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Received: 09.04.2014 • Accepted/Published Online: 14.01.2015 • Printed: 29.05.2015

Abstract: The goal of this paper is to consider the notion of almost analytic form in a unifying setting for both almost

complex and almost paracomplex geometries. We use a global formalism, which yields, in addition to generalizations

of the main results of the previously known almost complex case, a relationship with the Frölicher–Nijenhuis theory. A

cohomology of almost analytic forms is also introduced and studied as well as deformations of almost analytic forms with

pairs of almost analytic functions.
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1. Introduction

The notion of almost analytic form was introduced a long time ago in the almost complex geometry and hence it

was treated in local coordinates, especially by Japanese geometers [15, 16, 17, 18]. A global approach appeared in

[14], unfortunately only in Romanian. Some of these global techniques were used in [9] and [13]; for example, in

the former paper a differential is introduced in the algebra of pairs of almost analytic forms and a corresponding

Poincaré type lemma is proved.

The present work aims to consider almost analytic forms in a unifying setting, which adds the almost

paracomplex geometry. This type of even dimensional geometry is now in the mainstream of research as the

surveys [1] and [4] and their several citations prove. In this way, we reveal the common parts of these geometries

with respect to differential forms and present the techniques of [14] to a larger audience. An important feature

of the global approach is that it yields a relationship with the Frölicher-Nijenhuis theory, widely used now for

several important topics. Namely, we prove that for an almost F -analytic form its closeness with respect to

the Frölicher–Nijenhuis derivative dF is characterized by the usual (i.e. exterior derivative) closeness.

The content of the paper is as follows. In the first subsection of Section 2 we consider only 1-forms in

order to offer a detailed picture of the techniques used herein. In the next subsection we consider the general

case of r -forms with r less than or equal to n = half of the dimension of the underlying manifold. A dF -

cohomology of almost analytic forms is introduced and studied and also some deformations of almost analytic

forms with pairs of almost analytic functions are considered. In Section 3 we restrict ourselves to the Hermitian

and para-Norden framework and reobtain the characterization of almost analyticity for n -forms in terms of
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harmonicity. Considering again the case of 1-forms, a local computation in the case of integrability of given

endomorphism F gives an usual characterization of coefficients in terms of (para)Cauchy–Riemann equations.

2. Almost analytic forms with respect to a quadratic endomorphism

2.1. Almost analytic 1-forms

Fix a triple (M,F, ω) with M a smooth m-dimensional manifold, F a tensor field of (1, 1)-type on M , and

ω a differentiable 1-form, i.e. ω ∈ Ω1(M).

Definition 2.1 i) F is a quadratic endomorphism if there exists ε ∈ R∗ such that:

F 2 = εI. (2.1)

ii) The F -conjugate of ω is the 1-form:

ω = ωF := ω ◦ F−1 =
1

ε
ω ◦ F. (2.2)

It follows that:

ω =
1

ε
ω ◦ F =

1

ε
ω. (2.3)

To the pair (F, ω) we associate a 2-form defined by:

ΩF,ω(X,Y ) := dω(FX, Y )− εdω(X,Y ), (2.4)

which yields the main notion of this subsection:

Definition 2.2 The 1-form ω is called almost F -analytic if ΩF,ω = 0 . Let Ω1(M,F ) be the set of almost

F -analytic 1-forms.

In the following we use the identity:

2dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]). (2.5)

A first result shows that this property is invariant under F -conjugation:

Proposition 2.1 The 1-form ω is almost F -analytic if and only if its F -conjugate ω is almost F -analytic.

If ω is almost F -analytic then ω is closed if and only if ω is closed.

Proof Using (2.1), (2.3), and (2.4) we get:

ΩF,ω(X,Y ) = −1

ε
ΩF,ω(FX, Y ) , ΩF,ω(X,Y ) = −ΩF,ω(FX, Y ) (2.6)

and the conclusion follows directly from (2.6). 2

Recall now the Nijenhuis tensor field of F :

NF (X,Y ) := [FX,FY ]− F [FX, Y ]− F [X,FY ] + F 2[X,Y ], (2.7)
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which for our case (2.1) becomes NF (X,Y ) = [FX,FY ] − F [FX, Y ] − F [X,FY ] + ε[X,Y ] . We have the

following skew-symmetries:

NF (FX, Y ) = −FNF (X,Y ) = NF (X,FY ), NF (FX,FY ) = εNF (X,Y ) (2.8)

which yields a second property of almost F -analytic forms:

Proposition 2.2 If ω is almost F -analytic then:

ω ◦NF = ω ◦NF = 0. (2.9)

Proof Let ω be almost F -analytic. Using (2.5), ω ◦ F = εω , and ω ◦ F = ω , from ΩF,ω(X,Y ) =

dω(FX, Y )− εdω(X,Y ) = 0 we easily obtain:

ω(F [X,Y ]) = εXω(Y )− FXω(Y ) + ω([FX, Y ]). (2.10)

Putting X 7→ FX and Y 7→ FY in (2.10), by direct calculus we obtain:

(ω ◦NF )(X,Y ) = ω([FX,FY ])− ω(F [FX, Y ])− ω(F [X,FY ]) + εω([X,Y ])

= ω([FX,FY ])− εFX(ω(Y )) + εXω(Y )− εω([X,Y ])

−εXω(Y ) + εFXω(Y )− ω([FX,FY ]) + εω([X,Y ]) = 0.

By Proposition 2.1 ω is also almost F -analytic and the relation (ω ◦NF )(X,Y ) = 0 follows in a similar manner

starting from ΩF,ω(X,Y ) = dω(FX, Y )− dω(X,Y ) = 0. 2

Another tool in our study is provided by the Obata operators associated to F , namely the maps

OF , O
∗
F : Ω2(M) → Ω2(M):

{
OF (ρ)(X,Y ) := 1

2 [ρ(X,Y )− ρ(FX,FY )]

O∗
F (ρ)(X,Y ) := 1

2 [ρ(X,Y ) + ρ(FX,FY )],
(2.11)

which give a classification of 2-forms with respect to F :

Definition 2.3 The 2-form ρ is called F -pure if O∗
F (ρ) = 0 and respectively F -hybrid if OF (ρ) = 0 .

Proposition 2.3 i) If F is an almost complex structure (ε = −1) and ω is almost F -analytic form then

the 2-forms dω , dω are F -pure.

ii) If F is an almost product structure (ε = 1) and ω is almost F -analytic form then the 2-forms dω , dω

are F -hybrid.

Proof i) Let ε = −1. From the characterization of almost F -analyticity, setting X 7→ FX in (2.10) we have:

X(ω(Y )) + FX(ω(FY )) = ω([X,Y ]) + ω(F [FX, Y ]), (2.12)

and now X → Y in (2.12):

Y (ω(X)) + FY (ω(FX)) = −ω([X,Y ])− ω(F [X,FY ]). (2.13)
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From (2.13) minus (2.12) we get:

2dω + ω([X,Y ]) + 2dω(FX,FY ) + ω([FX,FY ]) = 2ω([X,Y ]) + ω ◦ F ([FX, Y ] + [X,FY ]),

which means:

4O∗
F (dω) = −ω ◦NF = 0.

By analogy:

4O∗
F (dω) = −ω ◦NF = 0.

ii) Let ε = 1. Again, with X → FX in relation (2.10) we have:

X(ω(Y ))− FX(ω(FY )) = ω([X,Y ])− ω(F [FX, Y ]) (2.14)

and X ↔ Y in this equality gives:

Y (ω(X))− FY (ω(FX)) = −ω([X,Y ]) + ω(F [X,FY ]). (2.15)

With (2.14) minus (2.15) we obtain:

2dω(X,Y ) + ω([X,Y ])− 2dω([FX,FY ])− ω([FX,FY ]) = 2ω([X,Y ])− ω ◦ F ([FX, Y ] + [X,FY ]),

which means: 4OF (dω) = ω ◦NF = 0. Also: 4OF (dω) = ω ◦NF = 0 and the assertion is proved. 2

An important consequence of this result is the following:

Corollary 2.1 If ε ∈ {−1,+1} then definition (2.4) and hence the definition of almost F -analyticity do not

depend on the place of F .

