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Quantum discord quantifies nonclassical correlations in a quantum system including those not captured by

entanglement. Thus, only states with zero discord exhibit strictly classical correlations. We prove that these

states are negligible in the whole Hilbert space: typically a state picked out at random has positive discord and,

given a state with zero discord, a generic arbitrarily small perturbation drives it to a positive-discord state. These

results hold for any Hilbert-space dimension and have direct implications for quantum computation and for the

foundations of the theory of open systems. In addition, we provide a simple necessary criterion for zero quantum

discord. Finally, we show that, for almost all positive-discord states, an arbitrary Markovian evolution cannot

lead to a sudden, permanent vanishing of discord.

DOI: 10.1103/PhysRevA.81.052318 PACS number(s): 03.67.Mn, 03.65.Yz, 03.67.Lx

I. INTRODUCTION

The emergence of quantum-information science motivated

a major effort toward the characterization of entangled states,

generally believed to be an essential resource for quantum-

information tasks that outperform their classical counterparts.

In particular, the geometry of the sets of entangled or

nonentangled states received much attention [1], starting from

the fundamental result that the set of separable (nonentangled)

states has nonzero volume in a finite-dimensional Hilbert space

[2]. In other words, separable states are not at all negligible,

which has direct implications for some implementations of

quantum computing [3] and on the definition of entanglement

quantifiers [4].

Apart from entanglement, quantum states display other

correlations [5–7] not present in classical systems (meaning,

here, systems where all observables commute). Aiming at

capturing such correlations, Ollivier and Zurek introduced

quantum discord [5]. They showed that only in the absence

of discord does there exist a local measurement protocol that

enables distant observers to extract all the information about

a bipartite system without perturbing it. This completeness

of local measurements is featured by any classical state, but

not by quantum states, even some separable ones. Thus, zero

discord is a necessary condition for classical-only correlations.

Very recently, quantum discord has received increasing

attention [8–15]. A prevailing observation in all results

obtained so far is that the absence or presence of discord is

directly associated to nontrivial properties of states. Thus, it

is natural to ask how typical positive-discord states are. Here

we prove that a particular subset of states that contains the set

of zero-discord states has measure zero and is nowhere dense.

That is, it is topologically negligible: typically, every state

picked out at random has positive discord and, given a state

with zero discord, a generic (arbitrarily small) perturbation

will take it to a state of strictly positive discord. Remarkably,

these results hold true for any Hilbert-space dimension and

are thus in contrast with expectations based on the structure

of entangled states [2]: while the set of separable states has

positive volume, the set of only classically correlated states

does not. In addition, we provide a necessary condition,

of very simple evaluation, for zero quantum discord. With

this tool we suggest a schematic geometrical representation

of the set of zero discord, and we study the open-system

dynamics of discord. We find that, for almost all states of

positive discord, the interaction with any (non-necessarily

local) Markovian bath can never lead either to a sudden,

permanent vanishing of discord or to one lasting a finite

time interval. In strong contrast with entanglement—which

typically vanishes suddenly and permanently at a finite time

[16]—discord can only permanently vanish in the asymptotic

infinite-time limit (i.e., at the steady state).

Our results have wide-ranging implications. First, from

a fundamental perspective, they imply that classical-only

correlated states are extremely rare in the space of all quantum

states. Second, it was recently discovered that an arbitrary

unitary evolution for any system and bath is described (upon

tracing the bath out) as a completely positive map on the

system if, and only if, system and bath are initially in a

zero-discord state [11]. In view of the rarity of zero-discord

states, the fundamental recipe “unitary evolution + partial

trace” is now in conflict with complete positivity—one of

the most basic and fundamental requirements that physical

evolution is demanded to fulfill [17]—for almost all quantum

states. Another interesting fact is that quantum discord is

present in typical instances of a mixed-state quantum com-

putation [18], even when entanglement is absent [9,10,14].

