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A B S T R A C T

Recent ROSAT measurements show that the X-ray emission from isolated neutron stars is

modulated at the stellar rotation period. To interpret these measurements, one needs precise

calculations of the heat transfer through the thin insulating envelopes of neutron stars. We

present nearly analytic models of the thermal structure of the envelopes of ultramagnetized

neutron stars. Specifically, we examine the limit in which only the ground Landau level is

filled. We use the models to estimate the amplitude of modulation expected from non-

uniformities in the surface temperatures of strongly magnetized neutron stars. In addition, we

estimate cooling rates for stars with fields B , 1015
¹ 1016 G, which are relevant to models

that invoke ‘magnetars’ to account for soft g-ray emission from some repeating sources.
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1 I N T RO D U C T I O N

Since the launch of the ROSAT satellite, our knowledge of isolated neutron stars has expanded into new realms. Before ROSAT, neutron stars

were somewhat unique among astronomical objects. Although they had been observed over a range of energies from radio to ultrahigh-energy

gamma rays, and had been evoked to power a variety of astrophysical objects from pulsars to soft X-ray repeaters and gamma-ray bursts, one

could not argue unequivocally that a single photon from the surface of a neutron star had ever been detected.

For the first time, we have direct evidence for radiation from the surfaces of neutron stars. More than a dozen such sources have been

detected by ROSAT (e.g. Ögelman 1995), and more than 10 have been fitted with spectra. The spectra divide the objects into two classes: (1)

objects with hard spectra whose X-ray emission is best attributed to the magnetosphere, and (2) neutron stars whose soft flux is well described

by a blackbody spectrum. Table 1 lists several of those that fall into the second group, with pertinent references.

The X-ray spectra of these objects consist of a soft blackbody and hard power-law component. Generally, the surface temperature inferred

from modeling the blackbody is approximately what one would expect for a cooling neutron star at the characteristic age of the pulsar. If this

interpretation is correct, the observations provide a direct probe of the structure of cooling neutron stars. Furthermore, the observations show

that the thermal radiation is modulated at the rotation period of the pulsars. A strong magnetic field can modulate the thermal flux by causing

the heat conduction in the outer layers of the star to be anisotropic. Both to translate these observations into constraints on the structure of

neutron stars and to understand modulation of the radiation, we must have a detailed understanding of the insulating layers of the neutron star

crust, i.e., the envelope.

We proceed in the spirit of Gudmundsson, Pethick & Epstein (1982) and concentrate our analysis on the thin region, the envelope, which

insulates the bulk of the neutron star. The envelope is customarily defined to extend from zero density to r , 1010 g cm¹3, and its thickness (hE)

is of the order of tens of metres, very small compared to the radius of the star, R , 10 km. By limiting the analysis, we focus on how various

physical processes affect the thermal structure of the envelope and the relationship between the core temperature and the flux emitted at the

surface. An alternative point of view is to combine the envelope calculation with an estimate of the cooling rate due to neutrinos and the total

heat capacity of the neutron star, yielding theoretical cooling curves (e.g. Tsuruta et al. 1972; Glen & Sutherland 1980; Nomoto & Tsuruta

1981; Van Riper & Lamb 1981).

Several authors have made much progress in understanding the properties of neutron star envelopes with and without magnetic fields.

Gudmundsson et al. (1982) numerically calculate the thermal structure for unmagnetized envelopes, and Hernquist & Applegate (1984)

present analytic models for the B ¼ 0 case. Tsuruta (1979), Glen & Sutherland (1980), Urpin & Yakovlev (1980) and Van Riper & Lamb

(1981) calculate the luminosity observed at infinity as a function of the core temperature for several magnetic field strengths less than 1014 G,

including the zero-field case. Hernquist (1985) calculates the thermal structure of envelopes for B # 1014 G for transport along the field, using

Mon. Not. R. Astron. Soc. 300, 599–615 (1998)

q 1998 RAS

* Present address: Theoretical Astrophysics, Mail Code 130-33, California Institute of Technology, Pasadena CA 91125, USA.
† Presidential Faculty Fellow.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
0
0
/2

/5
9
9
/1

0
3
7
6
1
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



the electron conductivities of Hernquist (1984) which account for the quantization of electron energies in the magnetic field in a relativistic

framework. We will use these conductivities in the present work; Hernquist (1985) therefore, provides a natural benchmark.

