2 ´ prh ´ r0q2
dρ2 ` pr0 ` ρq

2dΩ2. (4.2)

The first two terms are just AdS2 in Rindler coordinates. Thus, away from the horizon,
any perturbation in this region should behave in the same way as in T “ 0 case, i.e., the
Weyl tensor should grow like

Cρaρb „ ργ´2, (4.3)
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where γ is given by (3.15a). When ρ “ Oprh ´ r0q “ OpT q, the Weyl tensor will be

Cρaρbpρ “ OpT qq „ T γ´2. (4.4)

We do not know exactly what happens very closely to the horizon. Nevertheless, if the
resulting spacetime is smooth, it cannot change very much. Thus, we expect that on
the horizon

Cρaρb|H „ T γ´2 (4.5)

As we will now see, this is truly the case. This means, that even at finite T , tidal forces
(though finite) can be arbitrarily large.

It turns out that the singularities we discussed in the previous section have an important
effect on standard black hole thermodynamics. Most notably, if γ ă 1{2, the increase in
black hole entropy with T acquires an anomalous scaling at low T , which in turn yields an
anomalous scaling for the specific heat at low temperatures. Intuitively, this can be seen
as follows. From the previous section we know that the perturbation to the metric on the
horizon decays like ργ , but the linearized analysis shows that there is no change to the
volume element to leading order. So the leading correction to the area comes from a second
order contribution which scales like ρ2γ . We now use the above scaling argument to relate
ρ to the near extremal horizon temperature T to obtain

S « S0 ` S2 T
2γ (4.6)

where S0 and S2 are suitable constants. This implies that the specific heat at constant
charge scales like

CQ “ T
dS
dT 9 T 2γ (4.7)

We confirm this scaling for Einstein-Maxwell theory using second order perturbation
theory about the near horizon geometry of an extreme RN AdS black hole in the appendix.
We also show that for γ “ 1{2, there is an anomalous T log T scaling of the specific heat.

We have discussed so far how the perturbations behave near the (nearly extremal)
horizon but we omitted their source. The easiest way to obtain such solutions is to consider
slightly deformed boundary conditions. Indeed, a standard (spherically symmetric) black
hole spacetimes satisfy

At|BM “ µ0, (4.8)

where µ0 is a constant. By the AdS/CFT dictionary, it corresponds to the chemical potential
for the dual theory. We perturb this boundary condition by writing

At|BM “ µpθ, φq, (4.9)

where µ is still time-independent. We look for static black hole solutions (of fixed temperature
T ) satisfying this condition and we monitor their Weyl tensor at the horizon.7 Note that in
this scheme, the total charge Q is determined by the solution and not prescribed apriori. Of
course, we also need to specify the metric at infinity. For simplicity we will keep it spherical.

7We will see the anomalous scaling of the specific heat in the next section, in a theory where it is easier
to reach the low temperatures required.
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A few words about µpθ, φq are in place. Since it is a function on a sphere, we may
decompose it into spherical harmonics

µpθ, φq “
ÿ

`,m

µ`,mY`mpθ, φq. (4.10)

Although we are interested in the full, non-linear theory, let us quickly present what would
happen in a perturbative scheme. If we treat a deviation from spherical symmetry as a small
correction, non-spherically symmetric contributions satisfy linearized Einstein-Maxwell
equations on a Reissner-Nordström AdS background with a boundary condition (4.9).
Then, modes with different `,m decouple. From (3.15a), we can see that ` “ 2 would
dominate near the horizon. However, the theory in question is highly non-linear and we may
reasonably expect that if we turn on one mode at infinity, all are going to be non-zero near
the horizon. Thus, for generic µpθ, φq we should obtain the exponent γ given by (3.15a)
with ` “ 2. Nevertheless, if µ2,m is much smaller than different components, it may happen
that the amplitude in front of

Cρaρb „ T γ´2 (4.11)

is going to be very small and this universal effect would become visible only at very
low temperatures.

4.2 Numerical scheme

To construct solutions at nonzero T , we will work directly in Bondi-Sachs coordinates. The
reason for this is two-fold: 1) in Bondi-Sachs coordinates there are no non-analyticities
near the conformal boundary, and we thus expect numerical methods to exhibit stronger
convergence properties; 2) we need to work in a coordinate system where ingoing null
geodesics are easy to determine, so that one can easily calculate tidal force singularities.
Our work will roughly follow [23, 24], but with some important differences.

We thus take the following metric and gauge field Ansätze

ds2 “
L2

y2

#

´ p1´ yqp1` y A1q
dv2

L2 ´
2 dv dy
L

`A2

«

A3

ˆ

dx` A4p1´ yq sin x dv
L

˙2
`

sin2 x

A3
dφ2

ff+

, (4.12a)

A “ p1´ yqA5dv ` L sin xA6 dx , (4.12b)

where all Ai are functions of px, yq and φ is a periodic coordinate with φ „ φ` 2π. Note
that x P r0, πs is an angular coordinate and y “ r0, 1s is a radial coordinate, with x “ 0, π
being the poles of the two-sphere and y “ 0, 1 being the conformal boundary and black
hole event horizon, respectively. We note that B{By is globally null and is thus a physical
coordinate with respect to which one can easily compute tidal force singularities by looking
at certain components of the Weyl tensor in pv, y, x, φq coordinates.