Proof From Proposition 2.3 we have that the almost F -analyticity implies:

dω(X,Y ) = εdω(FX,FY ), (2.16)

and then the right-hand side of (2.4) is:

dω(FX, Y )− εdω(X,Y ) = εdω(F 2X,FY )− εdω(X,Y ) = ε2dω(X,FY )− εdω(X,Y )

and since ε2 = 1 we get the conclusion. 2

We finish this subsection with a relationship of this formalism with the Frölicher–Nijenhuis theory. Recall

that given a tensor field F of (1, 1)-type it defines the following:

i) an interior product iF ; for an r -form ω we have that iFω is again an r -form given by:

iFω(X1, . . . , Xr) :=
r∑

i=1

ω(X1 . . . , FXi, . . . , Xr) , r ≥ 1 and iF f = 0 , ∀ f ∈ C∞(M); (2.17)

ii) an exterior F -derivative dF with:

dF := iF ◦ d− d ◦ iF . (2.18)
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Proposition 2.4 If ε = ±1 and ω is almost F -analytic then the exterior F -derivatives of ω and ω are:

dFω =
1

2
iF ◦ dω = εdω, dFω = dω. (2.19)

Proof For r = 1 we have:
iFω = εω (2.20)

and then:

(dFω)(X,Y ) = iF (dω)(X,Y )− d(εω)(X,Y )

= dω(FX, Y ) + dω(X,FY )− εdω(X,Y ) = ΩF,ω(X,Y ) + dω(X,FY ),

which means that dFω(·, ·) = dω(·, F ·). We apply the previous Corollary 2.1 to get the first part of (2.19). The

second part of the required formula follows by duality. 2

Similarly to [6, 10, 16], a smooth function f on M is called almost F -analytic if there exists a smooth

function g on M such that:

df ◦ F = dg, (2.21)

and in this case g is called the corresponding function of f . In this case g is also almost F -analytic with

corresponding function εf . Let us denote by C∞(M,F ) the set of all almost F -analytic functions on M . If

f ∈ C∞(M,F ), then by (2.20) we have:

dF f = iF ◦ df = εdf = df ◦ F = dg. (2.22)

Proposition 2.5 If f ∈ C∞(M,F ) then df and dF f are both almost F -analytic.

Proof Let f ∈ C∞(M,F ). Then:

ΩF,df (X,Y ) = (d(df))(FX, Y )− ε(d(df))(X,Y ) = −(d(dg))(X,Y ) = 0,

which says that df is almost F -analytic. The second assertion follows by setting X 7→ FX in the above

relation. 2

2.2. Almost F -analytic r -forms and dF -cohomology

In this subsection we give a generalization of previous results to r -forms for r ≥ 2 with ε restricted to {−1,+1}
and we study the dF -cohomology of almost analytic r -forms.

Firstly, inspired by Proposition 2.3, we introduce a class of r -forms adapted to F :

Definition 2.4 The r -form ω is called F -symmetric if for all vector fields X1, . . . , Xr :

ω(FX1, . . . , Xr) = ω(X1, . . . , FXi, . . . , Xr), 2 ≤ i ≤ r. (2.23)

Example 2.1 i) If θ ∈ Ω1(M,F ) then the 2-forms ω = dθ and ω = dθ are F -symmetric. Indeed, equation

(2.16) means:

dθ(X,Y ) = εdθ(FX,FY ), dθ(X,Y ) = εdθ(FX,FY )

and with X → FX we get the conclusion.
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ii) More generally than i) if ε = +1 then a F -hybrid 2-form is F -symmetric and for ε = −1 an F -pure

2-form is F -symmetric. 2

Secondly, we associate a conjugate form and an (r + 1)-form:

Definition 2.5 If ω ∈ Ωr(M) is F -symmetric then its F -conjugate is ω = ωF ∈ Ωr(M) given by:

ω(X1, . . . , Xr) :=
1

ε
ω(FX1, . . . , Xr). (2.24)

We associate ΩF,ω ∈ Ωr+1(M) given by:

ΩF,ω(X1, . . . , Xr+1) := dω(FX1, . . . , Xr+1)− εdω(X1, . . . , Xr+1). (2.25)

Thirdly, we define the natural generalization of the previous subsection:

Definition 2.6 The F -symmetric form ω ∈ Ωr(M) is called almost F -analytic if:

ΩF,ω = 0. (2.26)

In order to unify the property that says when an F -symmetric r -form is almost F -analytic for both almost

complex and paracomplex cases, we present:

Proposition 2.6 An F -symmetric r -form ω (r ≥ 1) is almost F -analytic iff

FX1(ω(X2, . . . , Xr+1))−X1(ω(FX2, . . . , Xr+1)) =

=
r+1∑
j=2

(−1)1+jω(F [X1, Xj ]− [FX1, Xj ], X2, . . . , X̂j , . . . , Xr+1).
(2.27)