Van Riper (1988) builds upon the Hernquist (1985) results by exploring various assumptions concerning the properties of the envelope at

low densities and calculating profiles for many field strengths (B < 1014 G) and core temperatures. Again these calculations are limited to

conduction along the field. Schaaf (1990), using the electron conductivities calculated in Schaaf (1988), calculates the thermal structure in two

dimensions for B & 10
11

G. Above a field strength of 10
12

G, the calculations are not considered reliable. Finally, Shibanov et al. (1995) present

the temperature distribution as a function of magnetic colatitude for B ¼ 1012 G from a numerical solution to the two-dimensional thermal

structure equation in a plane-parallel approximation.

The current work complements the previous ones by extending the results to stronger field strengths (1014
# B # 1016 G) in a semi-

analytical fashion. We apply the approach of Hernquist & Applegate (1984) in the limit of a strongly magnetized envelope, and then justify and

use the plane-parallel approximation to solve the two-dimensional structure equation. We derive separable thermal structure equations in the

high- and-low temperature limits for both liquid and solid material. We calculate the thermal structure in terms of simple (though analytically

intractable) integrals.

The plane-parallel approximation has the second important advantage that the detailed field configuration separates from the thermal

structure problem. Assuming that it is correct, we can synthesize the results for any field distribution Bðv; fÞ as long as B is not too

inhomogeneous on the scale of the envelope thickness (i.e., jB==Bj q hE).

We find that the emission from a given surface element is a simple function of the location of the element. Using this functional form, we

derive light curves and time-dependent spectra including general relativistic effects. Although we closely follow the formalism of Page (1995),

we calculate the two-dimensional thermal structure of the envelope and present results for several field strengths and fluxes. We internally

verify and justify the geometric simplification used to translate our results into observables.

2 P R E L I M I NA R I E S

In extremely intense magnetic fields, the Landau energy ("qB) of an electron will typically exceed its thermal energy. In these strong fields, the

quantization of the electron energy determines the structure of the electron phase-space and must be taken into account in calculating the

thermodynamics of the electron gas.

In what follows, we will use the dimensionless units

b ¼
"qB

mec
2

¼
"jej

m2
ec3

B <

B

4:4 × 1013G;
ð1Þ

t ¼
kT

mec
2

<

T

5:9 × 109 K
and z ¼

m

mec
2

; ð2Þ

where m is the chemical potential of the electron gas including the electron rest mass. Hernquist (1984, 1985) and Heyl (1998) outline the techniques

for calculating the thermodynamic properties of a magnetized electron gas, and we adopt their methodology for the remainder of the paper.

3 T H E L OW- T E M P E R AT U R E , S T RO N G - F I E L D R E G I M E

We are specifically interested in the low-temperature limit (t p z ¹ 1) and the regime in which only one Landau level is filled (z <
��������������

2b þ 1
p

).

For neutron stars with b * 1, this limit applies to the regions that most effectively insulate the isothermal core of the star. We will use the results

of Hernquist (1984) and Yakovlev (1984) to calculate the thermal conduction in the liquid and solid phases.

3.1 Degenerate structure equations

If we assume that the pressure is supplied by the electrons alone, the general relativistic equations of thermal structure in the plane-parallel
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Table 1. Several pulsars with observed surface blackbody emission.