It remains to explain how eqs. (4.12) together with the Einstein-Maxwell equations
give rise to a well defined system of Elliptic equations which can be solved using standard
numerical methods, such as the ones in [25].
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Instead of using the trace-reversed version of the Einstein equation, we are going to
use the Einstein equation itself. The reason for this is that we will take advantage of the
constraint equations to proceed. We thus consider the following equations of motion

Eµν ” Rµν ´
R

2 gµν ´
3
L2 gµν ´ 2

´

FµαF
α

ν ´
gµν
4 FαβF

αβ
¯

“ 0 , (4.13a)

Pµ ” ∇νFνµ “ 0 . (4.13b)

Note that we have more independent components of the Einstein equations than variables to
solve for. We thus need to choose a subset of the equations and show that, given appropriate
boundary conditions, the remaining equations are solved. We thus label the equations we
actually solve for as dynamical, and the ones that are enforced via the Bianchi identities as
constraints (in analogy with the constraint and dynamical equations of the initial value
problem in general relativity).

For dynamical equations we take Eµν and Pµ with µ “ tv, x, φu. This gives us exactly
six equations to solve for within our symmetry class. For the constraint equations we take
Eyµ and P y. Now, we would like to show that if we impose Eyµ and P y at either y “ 0 or
y “ 1, then by virtue of the dynamical equations and the Bianchi identities, the constraint
equations Eyµ and P y should be satisfied everywhere.8 This is a relatively simple exercise
that we leave to the reader. We do, however, have to check that the dynamical equations
form a well posed Elliptic problem. This, in particular, means that near each boundary we
must have a number of free constants of integration that matches the order of the differential
equation. That is to say, near the conformal boundary and black hole event horizon we
expect to find six functions of integration.

In four spacetime dimensions, when using Bondi-Sachs coordinates and focusing on
the Einstein-Maxwell equations, one can show that the asymptotic expansion of the Ai
functions near the boundary is power law in y. As such, we take

Aipx, yq “
`8
ÿ

I“0
yIA

pIq
i pxq . (4.14)

As boundary conditions we impose

A2px, 0q “ A3px, 0q “ 1 , A4px, 0q “ A6px, 0q “ 0 , and A5px, 0q “ µpxq ,

(4.15)
with µpxq being our boundary chemical potential. Note that we have not yet detailed what
boundary condition we take for A1. One can input the above expansion in the dynamical
equations and work out which coefficients are left free. It turns out that all remaining
coefficients are uniquely fixed in terms of µpxq and

!

A
p0q
1 pxq, A

p1q
1 pxq, A

p2q
1 pxq, A

p3q
3 pxq, A

p3q
4 pxq, A

p1q
5 pxq, A

p1q
6 pxq

)

(4.16)

and their derivatives with respect to x. These are seven free functions (once we fix µpxq),
and thus one too many with respect to what we are expecting. To remove this redundancy

8It might appear confusing that we only need to impose the constraint at a single boundary, but this is
the result of the Bianchi identities being first order in Eµν .
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we impose the constraint equation Eyv asymptotically. This constraint then imposes

BA1
By

ˇ

ˇ

ˇ

ˇ

y“0
“

1
4
“

5` 2A1px, 0q `A1px, 0q2
‰

, (4.17)

which fixes Ap1q1 pxq in terms of Ap0q1 pxq. We thus have the expected number of integration
functions near the conformal boundary, and have imposed one of the constraint equations.

We now turn our attention to the black hole event horizon located at y “ 1. The
powers of p1´ yq in the Ansatz for the gauge field and metric (see eqs. (4.12)) were chosen
in such a way that P y and Eyx are automatically satisfied at the black hole event horizon.
The savy reader will note that we have not yet imposed Eyy, but we shall shortly. We again
expand all equations in power series in p1´ yq near the black hole event horizon

Aipx, yq “
`8
ÿ

I“0
p1´ yqI rApIqi pxq . (4.18)

We also impose Eyy at the horizon, which demands that rA
p0q
1 be a constant. In fact, if

we set
rA
p0q
1 “ T0 ´ 1 (4.19)

we find that the black hole temperature is given by

4πLT “ T0 . (4.20)

All coefficients appearing in the expansion near the horizon eq. (4.18) are uniquely fixed in
terms of T0 and

!

rA
p1q
1 pxq, rA

p0q
2 pxq, rA

p0q
3 pxq, rA

p0q
4 pxq, rA

p0q
5 pxq, rA

p0q
6 pxq

)

, (4.21)

which is precisely the number of expected integration constants near y “ 1.
All we need to discuss are the axes of symmetry, located at x “ 0, π. We will focus on

x “ 0, but x “ π has identical boundary conditions. Since we want φ to have period 2π, we
must demand A3p0, yq “ A3pπ, yq “ 1. Regularity at the axis further imposes

BAi
Bx

ˇ

ˇ

ˇ

ˇ

x“0
“ 0 . (4.22)

One can check that the above boundary conditions are consistent with the constraint
equations, and provide the right number of integration functions near the axis of symmetry.
We have thus sketched in some detail that our dynamical equations, together with our
choice of boundary conditions, enforces the constraint equations and gives rise to a well
posed Elliptic problem.