Proof It follows by a direct calculation involving the definition of the exterior derivative. 2

Remark 2.1 In a more general case of (0, r)-tensor fields we can consider the operator ΦF : T 0
r (M) →

T 0
r+1(M) ; see [18]:

ΦFω(X,Y1, . . . , Yr) = FX(ω(Y1, . . . , Yr))−X(ω(FY1, Y2, . . . , Yr))

+ω((LY1F )X,Y2, . . . , Yr) + . . .+ ω(Y1, Y2, . . . , (LYrF )X), (2.28)

for every vector field X,Y1, . . . , Yr , where LX denotes the Lie derivative with respect to X . Then, similarly

to [5, 6, 7, 10, 12, 15, 18], the tensor field ω is called almost F -analytic if ΦFω = 0 and for r -forms this

condition is equivalent to (2.26).

Let Ωr(M,F ) be the set of almost F -analytic r -forms.

The following result is a motivation for this notion and also a generalization of the first remark above:

Proposition 2.7 If ω ∈ Ωr(M,F ) then its differential is F -symmetric and its exterior F -differential of ω is:

dFω =
1

r + 1
iF ◦ dω = εdω. (2.29)
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Proof The first part follows directly from the skew-symmetry of dω and the relation:

dω(FX1, . . . , Xr+1) = εdω(X1, . . . , Xr+1), (2.30)

provided by the definition. For the second part we get that iFω = εrω and with a similar calculus as in

Proposition 2.4 we derive:

dFω(X1, . . . , Xr+1) = dω(FX1, . . . , Xr+1),

by using the first part. Equation (2.29) follows then directly. 2

Proposition 2.8 The F -symmetric r -form ω is almost F -analytic if and only if ω is almost F -analytic. If

ω is almost F -analytic then ω is closed if and only if ω is closed, and equivalently ω and ω are dF -closed.

Proof It is sufficient to prove the implication that ω is almost F -analytic ⇒ ω is almost F -analytic since:

ω(X1, . . . , Xr) =
1

ε
ω(FX1, . . . , Xr) = ω(F 2X1, . . . , Xr) = εω(X1, . . . , Xr) =

1

ε
ω(X1, . . . , Xr) (2.31)

and remark that almost F -analyticity is invariant with respect to scalings ω → λω .

Firstly we must prove that ω is F -symmetric. We have:

ω(FX1, . . . , Xr) =
1

ε
ω(F 2X1, . . . , Xr) = ω(X1, . . . , Xr). (2.32)

Also:

ω̄(X1, . . . , FXi, . . . , Xr) =
1

ε
ω(FX1, . . . , FXi, . . . , Xr)

=
1

ε
ω(X1, . . . , F

2Xi, . . . , Xr) = ω(X1, . . . , Xr),

which is what we claim.

Secondly, we must verify Definition 2.6. A straightforward calculation gives the generalization of (2.6):

ΩF,ω(X1, . . . , Xr+1) = −1

ε
ΩF,ω(FX1, . . . , Xr+1) (2.33)

and the conclusion follows. 2

Proposition 2.9 If ω ∈ Ωr(M,F ) then:

ω(NF (X1, X2), . . . , Xr+1) = ω(NF (X1, X2), . . . , Xr+1) = 0. (2.34)

Proof Using the characterization of almost F -analyticity of ω from (2.27) but with X2 7→ FX2 , we have

FX1(ω(FX2, . . . , Xr+1))− εX1(ω(X2, . . . , Xr+1)) =

= −ω(F [X1, FX2]− [FX1, FX2], X3, . . . , Xr+1)+

+
r+1∑
j=3

(−1)1+jω(F [X1, Xj ]− [FX1, Xj ], FX2, X3, . . . , X̂j , . . . , Xr+1).

(2.35)
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On the other hand, ω ∈ Ωr(M,F ), too, and using again (2.27) for ω , we have

FX1(ω(FX2, . . . , Xr+1))− εX1(ω(X2, . . . , Xr+1)) =

= −ω(ε[X1, X2]− F [FX1, X2], X3, . . . , Xr+1)+

+
r+1∑
j=3

(−1)1+jω(F [X1, Xj ]− [FX1, Xj ], FX2, X3, . . . , X̂j , . . . , Xr+1).