This led Datta et al. [9,10] to suggest that discord might

be the resource responsible for the quantum speedup in this

computational model. If the mere presence of discord was by

itself responsible for some speedup, then our results would

imply that almost all quantum states are useful resources.

Furthermore, Piani et al. [12] introduced a new task—local

broadcasting—to operationally distinguish among different

varieties of states with zero quantum discord. They showed

that only some zero-discord states can be locally broadcasted,

which, according to us, now means hardly any quantum state.

Also, our general results on the Markovian dynamics of discord

complement and generalize the specific results reported in

Refs. [13]. There, for particular cases of local channels and

two-qubit systems, discord was never observed to vanish

permanently at a finite time. As said, we prove the generality

of this behavior. Finally, our results also apply to quantifiers

of quantum correlations other than discord.
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II. QUANTUM DISCORD

Consider a bipartite system in a composite Hilbert

space H = HA ⊗ HB , of dimension d = dA × dB , with dA =

dim(HA) and dB = dim(HB), respectively. Given a quantum

state ρ ∈ B(H ) [where B(H ) denotes the set of bounded,

positive-semidefinite operators on H with unit trace], the von

Neumann mutual information IAB between A and B is defined

as

IAB(ρ)
.
= S(ρA) + S(ρB) − S(ρ), (1)

where S(ρ) = −Tr[ρ log ρ] is the von Neumann entropy and

ρA,B = TrB,A[ρ]. Mutual information (1) quantifies the total

amount of correlations in quantum states [6].

A classically equivalent definition of mutual information is

S(ρB) − S(ρB|A), where ρB|A is the state of B given a measure-

ment in A. Thus, classical mutual information quantifies the

decrease in ignorance (gain of information) about subsystem

B upon local measurement on A. Let us now consider a

measurement consisting of (non-necessarily orthogonal) one-

dimensional measurement elements {Mj } onHA. We can write

the state of system B conditioned on the outcome j for A as

ρB|j = TrA[Mjρ]/p′
j , where the probability of outcome j is

given by p′
j = Tr[ρMj ]. By optimizing over the measurement

set {Mj }, one can define

JAB(ρ)
.
= S(ρB) − min{Mj }

∑

j

p′
jS(ρB|j ), (2)

which quantifies the classical correlations in ρ [6].

Despite both definitions for the mutual information being

equivalent for classical systems, the quantum generalizations

IAB and JAB in general do not coincide. Their discrepancy

defines the discord:

DAB(ρ)
.
= IAB(ρ) − JAB(ρ). (3)

Notice that quantum discord is always non-negative and it is

asymmetric with respect to A and B [5].

III. NULL-DISCORD STATES

Let us denote by �0 the set composed of all states with zero

discord:

�0
.
= {ρ ∈ B(H ) such that DAB(ρ) = 0}. (4)

The members of this set are characterized [5,10] by being

invariant under von Neumann measurements on A in some

orthonormal basis {�j }; that is,

ρ ∈ �0 ⇐⇒ ∃ {�j } such that ρ =

dA
∑

j=1

�jρ�j . (5)

This implies that the set {�j } defines a basis ofHA with respect

to which ρ is block diagonal [10]:

ρ ∈ �0 ⇐⇒ ∃ {�j } such that ρ =

dA
∑

j=1

pj�j ⊗ σj , (6)

where σj are quantum states in B(HB) and {pj } defines a

probability distribution.

The characterization of �0 presented just above is not

practical in the sense that one has to check for the existence

of a measurement basis for which conditions (5) and (6) are

satisfied. With this motivation, we derive a sufficient condition

for positive quantum discord that is basis independent. From

condition (6), and denoting the commutator by square brackets,

the following is applied.