Before presenting the results, we shall detail a little the numerical method we used.
Since the functions Ai develop enormous gradients close to the black hole event horizon as
T Ñ 0, we discretise the integration domain into two patches r0, ycs Y ryc, 1s. Chebyshev-
Gauss-Lobatto grids are placed in each patch using transfinite interpolation (see [25]). At the
patch boundaries we require the metric and its first derivative to be continuous (continuity of
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the remaining derivatives is then enforced via the equations of motion). We then implement
a standard Newton-Raphson routine, with each linear iteration being solved via a LU
decomposition. Since large gradients develop near the horizon, we typically take yc “ 0.95.
On the patch near the event horizon we had to resort to enormous resolutions (with more
than 100 points in the y direction) to resolve the gradients and achieve convergence. With
these high resolutions we were able to reach as low as 4πLT “ 10´3.

4.3 Results

For the boundary profile we take

µpxq “ µ̄` µ1 cosx . (4.23)

This corresponds to a dipole type perturbation, where the inhomogeneous component of the
chemical potential is given entirely in terms of an ` “ 1 harmonic on the round two-sphere.

The most interesting quantity to plot is the Cρφρφ component of the Weyl tensor
evaluated on the event horizon, i.e. at y “ 1, for which the scaling given in eq. (4.11) should
apply. In Bondi-Sachs coordinates, this component is simply given by

Cρφρφ “ ´
sin2 x

2y2A2
3

«

A2
A3

ˆ

BA3
By

˙2
´
BA2
By

BA3
By

´A2
B2A3
By2

ff

. (4.24)

In figure 3 we plot the maximum value of Cρφρφ on the black hole event horizon, i.e.
maxH` Cρφρφ, as a function of 4πTL in a log-log scale, for fixed values of µ̄ “ 2 and
µ1 “ 0.1. We have tried other values of µ̄ and µ1 and the results remain qualitatively
similar. If the scaling given in eq. (4.11) holds, we should see a straight line in a log-log
plot appearing at low T . This appears evident from figure 3. Furthermore, the slope of this
linear behaviour should be given precisely by γ ´ 2, with γ being computed by the limiting
Q at zero temperature. We can extract such Q from the numerical results via a linear fit

G4Q

L
“ q0 ` q1T (4.25)

in the range 4πTL P r10´3, 10´2s. We find q0 « 2.00181 which, as expected is very close
to µ̄, since µ1 is small. This is the value of Q that controls the smallest value of γ. This
occurs for the ` “ 2 mode with the minus sign in eq. (3.15a). For this value of Q, we find
γ « 0.122025. On the other hand, the solid black line in figure 3 is well fit by a function of
the form

a0T
rγ´2 (4.26)

and via a fit in the region 4πT P r10´3, 10´2s we find rγ « 0.122401 and a0 « 0.00166763.
The agreement between γ computed with the limiting value of Q and according to eq. (3.15a)
and the value extracted from the fit (rγ) is striking: the difference is below 0.5%. Furthermore,
we expect the ` “ 2 mode to be nonlinearly sourced by the ` “ 1 boundary mode. As such,
the expectation is that this mode at the horizon must have a magnitude that scales as a
power of µ1. This is precisely what we find for a0.

– 20 –



J
H
E
P
0
1
(
2
0
2
3
)
1
6
2

0.001 0.010 0.100 1

0.001

0.010

0.100

1

10

100

1000

Figure 3. A plot showing the maximum of Cρφρφ on the horizon as a function of 4πTL, computed
for µ̄ “ 2 and µ1 “ 0.1. The solid black line shows the best fit to the functional form given in
eq. (4.26) in the range 4πT P r10´3, 10´2s yielding rγ « 0.122401 and a0 « 0.00166763. The blue
disks correspond to the numerical data points extracted from our simulations.

We have also looked at curvature invariants, such as the maximum value of the square
of the Weyl tensor at the black hole horizon. For an extremal RN AdS black hole of any
size we find that the square of the Weyl tensor on the horizon H` is simply

L4C2ˇ
ˇ

H` ” L4 CµνρλCµνρλ

ˇ

ˇ

ˇ

H`
“ 48 . (4.27)

If our linear results are to hold, we should see all curvature invariants approaching their
AdS2 value at small temperatures. In figure 4 we plot the maximum value of the square
of the Weyl tensor on the black hole event horizon as a function of the temperature in
a log-linear plot. The blue disks are the exact numerical results and the dashed black
horizontal line is the AdS2 prediction. Clearly, the square of the Weyl tensor on the horizon
not only remains finite as we cool down the system but it also approaches its unperturbed
value, as predicted by perturbation theory.

5 Nonlinear scalar field model

It is difficult to numerically construct the T “ 0 limit of the solution in the previous section,
or get T low enough to see the anomalous scaling of the specific heat predicted in section 4.1.
To remedy this, in this section we consider a simpler model in which both can be achieved.
We confirm that the exact T “ 0 solution has diverging tidal forces as predicted by the
linear analysis, and that the specific heat has anomalous scaling.
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Figure 4. A plot showing the square of the Weyl tensor on the black hole event horizon as a
function of 4πTL, computed for the same black holes as figure 3. The solid black line shows the
AdS2 prediction of eq. (4.27). The blue disks correspond to the numerical data points extracted
from our simulations.

Our model consists of adding 2` ` 1 neutral, massless scalar fields to our Einstein-
Maxwell theory. By cleverly choosing their angular dependence, one can keep the stress
tensor spherically symmetric, so the metric remains spherical. Nevertheless, from the
behavior of a test field in section 2, we expect the scalars will develop power law behavior
with noninteger exponents near the horizon which will backreact on the metric.