(2.36)

Now, by (2.35) and (2.36), the first equality follows easily. The second equality follows in a similar manner. 2

Inspired by the ε = −1 case, we suppose now that m = 2n and for the ε = +1 we suppose that F is an

almost paracomplex structure, i.e. the dimensions of (+1)-eigenspace and (−1)-eigenspaces are both equal to n .

It follows for both cases of ε the existence of local basis of vector fields of type B = {e1, . . . , en, F e1, . . . , F en} ,
where for the case ε = 1 we must have F ̸= Id, and then there exist nontrivial F -symmetric r forms only for

r ≤ n . An important result for this choice of dimension is:

Proposition 2.10 An F -symmetric n-form ω is almost F -analytic if and only if ω and ω are both closed.

Proof Suppose firstly that ω is almost F -analytic. When its differential is applied on data {FX1, X1,

. . . , Xn} of elements of B we have dω(FX1, X1, . . . , Xn) = εdω(X1, X1, . . . , Xn) = 0 and deduce that ω (and

consequently ω ) is closed. The proof of the converse part is directly from Definition 2.25 2

We introduce now an exterior product adapted to our setting:

Definition 2.7 The exterior F -product is the map ∧F : Ωr(M)× Ωs(M) → Ωr+s(M) given by:

θ ∧F ω := θ ∧ ω + εθ ∧ ω̄ (2.37)

where ∧ is the usual exterior product of M .

A long but straightforward computation in the basis B gives:

Proposition 2.11 Let θ and ω be F -symmetric forms.

i) The (r + s)-form θ ∧F ω is also F -symmetric.

ii) The F -conjugate of the (r + s)-form above is:

(θ ∧F ω)F = θ ∧ ω + θ ∧ ω. (2.38)

As a consequence, if θ and ω are almost F -analytic forms then θ ∧F ω is also an almost F -analytic form.

Proposition 2.12 Let ω ∈ Ωr(M,F ) and θ ∈ Ωs(M,F ) , r, s ≥ 0 , where Ω0(M,F ) = C∞(M,F ) . Then:

i) dFω ∈ Ωr+1(M,F ) ;

ii) d2Fω = 0 ;

iii) dF (ω ∧F θ) = dFω ∧F θ + (−1)rω ∧F dF θ .
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Proof i) If ω ∈ Ωr(M,F ) then by (2.24) and (2.30) we have:

dω = dω. (2.39)

Now, using (2.29) and (2.39), we have:

ΩF,dFω(X1, . . . , Xr+2) = (d(εdω))(FX1, . . . , Xr+2)− ε(d(dω))(X1, . . . , Xr+2) = 0,

which says that dFω ∈ Ωr+1(M,F ).

ii) Using (2.29), (2.31), and (2.39) we have:

dF (dFω) = dF (εdω) = ε2d(dω) = ε2d(dω) = εd(dω) = 0.

iii) Follows using (2.29), (2.37), and (2.38). 2

We notice that (Ωr(M,F ),∧F ) is a graded C∞(M,F )-algebra. Also, by ii) Proposition 2.12 we have

the differential complex (Ω•(M,F ), dF ) and its cohomology H•(M,F ) is called the dF -cohomology of almost

F -analytic forms on M .

Another important property of the operator dF is the following Poincaré type lemma:

Theorem 2.1 Let ω ∈ Ωr(U,F ) , r ≥ 1 , where U ⊂ M such that dFω = 0 on U . Then there exists

θ ∈ Ωr−1(U ′, F ) where U ′ ⊂ U such that ω = dF θ on U ′ .

Proof Let ω as in the hypothesis. Taking into account that dFω = 0 is equivalent with dω = 0 and by

applying the classical Poincaré lemma for the operator d it follows that there exists θ ∈ Ωr(U ′) where U ′ ⊂ U

and such that ω = dθ on U ′ . From 0 = dω = dω = 1
εdω it follows also by Poincaré lemma for the operator d

that there exists θ1 ∈ Ωr(U ′) where U ′ ⊂ U and such that ω = dθ1 on U ′ .