Pulsar References

PSR J0437-4715 Becker & Trümper 1993

PSR 0630+18 (Geminga) Halpern & Holt 1992, Halpern & ruderman 1993

Halpern & Wang 1997

PSR 0656+14 Finley, Ögelman & Kiziloglu 1992,

Anderson et al. 1993, Greiveldinger et al. 1996,

Possenti, Mereghetti & Colpi 1996

PSR 0833-45 (Vela) Ögelman, Finley & Zuckerman 1993

PSR 1055-52 Ögelman & Finley 1993, Greiveldinger et al. 1996

PSR 1929+10 Yancopoulos, Hamilton & Helfand 1994
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approximation assume the simple form,

dT

dm
¼

F

gs

Ye

mu

1

k
1 ¹

F

gs

Se

rk

� �¹1

; ð3Þ

dm

dz
¼

mu

Ye

gs 1 ¹
F

gs

Se

rk

� �

; ð4Þ

where we have neglected the thickness of the envelope (hE , 100 m) relative to the stellar radius (R). Here, mu is the atomic mass unit, Z and A

are the mean atomic number and mean atomic mass of the material, r is the density of the matter, Se is the entropy of the electron gas per unit

volume, k is the thermal conductivity, and F and gs are the flux and the acceleration of gravity as measured at the surface respectively. For

completely ionized material, Ye is given by the product of Z=A and the ionized fraction.

In the absence of a magnetic field, this plane-parallel approximation introduces errors of the order RshE=R
2

< 0:6 per cent, where

Rs ¼ 2GM=c
2 (Gudmundsson et al. 1982). To understand the potential errors of the plane-parallel treatment in the presence of a magnetic field,

we compare the results of Shibanov et al. (1995) with those of Schaaf (1990). Although Shibanov et al. use a one-dimensional approach, their

results agree with those of the two-dimensional calculations by Schaaf (1990) for several surface temperatures and a magnetic field of 1012 G.

In stronger magnetic fields, conduction perpendicular to the magnetic field is even less important, and we expect the one-dimensional method

to be even more accurate.

To estimate the errors in using the plane-parallel treatment in the presence of the magnetic field, we examine the thermal structure

equation in two dimensions (Schaaf 1990):

= � F ¼ ¹
e¹Ls

r2

∂
∂r

r
2k11e¹Ls

∂T

∂r
þ rk12

∂T

∂v

� �

¹
1

r sin v

∂
∂v

sin v k21e
¹Ls

∂T

∂r
þ

k22

r

∂T

∂v

� �� �

¼ 0; ð5Þ

where v is an angle along the surface of star, specifically the magnetic colatitude,

e¹Ls ¼

���������������

1 ¹
Rs

R
;

r

ð6Þ

and the kij are the components of the thermal conduction tensor, where 1 denotes the radial direction, and 2 denotes the tangential direction. The

components of k are found by rotating the tensor calculated by Hernquist (1984) and Yakovlev (1984) so that the z-direction locally coincides

with the radial direction. This gives

k11 ¼ kyy sin2 w þ kzz cos2 w; ð7Þ

k22 ¼ kyy cos
2 w þ kzz sin

2 w; ð8Þ

k12 ¼ k21 ¼ ðkyy ¹ kzzÞ sin w cos w; ð9Þ

where w is the angle between the local field direction and the radial direction, and kyy and kzz respectively are the components of the heat

conduction tensor perpendicular and parallel to the direction of the magnetic field.

For a uniformly magnetized neutron star, w ¼ v; for a dipole field, cot w ¼ 2 cot v (Greenstein & Hartke 1983) or, more conveniently,

cos2 w ¼
4 cos

2 v

3 cos2 v þ 1
: ð10Þ

If we assume that the components of the thermal conduction matrix (k) are of the same order and take the maximum temperature gradient

to be Tc ¹ Teff , Tc radially over the thickness of the envelope, hE, or tangentially over one radian, we obtain

∂T

∂v
, Tc p e¹Ls r

∂T

∂r
, e¹Ls R

Tc

hE

, 102
Tc; ð11Þ

where Tc is the core temperature. We find that neglecting derivatives with respect to angle does not dramatically increase the error relative to

the unmagnetized plane-parallel case.