The scalar fields can be viewed as components of a vector ~Φ:

p~Φqm “ ψm , (5.1)

with |m| ď `. The action is then simply

S “
1

16πG

ż

M
d4x

?
´g

„

R`
6
L2 ´ FµνF

µν ´ p∇µ
~Φq ¨ p∇µ~Φq



, (5.2)

where ¨ denotes the usual Cartesian dot product between vectors in R2``1 and G is Newton’s
constant. One could generalize this by adding the same mass to all scalars without changing
the conclusion.

The equations of motion derived from (5.2) read

Rµν´
R

2 gµν´
3
L2 gµν “ 2

´

F α
µ Fνα´

gµν
4 FαβF

αβ
¯

`
`

∇µ
~Φ
˘

¨
`

∇ν
~Φ
˘

´
gµν
2

`

∇α
~Φ
˘

¨
`

∇α~Φ
˘

,

(5.3a)
∇νFµν “ 0 , (5.3b)
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and
∇µ∇µ~Φ “ 0 . (5.3c)

We will focus on static black hole solutions whose stress energy tensor is spherically
symmetric. We then introduce ingoing Eddington-Finkelstein coordinates pv, r, θ, φq in
which the metric and gauge field take the form

ds2 “ ´fprq dv2 ` 2 dv dr ` r2 pprq
`

dθ2 ` sin2 θdφ2˘ , (5.4a)

and
A “ Avprq dv (5.4b)

with f and p functions of r to be determined by our numerical scheme.
As promised, we would like to retain non-homogeneity in the scalar field, and at the

same time ensure that the resulting stress energy momentum tensor is spherically symmetric.
We can achieve this by choosing

ψmpr̂, θ, φq “ ψprq ˆ

d

p`´mq!
p``mq! ˆ P

`
mpcos θq ˆ

$

’

&

’

%

?
2 sinpmφq , for m ă 0

1 , for m “ 0
?

2 cospmφq , for m ą 0
, (5.5)

where P `mpxq are the standard associated Legendre polynomials. The normalisations are
chosen so that

ÿ̀

m“´`

ψmpr, θ, φq
2 “ ψprq2 . (5.6)

We first solve eq. (5.3b). This is a simple exercise, since the scalars are uncharged
under the Maxwell field and the solution is spherically symmetric. We thus find

A1vprq “
Q

r2 pprq
, (5.7)

where Q is an integration constant and 1 denotes differentiation with respect to r. It is
a simple exercise to show that in fact Q is the charge of the black hole solutions we seek
to construct so long as we demand limrÑ`8 pprq “ 1. We can use this relation in the
remaining Einstein and scalar field equations to eleminate all dependence on Av. The
Einstein and scalar field equations reduce to

pr2 pq1

p

f 1

f
`

1
2
pr2pq12

r2p2 ´
6r2

fL2 `
2Q2

r2 f p2 ´
2
f p

`
`p`` 1qψ2

f p
´ r2ψ12 “ 0 , (5.8a)

1
r2p
pr2 p f ψ1q1 ´

`p`` 1q
r2p

ψ “ 0 , (5.8b)

1
r2p
pr2p1q1 ` ψ12 ´

p12

2p2 “ 0 . (5.8c)

The line element eq. (5.4a) has a residual gauge freedom. Namely, we are free to shift
r by a constant. We fix this freedom by demanding ppr`q “ 1, where r “ r` is the black
hole event horizon (extremal or otherwise) defined by fpr`q “ 0.
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5.1 Zero temperature results

For zero temperature black holes, we want fprq to have a double zero at the black hole
horizon r “ r`. We shall also assume that near the horizon ψ9pr ´ r`qγ for some power
γ ą 0 to be determined shortly. From eq. (5.8a) it easy to see that the requirement that f
has a double zero at r “ r` implies

Q “ r`

c

1` 3 r2
`

L2 . (5.9)

We thus choose this value throughout and parameterise our extremal black holes by r`{L ą 0.
We now write

f “ f0pr ´ r`q
2 p1` δfq , (5.10)

where δf is a function we wish to determine next as a function of γ. The first nontrivial
order in eq. (5.8a) determines f0 as a function of r`, and we find

f0 “
L2 ` 6r2

`

L2r2
`

“
1
L2

2
, (5.11)

where L2 is the AdS2 radius. The next to leading order terms in eq. (5.8a) determine δf .
The leading contribution to δf is of the form

pr ´ r`q
2δf 1 9 pr ´ r`q

2γ̂`1 ñ δf 9 pr ´ r`q
2γ̂ , (5.12)

where γ̂ “ min pγ, 1{2q.
Similarly, p admits an expansion

p “ 1` p1pr ´ r`q
2γ̂ , (5.13)

where p1 is a known constant. For γ “ 1{2, there are logarithmic terms appearing in the
expansions of both f and p.

It remains to determine γ. These we read off from the scalar equation, which to leading
order off the extremal horizon yield

γ “
1
2

«
d

1` 4`p`` 1q
1` 6 y2

`

´ 1
ff

, (5.14)

where y` is again the dimensionless radius y` ” r`{L. Note that this agrees with the linear
result (2.8).