Similar arguments as in the proof of Theorem 1 from [9] show that both θ and θ1 are almost F -analytic and

θ = θ1 . Now, the proof follows easily since ω = dθ1 = εdθ = dF θ . 2

We notice that ker{dF : Ω0(U,F ) → Ω1(U,F )} ∼= R̃ where R̃ is the sheaf of germs associated to the

constant pre-sheaf R . Also, consider Φr(M,F ) the sheaf of germs of almost F -analytic r -forms on M and

i : R̃ → Φ0(M,F ) the natural inclusion. The sheaves Φr(M,F ) are fine and taking into account Theorem 2.1

it follows that the following sequence of sheaves:

0 −→ R̃ i−→ Φ0(M,F )
dF−→ Φ1(M,F )

dF−→ . . .
dF−→ Φn(M,F )

dF−→ 0

is a fine resolution of R̃ and we denote by Hr(M,F ; R̃) the cohomology groups of M with coefficients in the

sheaf R̃ . Thus, we obtain a de Rham theorem for the dF -cohomology of almost F -analytic forms, namely:

Theorem 2.2 Then dF -cohomology groups of almost F -analytic forms on M are given by:

i) H0(M,F ; R̃) ∼= R ,

ii) Hr(M,F ; R̃) ∼= Hr(M,F ) , 1 ≤ r ≤ n− 1 ,

iii) Hn(M,F ; R̃) ∼= Ωn(M,F )/dF (Ω
n−1(M,F )) ,
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iv) Hr(M,F ; R̃) = 0 , n+ 1 ≤ r ≤ 2n .

We consider now a deformation of almost F -analytic forms with pairs of almost F -analytic functions:

Definition 2.8 Fix ω ∈ Ωr(M) an almost F -analytic form and α, β ∈ C∞(M) . The (α, β)-deformation of

ω is the r -form:

ωα,β := αω + βω̄. (2.40)

Since ωα,β is an F -symmetric form it is natural to ask in what conditions regarding these functions the

new r -form is also an almost F -analytic one:

Proposition 2.13 The F -symmetric r -form ωα,β is almost F -analytic if and only if α is almost F -analytic

with corresponding function β .

Proof We have:

(ωα,β)F = αω +
β

ε
ω = (ωF )α,β . (2.41)

The proof is easy to see in the case r = 1 where the almost F -analyticity of ωα,β means:

dα(FX)ω(Y ) +
1

ε
dβ(FX)ω(FY ) = dα(X)ω(FY ) + dβ(X)ω(Y ) (2.42)

for all vector fields X,Y . A detailed proof for r ≥ 2 can be found in [3] for the case of almost (para) complex

Lie algebroids. 2

This results yields the introduction of the set:

C̃∞(M,F ) = {(α, β) ∈ C∞(M,F )× C∞(M,F ); dβ = dα ◦ F}. (2.43)

A straightforward computation gives that C̃∞(M,F ) is a commutative algebra with respect to the product:

(α1, β1) · (α2, β2) := (α1α2 + εβ1β2, α1β2 + α2β1), (2.44)

having as a unit the pair of the constant functions (1, 0) ∈ C̃∞(M,F ). The inverse of the element (α, β) ∈

C̃∞(M,F ) different from (0, 0) is the pair
(

α
α2−εβ2 ,

−β
α2−εβ2

)
; for the case ε = +1 we also exclude the cases

(α,±α).

Let us introduce the set of pairs of forms:

Ω̃r(M,F ) = {(ω, ω̄);ω ∈ Ωr(M,F )}. (2.45)

Proposition 2.13 says that Ω̃r(M,F ) is a C̃∞(M,F )-module for all 1 ≤ r ≤ n and hence the set

Ω̃(M,F ) =
n∑

r=1

Ω̃r(M,F )

is a graded C̃∞(M,F )-algebra. We consider the wedge product

(ω, ω)∧̃(θ, θ) = (ω ∧F θ, (ω ∧F θ)F ) (2.46)

331



CRASMAREANU and IDA/Turk J Math

and the operator

D : Ω̃r(M,F ) → Ω̃r+1(M,F ), D(ω, ω) = (dω, dω). (2.47)

It follows that:

i) D is a local operator and R-linear;

ii) for every (ω, ω) ∈ Ω̃r(M,F ) and (θ, θ) ∈ Ω̃s(M,F ) we have

D
[
(ω, ω)∧̃(θ, θ)

]
= D(ω, ω)∧̃(θ, θ) + (−1)r(ω, ω)∧̃D(θ, θ);

iii) D2 = (0, 0);

and an associated cohomology of the differential complex (Ω̃(M,F ), D) can be considered exactly as in [9].