However, this argument does not apply for v close to p=2 (i.e., where the magnetic field lines are parallel to the surface for a uniform or

dipole field). Here,

k22 ¼ kzz q k11 ¼ kyy: ð12Þ

If we re-examine the error analysis for w < p=2, we find that relevant quantities to compare are

k22

∂2
T

∂v2
and k11r

2e¹2Ls
∂2

T

∂r2
: ð13Þ

Ultramagnetized neutron star envelopes 601

q 1998 RAS, MNRAS 300, 599–615

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
0
0
/2

/5
9
9
/1

0
3
7
6
1
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



The tangential transport will exceed the radial transport if

cos2 w < e2Ls
h

2
E

R2
¹

kyy

kzz

: ð14Þ

Comparing these values, we find that if kzz * 10
4kyy, the one-dimensional treatment will break down near w ¼ p=2; otherwise, the plane-

parallel treatment is adequate even at w ¼ p=2.

For regions where the magnetic field lines are not nearly parallel to the surface, the plane-parallel approximation works well;

consequently, even for an arbitrary field geometry, because the envelope is thin, we ignore ∂=∂v terms in the structure equation compared to

r∂=∂r terms and focus on radial heat flow. With these assumptions, we have (Schaaf 1990)

k ¼ k11 ¼ kzz cos2 w þ kyysin
2w: ð15Þ

In the low-temperature limit, we obtain the dimensionless equation

dt

dz
¼ Ye

F

mugs

l¹2
e

c

� �

ck

l¹2
e

1

k

� �

; ð16Þ

where l¹e is the electron Compton wavelength, and the dimensionless flux is given by

Ye

F

mugs

l¹2

c

� �

¼ 7:83 × 10¹3 Z26

A56

T
4
eff;6

gs;14

; ð17Þ

where Z26 ¼ Z=26, A56 ¼ A=56, Teff;6 ¼ Teff =106 K, and gs;14 ¼ gs=1014 cm s¹2. Teff is the effective blackbody temperature of the neutron star

photosphere, again as measured at the surface, which we take to be located at an optical depth of 2/3.

For equation (16) to be separable for an arbitrary geometry, kzz and kyy must depend on t in the same fashion. For electron–ion scattering

this is the case, so we can hope to find a simple analytic solution to the structure equation. Unfortunately, since the cross-section for electrons to

scatter off phonons depends explicitly on temperature, in the solid state the structure equation is separable only where the field is either purely

radial or tangential.

In the liquid state, we obtain the following structure equation:

t
dt

dz
¼ Ye

F

mugs

l¹2
e

c

� �

cos2 w
p

3

b2

Za2

feiðz; bÞ
�������������

z2 ¹ 1
p þ

sin2 w

12p

Za2

b
Qeiðz; bÞ

�������������

z2 ¹ 1
p

" #¹1

; ð18Þ

where a is the fine-structure constant. In the solid state for electron–phonon scattering, we obtain

dt

dz
¼ Ye

F

mugs

l¹2
e

c

� �

1

3

b2

au¹2

fepðz; bÞ

� �¹1

; w ¼ 0; ð19Þ

t2 dt

dz
¼ Ye

F

mugs

l¹2
e

c

� �

1

12

au¹2

b
Qepðz; bÞ

� �¹1

; w ¼
p

2
: ð20Þ

The functions f and Q are defined and calculated in Hernquist (1984) and Yakovlev (1984), and we take u¹2 < 13 (Yakovlev & Urpin 1980;

Potekhin & Yakovlev 1996)) for a body-centred cubic lattice.