To proceed numerically, we introduce a compact coordinate

r “
r`

1´ y (5.15)

so that the extremal horizon is located at y “ 0, whereas the conformal boundary is located
at y “ 1. To implement our boundary conditions, we also define

fprq ”
pr ´ r`q

2 `L2 ` r2 ` 3r2
` ` 2rr`

˘

L2r2 qprq , (5.16)
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and regard q, ψ and p as functions of y. The boundary conditions are now simply qp0q “ 1,
ψp0q “ 0, pp0q “ 1 at the extremal horizon. At the conformal boundary we demand
qp1q “ 1, ψp1q “ V and pp1q “ 1. The conditions on q and p just ensure that the spacetime
is asymptotically AdS. V is the amount that we turn on the scalars asymptotically. If there
were a holographic dual to this theory, V would be the source of the operator dual to ψ.

After obtaining the exact solution, we extract the exponents by computing logarithmic
derivatives as a function of radius

γypyq ”
y

ψ

dψ
dy and rγypyq ”

y

p´ 1
dp
dy (5.17)

If our linear analysis is accurate, we expect γyp0q “ γ and rγyp0q “ 2γ if γ ă 1{2. If γ ą 1{2,
we expect rγyp0q “ 1. In this case, even though the leading correction to the metric looks
smooth, at the next order there are fractional powers which make the horizon singular. The
results are shown in figure 5 as a function of y for ` “ 1 and V “ 1. On the top row we have
γ “ 1{4 (y` “ 3{

?
10), whereas on the bottom row we have γ “ 3{4 (y` “

a

11{126). On
the left column we plot γypyq, whereas on the right column we plot rγypyq. The numerical
data is represented in blue, and the linear analytic prediction is given as a red disk at y “ 0.
The agreement between the numerical results and the analytic analysis is reassuring and
shows that, despite starting the scalars with magnitude one asymptotically and having
a horizon singularity, the linear near horizon calculation is reproduced at the non-linear
level. Note that our boundary conditions at no point assumed power law decay. Indeed,
our boundary conditions assumed only that ψpr`q “ 0 and that ppr`q “ qpr`q “ 1. In this
sense, our nonlinear confirmation of the linear results is non-trivial.

5.2 Non-zero temperature results

Having discussed the zero temperature limit, we now turn our attention to the non-extremal
case. In particular, in this section we aim to show that whenever the linear analysis
predicts γ ă 1{2, the specific heat at constant charge Q, i.e. CQ, will show a leading
anomalous scaling in the small temperature expansion. In particular, according to the
general arguments established in section 4.1 we expect the leading behaviour at small T of
the specific heat to be CQ 9 T 2γ .

We will again use the ingoing Eddington-Finkelstein coordinates of (5.4a). Since we
want a non-degenerate horizon we demand that f has a simple zero at r “ r`. Under
this assumption, eq. (5.8a) and eq. (5.8b) develop a regular singular point at r “ r`. To
implement the boundary conditions we define

fprq “
´

1´ r`
r

¯

ˆ

r2

L2 ` 1` r`r

L2 `
r2
`

L2 ´
Q2

r r`

˙

qprq . (5.18)

Again, we introduce a compact coordinate as in eq. (5.15), and regard q, φ and p as functions
of y, with y “ 0 being the location of the event horizon and y “ 1 the conformal boundary.

At the conformal boundary we demand qp1q “ pp1q “ 1 and ψp1q “ V , just like we did
for the extremal case. We are thus left with specifying the boundary conditions at the event

– 25 –



J
H
E
P
0
1
(
2
0
2
3
)
1
6
2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 5. Left column: plots of γypyq as a function of y. Right column: plots of rγypyq as a function
of y. The top row has γ “ 1{4 and the bottom row has γ “ 3{4. In all cases, ` “ 1 and V “ 1. The
red dots denote the scaling exponents derived from the linear analysis.

horizon. Since r “ r` is a regular singular point of eq. (5.8a) and eq. (5.8b), the boundary
conditions for q and ψ follow from demanding regularity at r “ r` and in particular yield

qp0q
˜

dp
dy

ˇ

ˇ

ˇ

ˇ

y“0
` 2

¸

“

«

2´ y2
``p`` 1qψp0q2

y2
` ` 3y4

` ´
rQ2

ff

and dψ
dy

ˇ

ˇ

ˇ

ˇ

y“0
“

y2
``p1` `qψp0q

´

y2
` ` 3y4

` ´
rQ2
¯

qp0q
,

(5.19)
where we defined y` ” r`{L and rQ “ Q{L. For ppyq, we again demand pp0q “ 1.

Having determined the boundary conditions, we can now readily compute all quantities
of interest. We are particularly interested in the behaviour of the specific heat at constant
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charge CQ. This is determined via the usual thermodynamic relation

CQ “ T

ˆ

BS

BT

˙

Q

. (5.20)

In order to determine CQ as a function of T , we need to find the entropy S and temperature
T of our novel black holes. These are given by

S “
π y2

` pp0q
G

L2 and rT ” LT “
y2
`

`

1` 3y2
`

˘

´ rQ2

4πy3
`

qp0q . (5.21)

The strategy is clear: we hold fixed a particular value of rQ, and decrease y` thus
decreasing the temperature. The expected low temperature scaling depends on γ which is
uniquely determined by rQ. So we can predict γ from the onset. It remains then to check
whether CQ does exhibit the scaling predicted in section 4.1. For a RN AdS black hole, it
is relatively easy to check that

GCRN
Q

L2 “
2πy2

`

3 rQ2 ´ y2
` ` 3y4

`

”

y2
`

`

1` 3y2
`

˘

´ rQ2
ı

(5.22)

and thus near rT « 0 we find

GCRN
Q

L2 «
π2

3

c

2
3
`

1` 12 rQ2˘1{4

¨

˝1´ 1
b

1` 12 rQ2

˛

‚

3{2

rT `Op rT 2q (5.23)

In figure 6 we plot the logarithmic derivative of CQ, at constant charge Q, with respect
to T . This particular data was collected for ` “ 1, γ “ 1{4, and thus rQ “ 3

?
37{10.