Proposition 1. If ρ ∈ �0 then

[ρ,ρA ⊗ 1B] = 0, (7)

where 1B is the identity operator on HB . Hence, [ρ,ρA ⊗

1B] �= 0 implies that DAB(ρ) > 0. The converse, however,

is not true: there are some states with positive discord that

commute with their reduced ones. States of interest such as

all pure maximally entangled states are an example. Let us

introduce the auxiliary set C0 of all states satisfying Eq. (7):

C0
.
= {ρ ∈ B(H ) such that [ρ,ρA ⊗ 1B] = 0}. (8)

One has that �0 ⊂ C0. We prove next that C0 has measure zero

and is nowhere dense, thereby implying the same properties

for �0 [19].

A. C0 has measure zero

The key observation here is that Eq. (7) imposes a nontrivial

constraint on ρ that confines it to a lower-dimensional subspace

ofB(H ). This already suggests that the volume of C0 inB(H ) is

zero, a proof of which we sketch next (a detailed proof is given

in Appendix A). Consider a generic state ρ ∈ B(H ) expressed,

for example, in an orthogonal basis given by the tensor product

between the traceless generators of the group SU(dA) and those

of SU(dB). In this basis, the calculation of commutator (7) is

straightforward and gives a set of implicit constraints on a

state to belong to C0. These constraints can be inverted to

obtain an explicit differentiable parametrization of the set C0

which uses strictly fewer independent real parameters than

the ones needed to parametrize B(H ). Since a differentiable

parametrization of a set measure zero is also measure zero, C0

has measure zero in B(H ).

B. C0 is nowhere dense

The set C0, apart from being of zero measure, is also

nowhere dense, two concepts that are a priori independent. A

setA is called nowhere dense (inX ) if there is no neighborhood

inX on whichA is dense. Equivalently,A is said to be nowhere

dense if its closure has an empty interior. In particular, this

implies that within an arbitrarily small vicinity of any state

that belongs to C0 (�0) there are always states out of C0

(�0). Let us now observe that C0 is closed, which implies

that the closure of C0 is itself. This follows from the fact that

the function f (ρ) = [ρ,ρA ⊗ 1B] is a continuous map and the

zeros of a continuous map form a closed set. Since any set

whose closure has measure zero is nowhere dense, it suffices

to conclude that C0 is nowhere dense (see Appendix B). Being

both closed and nowhere dense implies in particular that a

generic perturbation of a state inside the set will drive it not

just to a state outside but also to an entire region (open set)

outside of it.
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IV. GEOMETRY OF THE SET OF ZERO

QUANTUM DISCORD

First, let us observe that �0 is not a convex set. In fact, an

arbitrary convex mixture between two states ρ1 and ρ2 that

are block diagonal in incompatible local bases is typically

not block diagonal. On the other hand, if one mixes states

that are block diagonal in the same local basis, then the

resulting state is necessarily block diagonal (in the same basis)

and therefore belongs to �0. In particular, every state of

zero discord is connected to the maximally mixed state

1/d, as the latter is trivially block diagonal in any local

basis. This already shows us that the set �0 is connected.

From a geometrical viewpoint, this means that when moving

rectilinearly from every state in �0 toward 1/d, only states

in �0 are encountered. Accordingly, the segment from every

state out of �0 to 1/d is exclusively composed of states out of

�0 (the two-qubit Werner state is an instructive and simple

example of this [5]). All in all, this leaves us with some

sort of starlike hyperstructure for �0 (with 1/d at the center),

represented in Fig. 1.

Some details of the set have been sacrificed in the figure

for the sake of clarity. For example, the tips of the star rays

are pure separable states, always at the border of B(H ),

even though some of them are shown in its interior. Also,

all the rays are connected not only through 1/d, but also by

(nonconvex) continuous trajectories induced by local unitaries.

Nevertheless, as we already know, this lies fully in a lower-

dimensional subspace without volume and is not represented

in Fig. 1. The picture should thus not be taken as rigorous but

just as a pictorial representation to illustrate the main features

of �0.