4 T H E H I G H - T E M P E R AT U R E R E G I M E

In the non-degenerate regime we assume that most of the heat is transported by photons, and that free–free absorption provides the opacity. We

take the unmagnetized thermal conductivity to be of the Kramer’s form (Silant’ev & Yakovlev 1980),

kðFÞ
¼ k0

T
13=2

r2
hffðb; wÞ; ð21Þ

where

k0 ¼
1

2:947

c7

p

������

2p

p

jck
7=2

m
2
um

3=2
e

e6"
2

A
2

Z3
ð22Þ

¼
16j

3
mu

196:5

24:59

A
2

Z3

g

cm5 K7=2
; ð23Þ

c7 ¼ 316:8, j is the Stefan–Boltzmann constant, and b ; b=t. The factor of 2.947 scales the results of Silvant’ev & Yakovlev to agree with the

results of Cox & Giuli (1968) (for discussion see Hernquist 1985).

We parametrize the effects of the magnetic field by the anisotropy factor for free–free absorption (hff). Absorption dominates the opacity

through the non-degenerate portion of the envelope (Pavlov & Yakovlev 1977; Silant’ev & Yakovlev 1980). We use the analytic results of

Pavlov & Yakovlev to extrapolate beyond the tabulated values in Silant’ev & Yakovlev i.e., for b > 1000. For b < 1000 we use the results of

Silant’ev & Yakovlev.
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4.1 Non-degenerate structure equation

We follow the method of Hernquist & Applegate (1984), but we do not require that the conductivity be a power law in r and T .

In the non-degenerate regime, the thermal structure equation of the envelope is

dT

dP
¼

F

gs

1

rk
; ð24Þ

and we consider an unmagnetized conductivity which is a power law as equation (21),

k ¼ k0

T
d

ra
: ð25Þ

Even in an intense magnetic field, in the non-degenerate regime, the pressure is given by the ideal-gas law (Blandford & Hernquist 1982),

P ¼
Ye

mu

rkT : ð26Þ

We combine equations (24)–(26) with equation (21), yielding

dT

dP
¼

F

gs

1

k0

mu

Yek

� �a¹1
P

a¹1

hffðb; wÞTaþd¹1:
ð27Þ

As for the structure equations in the degenerate limit, this equation is separable, yielding rðTÞ. Because hff depends on T through the argument

b, the relation between T and P need not be a power law as in the unmagnetized case. In the limit that hff ¼ 1, the result of Hernquist &

Applegate (1984) obtains.

More generally, if we take hff to be a power law ~b
¹2 (e.g. Tsuruta et al. 1972), which is approximately true for b → ∞, we can

immediately use the results of Hernquist & Applegate (1984) to obtain that the conductivity is constant along a solution through the non-

degenerate envelope:

k ¼
a þ d ¹ 2

a

F

gs

Yek

mu

ð28Þ

¼ 7:07 × 10
13 Z26

A56

T
4
eff;6

gs;14

erg

K cm s
ð29Þ

for a ¼ 2 and d ¼ 6:5 as in equation (21). If we equate this result with our assumed conductivity and solve for T, we find that the solution

follows

T ¼
k

abk0

� �1=ðd¹2Þ

ra=ðd¹2Þ
¼ 10

6
K

r

rT6

� �4=9

; ð30Þ

where

ab ¼
2

3
q

bmec
2

k

� �2
1

ln bTypical

; ð31Þ

rT6
¼ 71:3 g cm¹3 b

������������������

ln bTypical

p A
3=2
56 56Z

¹2
26 T

¹2
eff;6g

1=2
s;14; ð32Þ

and bTypical is a typical value of b=t in the envelope, bTypical < 6 × 103b. One should note that for free–free scattering in the weak-field limit,

T ~ r4=13.