Furthermore, we have chosen V “ 1{2. The purple disks are the numerical data, the solid
black curve is given in eq. (5.22) for the same charge rQ and the red horizontal line shows
1{2 and is there to guide the eye. We can see that the logarithmic derivative approaches
2γ “ 1{2 at low temperatures, as expected from our scaling in section 4.1. For smaller values
of V we need to resort to (even) smaller temperatures to see the scaling emerging at small
T . We have probed other values of rQ and find that whenever γ ă 1{2, we see an anomalous
scaling. For γ ą 1{2, we return to the standard AdS2 linear scaling given in (5.23).

6 Discussion

We have seen that as soon as one breaks the usual spatial symmetry, almost all stationary
black holes in AdS develop curvature singularities on their horizon in the extremal limit.
(The main exception is small toroidal black holes.) This singularity results in infinite tidal
forces for infalling observers. Contrary to the usual situation where the horizon curvature
increases when the black hole becomes smaller, this singularity becomes stronger when
the black hole becomes larger. Since the singularity arises in the limit of a family of
smooth black holes, the solution is clearly physical [26], and not like the singularity of
M ă 0 Schwarzschild.
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Figure 6. Logarithmic derivative of CQ, at constant charge Q, with respect to T . For the data
shown we have used ` “ 1 and Q{L “ 3

?
37{10. The anomalous scaling predicted in section 4.1 is

marked as a horizontal red line showing 2γ “ 1{2, the purple disks are the exact numerical data
collected at finite temperature and the solid black line shows the standard AdS2 result of eq. (5.22).

The diverging tidal forces close to the horizon should be proportional to the deviation
from spherical symmetry at infinity. Thus, one could be tempted to infer that (close to the
spherical symmetry) the physical effects are negligibly small, despite the null singularity.
However, to properly account for e.g. the total deformation an infalling observer experiences,
one should look at the integrated tidal forces rather than their pointwise values. If the
scaling dimension of the metric perturbation satisfies γ ą 1, the forces are integrable, so
the deformation would be finite and indeed small for the boundary conditions close to the
spherical symmetry. However, for γ ă 1, the forces are not integrable. Thus, the total
deformation remains infinite for arbitrary small deviations from the spherical symmetry. In
particular, this is the case for RN AdS of any charge and for sufficiently large Kerr AdS
black holes.

Many supersymmetric solutions have been found in AdS with smooth horizons.9
However, if one deforms the boundary conditions slightly, supersymmetry will be broken
and we expect that the horizon will become singular. (We have checked this explicitly in
one case.) So supersymmetric solutions are very special, like Reissner-Nordström AdS, and
do not see these singularities.

The Einstein-Maxwell theory we have studied can be embedded in supergravity in
different ways. In some embeddings, there are charged scalars with mass m and charge
q. Depending on (m, q), there may be a range of r` in which the extremal black hole is
unstable to turning on the scalar field [27]. In this case, the singularity is likely to become
much worse [28]. However, even with charged scalars, there is usually a range of r` for

9See [7] for an example of a supersymmetric solution with a singular horizon.
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which there is no instability to turning on the scalar field, and in those cases, our tidal force
singularity will remain. (An extensive discussion of the near horizon scaling dimensions of
supergravity fields is given in [29].)

It is natural to ask how stringy or quantum effects will modify this singularity. Although
we cannot answer this, we make the following comments. Infalling strings will certainly
become excited by the large tidal forces and should backreact on the geometry. Quantum
effects are often discussed in the context of the Euclidean theory. All of the examples we
have considered, except for the rotating black holes in section 3.3, are static and have a
real Euclidean analytic continuation.10 In the extremal limit, the horizon moves off to
infinity and becomes another asymptotic boundary to the Euclidean solution. All curvature
invariants of the Euclidean solution are the same as the Lorentzian solution. Since the
latter remain finite, and the Euclidean curvature is completely determined by its scalar
invariants, the Euclidean solution is completely nonsingular! The only remnant of the tidal
force singularity seen in the Lorentzian solution is that the solution decays with noninteger
powers of the radius in the asymptotic region associated with the horizon. But that also
occurs near the boundary at infinity for most massive fields in AdS, and does not cause any
problems. Thus there is no reason to discard these solutions. In particular, they are proper
saddles for the Euclidean path integral with appropriate boundary conditions. It follows,
that such black holes may be also prepared (as a quantum state) using the Euclidean
path integral.

As we have discussed, when these tidal force singularities are strong enough, there is a
clear signal of them in a holographic dual theory. Various quantities such as the specific
heat will exhibit anomalous scaling with temperature as T Ñ 0. For topologically spherical,
charged black holes, this applies whenever the black hole is larger than roughly the AdS
radius. We have also considered two examples of extreme black holes in pure gravity: Kerr
AdS and hyperbolic black holes. These black holes exhibit more mild singularities which
holographically appear in anomalous higher order corrections to the leading (linear in T )
behavior of the specific heat.