FIG. 1. (Color online) Schematic two-dimensional representation

of the set �0 of states with zero discord (black lines). The set

of all possible states B(H ) (enclosing ellipse) contains the set of

separable ones, depicted in gray, with the maximally mixed state

1/d in its center. All block-diagonal states, including pure separable

states at the border of B(H ), compose �0 and can be connected to

1/d through states in �0. Arbitrary states in �0, however, cannot in

general be combined to form a state in �0. The whole of �0 lives

in a lower-dimensional subspace of B(H ). The dynamical trajectory

of an arbitrary state ρ caused by a Markovian bath is represented

by the dashed (red) line. In this example the trajectory leads toward

1/d . During its evolution, the evolved state can only cross �0 a finite

number of times, and permanent vanishing of discord cannot happen

before the infinite-time limit, at the stationary state.

The geometrical notion of moving rectilinearly toward 1/d

corresponds to the dynamical process of global depolarization

(global white noise). From the above considerations, it is clear

now that global depolarization can never induce finite-time

vanishing of positive discord. It only induces the disappearance

of discord in the asymptotic infinite-time limit, when 1/d is

actually reached. In fact, given the singular geometry of �0

suggested here, it seems highly unlikely that a noisy dynamical

evolution inducing a smooth trajectory in B(H ) is able to take

a state outside of �0 into its interior and to keep it there

permanently. This notion is discussed next.

V. OPEN-SYSTEM DYNAMICS OF DISCORD

We now show for any state ρ /∈ C0, that is, for almost

all (positive-discord) states, that the interaction with any

(not necessarily local) Markovian bath can never lead to a

sudden permanent vanishing of discord. Unless the asymptotic

infinite-time limit is reached, a Markovian map can take ρ

through the singular set C0 (and therefore also through �0)

at most a finite number of times, equal to d̃λ(d̃λ − 1)/2 − 1,

where d̃λ is the number of different eigenvalues of the map.

Consider the system interacts with a generic (not necessar-

ily local) bath during an arbitrary time τ . We describe the

evolution of the system with a completely positive, trace-

preserving map �τ : B(H ) −→ B(H ). In what follows we

use the notation of Ref. [20]. The map �τ can be written

in its (diagonal) spectral decomposition, �τ =
∑

λi |µi)(νi |,

where λi , |νi), and |µi) are, respectively, the eigenvalues and

left and right eigenoperators of the map, �τ |µi) ≡ λi |µi)

and (νi |�τ ≡ λi(νi |. For a general map, |νi) and |µi) span

two nonorthogonal complete bases of B(H ) and satisfy the

conditions (νi |µj ) ≡ δij and (νi |νj ) �= δij �= (µi |µj ), where

δij is the Kronecker delta and where (X|Y ) is nothing but

the Hilbert-Schmidt inner product: (X|Y ) ≡ Tr[X†.Y ]. In

addition, these maps are always contractive; that is, |λi | � 1 ∀ i

and |λi | = 1 for at least one i. For the specific case of normal

maps (those commuting with their adjoints), the left and right

eigenoperators coincide and the basis they span becomes

orthonormal. Also, since we are interested in maps that

describe some decoherence process, we assume that |λi | < 1

for at least one i, because the case |λi | = 1 ∀ i corresponds to

the case of unitary evolution of the composite system.

We now consider all maps �t that can be expressed as the

successive composition of n times �τ : �t =
∑

λn
i |µi)(νi |,

with t = nτ . All Markovian maps fall into this category.

From a strictly mathematical viewpoint, it is possible that

some of the eigenvalues of �τ are null. Nevertheless, since

the initial condition �τ=0 ≡ 1 must be satisfied, because of

continuity there is always a sufficiently small τ for which

all eigenvalues are non-null. With this physically motivated

observation in mind, we restrict our discussion to all maps

such that λi �= 0 ∀ i. The initial state ρ is expanded in the

basis {|µi)} as ρ =
∑

ρi |µi), with ρi ≡ (νi |ρ), and after time

t it evolves to ρt ≡ �t (ρ) =
∑

ρiλ
n
i |µi). Now we can show

that for a generic (positive-discord) initial state ρ such that

[ρ,ρA ⊗ 1B] �= 0, there exists no ts ∈ [0,∞) such that ρt ∈ C0

(and in particular such that ρt ∈ �0) for all t > ts . We do it by

reductio ad absurdum. Assume then that the opposite is true.