With equation (30), we can calculate the density at the onset of degeneracy. We will assume that at the onset of degeneracy the electron

density is given by fully degenerate expression, and that t < z ¹ 1. This yields

rND=D ¼ 3:92 × 105g cm¹3bðln bTypicalÞ
1=7

A
6=7
56 Z

¹5=7
26 T

4=7
eff;6g

¹1=7
s;14 : ð33Þ

In principle, electron scattering could also play a role in the non-degenerate regime. To simplify the calculation, we neglect its

contribution and verify that it is indeed negligible. Using equation (30), we find that the ratio of free–free to electron scattering opacity along a

solution is given by

k̃
ðFÞ

b¼0

k̃
ðTÞ

b¼0

¼ 1:74 × 106r¹5=9
0

b
������������������

ln bTypical

p

 !14=9

A
4=3
56 Z

¹10=9
26 T

¹28=9
eff;6 g

7=9
s;14; ð34Þ

where the electron scattering opacity k̃
ðTÞ

b¼0 is given by Silant’ev & Yakovlev (1980). Since this ratio increases with decreasing density, we need

to estimate it only at the maximum density for the solution, i.e., the density at the onset of degeneracy

k̃
ðFÞ

b¼0

k̃
ðTÞ

b¼0

�

�

�

�

�

ND=D

¼ 1:36 × 103bðln bTypicalÞ
¹6=7

A
6=7
56 Z

¹5=7
26 T

¹24=7
eff;6 g

6=7
s;14: ð35Þ
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For B ¼ 10
14

G this ratio is greater than one for Teff < 5:9 × 10
6

K, which is larger than the effective temperatures considered here.

Furthermore, this is a conservative estimate of this ratio, because generally we cut off the non-degenerate solution where degenerate electrons

begin to dominate the heat conduction. In unmagnetized envelopes this occurs where the gas is mildly degenerate (Hernquist & Applegate

1984). We find that this is also the case for strongly magnetized envelopes.

5 C A L C U L AT I O N S

5.1 Strategy

We have found that the heat transfer equation is not solvable analytically, but it is separable in several cases. For the liquid and degenerate

region of the envelope the solution may be calculated once for each field strength and geometry, and scaled to reflect the magnitude of the heat

flux and shifted to fit the temperature at the low-density edge of the region. We can apply this same strategy in the solid state only for the case of

a purely radial or azimuthal field. Otherwise, for the solid region, the temperature as a function of chemical potential will depend on the flux

and boundary conditions in a more complicated way; consequently, the solution must be recalculated for each value of the flux. To match the

solutions across the liquid–solid phase transition and the degenerate–non-degenerate interface, we follow the approach of Hernquist &

Applegate (1984). At the outer boundary, we use the radiative zero solution.

5.2 Results for the separable structure equations

As described earlier, in the low-temperature limit when only one Landau level is filled, the structure equation is simple and may be integrated

for a given field strength and geometry, and the boundary conditions and the dependence on the flux may be satisfied after the numerical

solution is obtained.

Given these numerical results, it is straightforward to calculate the core temperature for a given surface temperature and flux. However,

before fixing the boundary conditions, we can note several general features of the results. First, for transport along the magnetic field, the

envelope becomes nearly isothermal at z ¹ 1 , 0:1, regardless of the magnetic field strength. However, for transport perpendicular to the field,

the temperature rises steadily throughout the range of applicability of this formalism.

5.2.1 Parallel transport

In Fig. 1 we present results for the degenerate and non-degenerate regimes for several magnetic fields with an effective surface temperature of

10
6

K. In the non-degenerate regime, the temperature solution follows the power law given in equation (30) and the conductivity is nearly

constant. In the degenerate regime, the conductivity increases dramatically and the temperature remains nearly constant. For the solution with

B ¼ 1015 G, the discontinuity in the conductivity at the phase transition is apparent. The results for 1014 G agree qualitatively with the results of

604 J. S. Heyl and L. Hernquist
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Figure 1. Thermal structure of a strongly magnetized neutron star envelope for a radial field. The left-hand panel traces the temperature–density relation with

B ¼ 1014
; 1015 and 1016 G, and an effective surface temperature of 106 K. The right-hand panel traces the conductivity through the envelope. The constant

conductivity solution appropriate for a purely power-law conductivity law works well through the non-degenerate regime. In the left-hand panel, liquid phase

exists above the dashed curve, and solid phase exists below.
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Hernquist (1985) for this field strength. Quantitatively, however, we find that the conductivity in the non-degenerate regime is 30 per cent lower

than the earlier result of 10
14

erg (K cm s)
¹1

, and is given by equation (29). As the magnetic field strength increases, we find that the core

temperature (or here the temperature at which the first Landau level is filled) decreases. This effect results from the increased conductivity in

the non-degenerate regime, where k is approximately proportional to b2, and in the degenerate regime, where the quantization of the electron

phase-space increases the conductivity above the zero-field values.