Finally, we mention a holographic argument that a singularity should perhaps be
expected on the horizon of an extremal black hole and not be resolved by quantum effects.11

The entanglement wedge of the entire boundary of an extremal black hole only covers the
region of spacetime outside the horizon. Since there is no other boundary, it appears that
the region inside the horizon cannot be described in terms of the dual theory. If the theories
are really equivalent, then perhaps spacetime should end at a singular horizon. Note that
this argument does not depend on having a timelike singularity inside the black hole. The
event horizon is a Cauchy horizon for any complete spacelike surface outside the black hole.
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A Anomalous scaling of the specific heat

In this appendix, we provide some details of the calculation of the anomalous scaling of the
specific heat with temperature. The final answer agrees with the scaling argument (4.7)
given in section 4.1. We will use second order perturbation theory about the near horizon
geometry of an extreme RN AdS black hole.

Since our argument relies on second order perturbation theory, our calculations will
become less explicit and, for the sake of presentation, less general. We will focus on
deformations of the near horizon geometry that break SOp3q but preserve a Up1qφ symmetry.
Additionally we will impose the discrete symmetry φÑ ´φ. We then write an Ansätze for
the deformed metric and gauge field in Bondi-Sachs coordinates adapted to the extremal
horizon:

ds2 “ L2

#

´Apρ, θq ρ2 dv2

L2 `
2 dv dρ
L

` y2
`HLpρ, θq

«

HT pρ, θq

ˆ

dθ ´ Uθpρ, θq ρ dv
L

˙2
`

sin2 θ

HT pρ, θq
dφ2

ff+

, (A.1a)

and
A “ ρAvpρ, θq dv ` LAθpρ, θq dθ , (A.1b)

with the extremal horizon being located at ρ “ 0, as usual.
We now expand all metric and gauge field functions in terms of harmonics on the

round S2, by identifying how each transforms under diffeomorphism on the two-sphere.
This will make contact with section 3.2. Essentially, A, HL and Av can be written as an
infinite sum of scalar spherical harmonics and Uθ and Aθ as an infinite sum of gradients of
spherical harmonics. HT is slightly more subtle, but its transformations properties can be
read from (3.12b). Note that no spherical vector harmonics appear in our expansion, since
these would necessarily break the discrete symmetry φÑ ´φ that we want to preserve. To
sum up, we have

Apρ, θq “
`8
ÿ

`“0
S`pθqa

`pρq , (A.2a)

HLpρ, θq “
`8
ÿ

`“0
S`pθqh

`
Lpρq , (A.2b)

Avpρ, θq “
`8
ÿ

`“0
S`pθqa

`
vpρq , (A.2c)
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Uθpρ, θq “
`8
ÿ

`“1
BθS`pθqu

`
θpρq , (A.2d)

Aθpρ, θq “
`8
ÿ

`“1
BθS`pθqa

`
θpρq , (A.2e)

and

HT pρ, θq “
`8
ÿ

`“2
r`p`` 1qS` ` 2 cot θ BθS`pθqsh`T pρq . (A.2f)

So far we have not made any approximation. Indeed, we could have used this expansion
to perform the full nonlinear numerical analysis of section 4.2, precisely in the spirit of
Galerkin spectral methods.

We now introduce our approximation scheme. We expand each of the functions
ta`, h`L, a

`
v, u

`
θ, a

`
θ, h

`
T u as a power series in a book keeping parameter ε which we take to be

small

a`pρq “
`8
ÿ

j“0
εja`pjqpρq , (A.3a)

h`Lpρq “
`8
ÿ

j“0
εjh`L pjqpρq , (A.3b)

a`vpρq “
`8
ÿ

j“0
εja`v pjqpρq , (A.3c)

u`θpρq “
`8
ÿ

j“0
εju`θ pjqpρq , (A.3d)

a`θpρq “
`8
ÿ

j“0
εja`θ pjqpρq , (A.3e)

and

h`T pρq “
`8
ÿ

j“0
εjh`T pjqpρq . (A.3f)

We take the background, i.e. the order ε0, to be given by an extreme RN AdS black
hole, which amounts to taking

a0
p0qpρq “ 6` 1

y2
`

, h0
L p0q “ 1 and a0

v p0q “

b

1` 3y2
`

y`
, (A.4)

with all the remaining coefficients in (A.3) set to zero.
At linear order, i.e. ε1, we impose an ` “ 2 deformation. If we imagine that these near

horizon deformations arise from a boundary deformation of a generic profile, the ` “ 2
perturbation is the one that decays the slowest as we approach the horizon, and as such
provides the leading effect we want to study. In order to only keep a ` “ 2 deformation,
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we take a2
p1qpρq, u2

θ p1qpρq, h2
L p1qpρq, h2

T p1qpρq, a2
v p1qpρq and a2

θ p1qpρq to be non-vanishing, but
keep all the remaining coefficients with ` ‰ 2 zero. Solving the linear Einstein-Maxwell
equations yields

a2
p1qpρq “ ργ , (A.5a)

u2
θ p1qpρq “

1
`

1` 6y2
`

˘

pγ ´ 1q
ργ , (A.5b)

h2
L p1qpρq “ 0 , (A.5c)

h2
T p1qpρq “

y2
`pγ ` 1q

4
`

1` 6y2
`

˘

γ2 ` γ ´ 10` 6y2
`

`

γ2 ` γ ´ 2
˘

6` γ
“

γ2 ´ 7` 6y2
` pγ

2 ´ 1q
‰ ργ , (A.5d)

a2
v p1qpρq “

6y`
1` 6y2

`

b

1` 3y2
`

6` γ
“

γ2 ´ 7` 6y2
` pγ

2 ´ 1q
‰ ργ , (A.5e)

a2
θ p1qpρq “

y3
`

1` 6y2
`

b

1` 3y2
`

6` γ
“

γ2 ´ 7` 6y2
` pγ

2 ´ 1q
‰ ργ , (A.5f)

where the first equation defines what we mean by ε. The exponent γ can again take four
distinct values. Two are negative, and we ignore those via boundary conditions, and we are
interested in the smallest of the two that are positive. This yields