This means that there exists a state ρt that satisfies [ρt ,ρAt ⊗

052318-3



A. FERRARO et al. PHYSICAL REVIEW A 81, 052318 (2010)

1B] = 0, with ρAt ≡ TrB[ρt ], for all t > ts . This, however,

defines an infinite set of linearly independent equations

(as many as n > ns ≡ ts/τ ), which can never be satisfied.

An analogous contradiction is also obtained if it is assumed

that ρt satisfies [ρt ,ρAt ⊗ 1B] = 0 only during the finite-time

interval (ts,ts + 
t], with any 
t > 0. Furthermore, we prove

that ρt can enter C0 (and in consequence also �0) a maximum

of d̃λ(d̃λ − 1)/2 − 1 times, where d̃λ is the number of different

eigenvalues λi (see Appendix C).

VI. DISCUSSION

We have shown here that a random quantum state possesses

in general strictly positive discord and that a generic arbitrarily

small perturbation of a state with zero discord will generate

discord. These results imply that classical-only correlated

quantum states are extremely rare. An interesting analogy

can now be established: almost all states possess discord just

as almost all pure states possess entanglement. This means

that the mere presence of positive quantum discord lacks

per se informative content (for example, as a computational

resource), because it is a common feature of almost all quantum

states. Of course, this by no means excludes the possibility

that a more quantitative characterization of the discord gives

valuable assessment of a state’s usefulness for some task. In

addition, in a future perspective, our results call for a better

understanding of the conflict between the standard approach

to open quantum systems and complete positivity of maps.

A final comment about the experimental implications is

in place. We have shown that states with zero discord are

(densely) surrounded by states with positive discord. As a

consequence, ruling out the presence of quantum discord is,

strictly speaking, experimentally impossible, unless further

assumptions are made. Clearly, if further suppositions are

made, then quantum discord can trustworthily be taken to

be null. The clearest and most trivial example of this is

given by two quantum systems independently prepared in

distant laboratories. In such a situation, the most natural and

reasonable assumption is that the systems do not share any

correlations at all, and therefore their joint state is a product

state, which has trivially no discord. However, we stress that

any finite-precision measurement on a fully unknown state

is compatible with a positive amount of discord. This is in

striking contrast to what happens for entanglement, whose

presence can instead be strictly ruled out in experiments.
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APPENDIX A: THE SET C0 HAS MEASURE ZERO

We express ρ ∈ B(H ) in the basis given by the trace-

less, orthogonal generators γ A
i ⊗ γ B

j of the product group

SU(dA) ⊗ SU(dB) (we use the same notation as Eq. (5.2) of

Ref. [21]):

ρ =
1

dAdB

⎡

⎣1AB +

dA−1
∑

i=1

τA
i γ A

i ⊗ 1B +

dB−1
∑

j=1

τB
i 1A ⊗ γ B

i

+

dA−1
∑

h=1

dB−1
∑

k=1

βhkγ
A
h ⊗ γ B

k

⎤

⎦ . (A1)

The expression above maps the Hilbert space H to R
d0 (d0 =

d2
Ad2

B − 1) via the parameters τA
i , τB

i , and βhk . The partial trace

of ρ over HB gives

ρA =
1

dA

[

1A +

dA−1
∑

i=1

τA
i γ A

i

]

. (A2)

The generators form a closed set with respect to commutation:

[γ A
i ,γ A

j ] = 2i
∑

k fijkγ
A
k , where fijk is a rank 3 antisymmetric

tensor called the structure constant of the group SU(dA) (see,

for example, Ref. [22]). The calculation of commutator (7) is

straightforward in this representation:

[ρ,ρA ⊗ 1B] = 2i

dA−1
∑

h,l,m=1

dB−1
∑

k=1

βhkτ
A
l fhlmγ A

m ⊗ γ B
k . (A3)

Since matrices γ A
m ,γ B

k are orthogonal, imposing [ρ,ρA ⊗

1B] = 0 accounts for constraining parameters βhk and τA
l in

the following way:

dA−1
∑

h,l=1

βhkτ
A
l fhlm = 0 (A4)

for all k and m. These equations can be inverted. In particular,

even the inversion of only one of them is sufficient for our

purposes. By doing this, one obtains an explicit differen-

tiable parametrization of the set C0 with strictly fewer real

independent parameters than d0, that is, the ones required

to parametrize B(H ). Thus, C0 has Lebesgue measure zero

in B(H ). �

APPENDIX B: THE SET C0 IS NOWHERE DENSE

Let us first show that C0 is closed. Since the partial trace is

a contractive map—meaning that the (trace) distance between

any two operators is larger than, or equal to, that between

the operators resulting from the application of the map—the

map f : B(H ) −→ f (B(H )) is continuous. The operator zero

(the operator whose matrix representation is composed only of

zero elements) in turn forms a closed subset of the set image

of f , f (B(H )). By the topological definition of a continuous

map, the preimage of a closed set is also closed. Thus, C0 is

closed, being the preimage of the closed set “operator zero.”

To complete the proof, recall that the closure of a closed

set is, by definition, the set itself. Then a closed set of measure

zero is nowhere dense because the fact that it is measure zero

implies that it has no interior point. We show the latter with our

example of interest, C0: Suppose that there exists an interior

point in the closed, zero-measure set C0. By the definition of an

interior point, this would mean that there exists a state ρ ∈ C0

surrounded by an open ball of positive radius entirely contained
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in C0. (The metric used to define the ball is not relevant, since

we are considering finite dimensions.) Nevertheless, since

open balls have positive Lebesgue measure in R
n for any n,

this would contradict the fact that C0 has measure zero. Then,

there exists no interior point of C0, implying that the set is

nowhere dense. �

APPENDIX C: NO FINITE-TIME ACCORDING

For any initial state ρ such that [ρ,ρA ⊗ 1B] �= 0, we prove

here that there exists no finite time ts after which the evolved

state �t (ρ) belongs to C0, either for all t � ts or for t ∈

(ts,ts + 
t], with any 
t > 0. Following the notation from the

text above, we write the condition [ρt ,ρAt ⊗ 1B] = 0 ∀ t > ts
explicitly as a system of equations for the purpose of seeing

their linear independence:

d2
∑

i,j=1

ρiρj (λiλj )n[|µi),|µAj ) ⊗ 1B] = 0 ∀ n > ns ∈ N,

(C1)

where |µAj ) = TrB[|µj )] and the expansion ρ =
∑

ρi |µi) has

been used. Let us relabel the pair of indices (i,j ) using a single

index k = 1, . . . ,d2 × d2 and define Rk = ρiρj , Lk = λiλj ,

and Dk = [|µi),|µAj ) ⊗ 1B]. Then Eqs. (C1) above can be

recast in the form of linear equations in Rk’s:

∑

k

RkL
ns+1
k Dk = 0,

... (C2)
∑

k

RkL
ns+m
k Dk = 0,

for any m ∈ N, which have to be satisfied conditioned on the

initial condition [ρ,ρA ⊗ 1B] �= 0,

∑

k

RkDk �= 0. (C3)

We can already intuit that operator equations (C2) compose

a set of m linearly independent equations from the fact

that coefficients Lk (with 0 < |Lk| � 1) all appear in a

geometric progression. We demonstrate this formally by

writing Eqs. (C2) and (C3) in a matrix representation and,

thus, recasting them as a set of linearly independent equations

for complex numbers.