We take advantage of the simplicity of this analytic technique when calculating the thermal structure for hotter and cooler

surface temperatures. We do not need to reintegrate the structure equations themselves. All that is required is to recalculate the boundary

conditions at the non-degenerate–degenerate interface and the liquid–solid phase transition. Again we find qualitative agreement with Hernquist

(1985). In the non-degenerate regime, the increased or decreased flux mimics the effect of changing the field strength depicted in Fig. 1.

We compare the various results by determining the temperature at the following densities: r ¼ 1:5 × 10
7
, 4:7 × 10

8
and 1:5 × 10

10
g cm

¹3
.

These are the densities at which the lowest Landau level fills for field strengths of 1014, 1015 and 1016 G. Moreover, since the matter is nearly

isothermal at higher densities, these temperatures are close to the core temperature, at least for parallel transport. By fitting the results of the

calculations, we find that at the lowest density

Tðr ¼ 1:5 × 10
7

g cm
¹3

Þ ~ b¹0:19 F

gs

� �0:35

; ð36Þ

and at both the higher densities

Tðr ¼ 4:7 × 108 g cm¹3
; 1:5 × 1010g cm¹3

Þ ~ b¹0:16 F

gs

� �0:43

: ð37Þ

Fig. 2 compares the numerical results with the best-fitting power-law relations.

5.2.2 Perpendicular transport

Modelling the transition between photon and electron heat transport is qualitatively different for transport perpendicular to the field lines. In the

parallel case, the conductivity from electrons typically increases rapidly with density, and the transition from photon- to electron-dominated

heat transport is abrupt. For perpendicular transport, the function Q decreases with energy, and therefore the conductivity decreases with

density for fixed temperature. In this case, the transition is more subtle. Fortunately, the solution does not depend strongly on how this transition

is treated, so we choose to employ z ¹ 1 > t to delineate the region where electron conduction dominates. The conductivity is not continuous

across this transition, as is apparent in Fig. 3.

We varied the definition of the non-degenerate–degenerate interface and found that it had little effect on the Tmax ¹ Teff relation. Fig. 4

shows how the solution changes if we move the interface to a factor of 10 higher or lower temperature (i.e., z ¹ 1 > 10t and z ¹ 1 > t=10).

Although near the interface the solutions differ dramatically, at higher densities the choice has little effect. The boundary condition at the

transition is unimportant for perpendicular transport, because the temperature rises quickly with density, and the solution quickly ‘forgets’ the

boundary conditions, in a manner analogous to the convergence of the radiative zero solution to the true solution in stellar atmospheres (e.g.

Schwarzschild 1965). This is in contrast to the case where w Þ p=2, where the material quickly becomes isothermal in the degenerate regime.

We find that for a given effective temperature the core temperature is much higher where the heat must travel perpendicularly to the field

lines. Furthermore, we find that for stronger field strengths the effect is more pronounced.
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Figure 2. The left-hand panel depicts the temperature–flux relation for several field strengths and densities. F=gs is given in units of jð10
6
KÞ

4
=10

14
cm s

¹2
. The

right-hand panel depicts the temperature–magnetic field relation. The symbols show the calculated data points, and the lines are the best-fitting power-law

functions to the data.
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Figure 3. Same as Fig. 1 for the perpendicular case.