γ “
1
2

»

—

–

g

f

f

e5` 24
1` 6y2

`

´ 4

d

1`
24

`

1` 3y2
`

˘

`

1` 6y2
`

˘

2 ´ 1

fi

ffi

fl

, (A.5g)

which matches γ`´ in eq. (3.15a) with ` “ 2, as it should. Note that h2
L p1q vanishes via the

equations of motion.
One can now proceed to second order in ε. At quadratic order, modes with ` “ 0, 2, 4

are generated in the expansion. The final expression for each of the coefficients is rather
complicated and not very illuminating. However, in order to make the argument we want,
we only need to focus on HL. The reason for this is that the area of a surface of constant v
and ρ “ ρ0 is simply given by

Apρ0q “ 2πL2 y2
`

ż π

0
HLpρ0, θq sin θ dθ “ 4πL2 y2

`h
0
Lpρ0q , (A.6)

where we used that spherical harmonics have vanishing integral over the sphere. Note
that the above expression is exact. From this expression, it is clear that we can only get
contributions to the area coming from the ` “ 0 harmonic. This justifies why we need to go
to second order in ε to see the effect we want.

After some algebra, one finds

h0
L p2qpρq “ C2pγq ρ

2γ ` C0 ` C1 ρ , (A.7a)
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Figure 7. C2pγq as a function of γ in the range 0 ă γ ă 1{2.

with

C2pγq “
pγ ` 1qpγ ` 2q

5760p1´ 2γqp1´ γq pγ2 ` γ ` 6q

«

48` 12γ ´ 4γ2 ´ 35γ3 ´ 25γ4 ´ 9γ5 (A.7b)

´ 3γ6 `
72´ 22γ ´ 27γ2 ´ 10γ3 ´ 5γ4

?
3

a

γpγ ` 1q pγ2 ` γ ` 4q
ff

(A.7c)

where we regard y` as a function of γ by inverting (A.5g), i.e.

y` “
1
?

6
1

a

p1´ γqpγ ` 2q

g

f

f

eγpγ ` 1q ´ 8` 2
d

3` 12
γpγ ` 1q . (A.8)

In the above, C0 and C1 are integration constants. We set C0 “ 0, which essentially defines
y`. C1, on the other hand, cannot be set to zero.

The exact form of eq. (A.7) is largely unimportant, except for a few of points. The most
important point is that it turns out to be non-zero, unlike at first order in ε. The second
important point is that in the range 0 ă γ ă 1{2, the leading contribution to h0

L p2qpρq is
proportional to ρ2γ . Furthermore, its coefficient, C2pγq, turns out to be positive definite
(see figure 7 below).

The apparent singularity at γ “ 1{2 reflects the fact that, for that value of γ, h0
L p2qpρq

is no longer given as in (A.7a), but instead

h0
L p2q “ C0 ` C1ρ`

997` 281
?

19
110592 ρ log

ˆ

1
ρ

˙

, (A.9)

where again we can set C0 “ 0, but not C1. The leading behaviour near ρ “ 0 is then given
by ρ logp1{ρq, again with a positive coefficient.
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We can now apply the same scaling argument we used in section 4.1 to the black hole
entropy. Indeed, if we use (A.6), we have just shown that a surface of constant v and ρ “ ρ0,
to leading order in ρ0 ! 1, has an area given by

Apρ0q “ 4πL2y2
`

”

1` C2pγq ρ
2γ
0

ı

, (A.10)

in the range 0 ă γ ă 1{2, which yields an entropy of the black hole horizon scaling as

S « S0 ` S2 T
2γ (A.11)

where S0 and S2 are suitable constants. Using similar arguments, applied for γ “ 1{2, we
find instead

S « rS0 ` rS2 T log T ` rS3T , (A.12)

for suitable constants rS0, rS2 and rS3. Note that γ is ultimately fixed by the total charge Q
(or alternatively y`). Using standard thermodynamic relations, we predict the scaling of
the specific heat at constant charge Q, at sufficiently small temperatures, to be given by

CQ « 2γ rS2T
2γ (A.13)

in the range 0 ă γ ă 1{2 and

CQ « T
´

rS2 ` rS3

¯

` rS2T log T , (A.14)

for γ “ 1{2. Note that the fact that C2pγq is positive is paramount to argue that the near
horizon geometry we found is thermodynamically locally stable, since rS2 turns out to be
proportional to C2pγq, which makes CQ in (A.13) also positive.

Though we have deduced this anomalous scaling for Einstein-Mawell, we predict this
will be true for a variety of systems that suffer from tidal force-type singularities. For
instance, in section 5.2 we show that our finite temperature scalar model exhibits a scaling
of the form (A.13).
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