In Eqs. (C2) and (C3), we keep only the d̄ terms such that

Dk and Rk are both different from zero. Thus,

d̄
∑

k=1

RkL
n
kDk = 0,

d̄
∑

k=1

RkDk �= 0, (C4)

for ns < n � ns + m. Let us now express the operators Dk

in an arbitrary matrix representation and focus on their

matrix elements [Dk]p,q . The initial condition, Eq. (C4),

implies that there exists at least a couple (p0̄,q0̄) such that
∑d ′

k=1 Rk[Dk]p0̄,q0̄
�= 0, for some d ′ � d̄. Focusing on such

a couple (p0̄,q0̄), and denoting dk ≡ [Dk]p0̄,q0̄
�= 0, we have

that Eqs. (C4) reduce to ordinary equations with complex

coefficients dk and Lk:

d ′

∑

k=1

RkL
n
kdk = 0, (C5)

d ′

∑

k=1

Rkdk �= 0. (C6)

We now change variables to the non-null coefficients rk
.
=

Rkdk:

d ′

∑

k=1

rkL
n
k = 0, (C7)

d ′

∑

k=1

rk �= 0, (C8)

for all ns < n � ns + m. If the coefficients Lk are degenerate,

one can define another set of variables by grouping together all

the rk’s that correspond to the same degenerate Lk . Namely, we

introduce sh =
∑

rk , where the sum extends to the rk’s corre-

sponding to the same Lh. Denoting by d̃ the number of different

Lh’s we have that Eqs. (C7) and (C8) are equivalent to,

d̃
∑

h=1

shL
ns+1
h = 0

... (C9)

d̃
∑

h=1

shL
ns+m
h = 0,

d̃
∑

h=1

sh �= 0, (C10)

with Lh �= Lh′ if h �= h′ and ns < n � ns + m. Equations (C9)

are linear in sh with complex, non-null, nondegenerate

coefficients in geometric progression. From the properties

of eigenvalues λi mentioned in the text, we see that the

coefficients Lh necessarily satisfy |Lh| � 1 ∀ h, with

|Lh| = 1 for some h and |Lh| < 1 for all other h’s. Thus,

Eqs. (C9) yield a homogenous system of m independent linear

equations for d̃ unknowns sh. For m < d̃ there are m nontrivial

solutions that are also compatible with Eq. (C10). For m � d̃

though, Eqs. (C9) become a uniquely determined homogenous

system, whose unique solution is the trivial one sh = 0 for all

h = 1, . . . ,d̃ . This solution, however, is not acceptable, since

it contradicts the initial condition of Eq. (C10). �

As said, trajectories that cross C0 at most d̃ − 1 times might

in principle give acceptable solutions to Eqs. (C9). If there are

d̃λ different λi eigenvalues, it is straightforward to count that

there are d̃ = d̃λ(d̃λ − 1)/2 different Lh’s. As an example, we

can now easily calculate an upper bound to the number of times

C0 can be crossed by usual maps, such as a local depolarizing

or dephasing channels (three different eigenvalues, two times),

or the global depolarizing channel (two different eigenvalues,

never).

On the other hand, also from Eqs. (C9), one can see that

ρt ∈ C0, for t → ∞ if, and only if, the steady state of the map

is itself a state inside C0. This is clear when one considers
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the limit ns → ∞ in Eqs. (C9), where all powers of Lh, from

L
ns+1
h to L

ns+m
h , are exactly equal to zero for |Lh| < 1, and

equal to 1 for the single Lh equal to 1. Equations (C9) simply

converge to the single condition sH = 0, where H is the one h

for which LH = 1. This condition is in turn not in conflict with

Eq. (C10) and therefore provides an acceptable solution. The

coefficient sH is associated with the projection of the initial

state onto the map’s steady state. So it simply gives the trivial

fact that the final state will end up in C0 if and only if the

steady state of the map is itself in C0.
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