3. Almost analytic forms on almost para-Norden manifolds and examples

We continue with the setting of Subsection 2.2, namely ε = ±1, but we add a Riemannian metric g to our

framework, which satisfies

g(FX, Y ) = εg(X,FY ). (3.1)

Then:

a) for ε = −1 the triple (M,F, g) is an usual almost Hermitian manifold,

b) for ε = +1 the triple (M,F, g) is an almost para-Norden manifold; see, for instance, [11].

In order to unify these cases we get the following formula:

g(FX,FY ) = g(X,Y ), ∀X,Y ∈ X (M). (3.2)

The fundamental 2-form of an almost Hermitian manifold is ω(X,Y ) := g(X,FY ), which is not F -symmetric,

since ω(FX, Y ) = −ω(X,FY ), while the symmetric bilinear form ω(X,Y ) := g(X,FY ) associated to an almost

para-Norden manifold is F -symmetric.

The characterization of almost analyticity of differential forms on almost Hermitian manifolds in terms

of their harmonicity was studied in [13]. In order to unify these results for both cases presented above, in this

section we extend some similar results for the case of almost para-Norden manifolds.

The metric g yields the Hodge star operator ⋆ and the orthonormal basis B of the type discussed above.

Hence, similar to the almost Hermitian case, see Proposition 2.3 in [13, p. 77], a direct computation yields:

Proposition 3.1 If the n-form ω is F -symmetric on the almost para-Norden manifold (M2n, F, g) then ⋆ω

is also F -symmetric.

The important consequence of this result is:

Proposition 3.2 If ω is an almost F -analytic n-form on the almost para-Norden manifold (M2n, F, g) then

⋆ω is also almost F -analytic.

We arrive now to the main result of this section, which provides a large class of almost F -analytic forms:
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Proposition 3.3 An F -symmetric n-form on the almost para-Norden manifold (M, g, F ) is almost F -analytic

if and only if ω and ω are both harmonic.

Proof It is a direct consequence of dω = d(⋆ω) = 0 . 2

Suppose n = 2 and ε = −1. By using the corollary 18 of [8, p. 208] it results that on a compact, oriented

surface M2 with positive Ricci (equivalently Gaussian, if M is embedded in R3 ) curvature at one point we

have Ω1(M,F ) = 0.

We end this section with some examples of (almost) F -analytic forms. In order to find large classes of

almost F -analytic forms we suppose now that F is integrable. Then we call F -analytic forms the differential

forms studied until now.

The integrability of F yields the local coordinates {xi, yi; 1 ≤ i ≤ n} such that the expression of F is:

F

(
∂

∂xi

)
=

∂

∂yi
, F

(
∂

∂yi

)
= ε

∂

∂xi
. (3.3)

Let ω = aidx
i + bidy

i be a 1-form on M ; hence, ω̄ = εbidx
i + aidy

i . The F -analyticity of ω means:

FX(ω(Y ))− ω([FX, Y ]) = X(ω(FY ))− ω(F [X,Y ]), (3.4)

and the choice of X , Y in the basis { ∂
∂xi ,

∂
∂yi ; 1 ≤ i ≤ n} gives the following characterization:

Theorem 3.1 The 1-form ω is an F -analytic form if and only if its coefficients satisfy the ε-Cauchy–Riemann

equations:

∂aj
∂yi

=
∂bj
∂xi

,
∂aj
∂xi

= ε
∂bj
∂yi

. (3.5)

Similarly, the pair of smooth functions (α, β) belongs to C̃∞(M,F ) if and only if α and β satisfies the ε-

Cauchy–Riemann equations (3.5).

A natural framework where quadratic endomorphisms are involved is provided by ε-contact structures,

namely triples (φ, ξ, η) consisting of an endomorphism, a vector field, and a 1-form on M2n+1 satisfying:

φ2 = ε(IM − η ⊗ ξ), η(ξ) = 1. (3.6)

For ε = −1 we get the almost contact geometry [2], while for ε = +1 we have the almost paracontact geometry

[19]. On the product manifold M × R we consider:

J(X, a
d

dt
) = (φX + εaξ, η(X)

d

dt
), (3.7)

and a straightforward computation yields that J2 = εIM×R . For the 1-form ωb = η + bdt with b ∈ R , its

conjugate with respect to J is:

(ωb)J = εbη + dt, (3.8)

and then ωb is almost J -analytic form if and only if:

dη(φX, Y ) = bεdη(X,Y ) (3.9)

for all vector fields X , Y . In particular, if (M,φ, ξ, η) is ε -cosymplectic, i.e. η is closed, then all ωb are almost

J -analytic.
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