Figure 4. The dependence of the envelope solution for transport perpendicular to the magnetic field upon the definition of the non-degenerate–degenerate

interface. We have calculated the location of the interface for ðz ¹ 1Þ=t ¼ 0:1; 1; 10 from left to right.
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5.2.3 Effective temperature distributions

To find the effective temperature as a function of angle with respect to the magnetic field, we vary the effective temperature as a function of

angle until the temperature where the first Landau level fills is constant for the various angles. Unfortunately, where the magnetic field is neither

radial or tangential, we have solutions only in the non-degenerate and liquid degenerate regimes. Therefore, for acute angles we must select

fluxes such that the degenerate solution is entirely in the liquid regime. For the more strongly magnetized envelopes we can follow the solution

to higher densities; consequently, we must use higher effective temperatures for the stronger magnetic fields. Table 2 summarizes the

parameters for the calculations. Fig. 5 depicts the results for B ¼ 10
14

and 10
16

G. For all but the perpendicular case, the envelope has become

nearly isothermal by the density where the first Landau level fills.

Fig. 6 shows the flux as a function of angle for all of the two-dimensional calculations. The agreement between the flux distribution and a

simple cos2 w law is striking. Greenstein & Hartke (1983) have argued that if the conductivity is constant through the envelope, the flux will

follow a distribution of the form A cos2 w þ B sin2 w. Although in the non-degenerate regime the conductivity along a TðrÞ solution is nearly

constant, in the degenerate regime it varies by several orders of magnitude. Furthermore, the non-degenerate layers do not throttle the heat flux; if

they did, one would expect little variability, as the conductivities parallel and perpendicular to the field are nearly equal in the strong-field limit.

We look to the degenerate structure equation for the liquid state to explain the remarkable agreement with a cos2 w distribution. From

examination of equation (18), we see that if the conductivity transverse to the field is neglected, we can make the replacement

F → F cos2 w ð38Þ

and recover the thermal structure equation for w ¼ 0. We determine where this approximation is valid by comparing the transverse and parallel

components of the conductivity tensor:

kyy;ei

kzz;ei

¼
Z

2a4

4p2b3
ðz2

¹ 1Þ
Qeiðz; bÞ

feiðz; bÞ
¼ 8:22 × 10¹11 Z

4
26

A2
56B5

14

r2
6

Qeiðz; bÞ

feiðz; bÞ
: ð39Þ

At first glance, it appears that the transverse conductivity is negligible throughout the degenerate regime. However, the functions Qei and fei

complicate the discussion. Specifically, fei → 0 and Qei → ∞ as z → 1; therefore transverse conduction is likely to be important in the non-

relativistic portion of the degenerate envelope. Fig. 5 shows that this is indeed the case. For B ¼ 1014 G, the solutions for w < p=2 are nearly

identical for r > 106:5 g cm¹3 or z > 1:1. As z approaches unity, the ratio of the conductivities increases without bound, the transverse

conductivity may no longer be neglected, and the runs of temperature with density begin to diverge.
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Table 2. Results of the two-dimensional calculations.

Field Strength [G] Teff ðw ¼ 0Þ [K] Tmaxðz ¼
��������������

2b þ 1
p

Þ] [K]

1014 1:07 × 106 1:12 × 108

1015 3:16 × 106 4:79 × 108

10
16

5:06 × 10
6

8:13 × 10
8

Figure 5. The left-hand panel shows the temperature structure of the envelope as a function of density for B ¼ 10
14

G and Teff ¼ 1:07 × 10
6

K. From top to

bottom, the results are for w ¼ 08; 308; 608; 858 and 908, where w is the angle between the magnetic field and the radial direction. The right-hand panel depicts the

temperature structure for B ¼ 1016 G and Teff ¼ 5:06 × 106 K. The solutions are constrained to have the same temperature at the density where the first Landau

level fills (denoted by the bold circle). In both panels, liquid phase exists above the dashed curve, and solid phase exists below.
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Empirically, we find that in the region of the envelope which most effectively throttles the flux, the transverse conductivity may be

neglected for w < p=2 without introducing significant error.

5.3 Observed flux distribution

We follow the technique outlined by Page (1995) to calculate the observed fluxes. However, unlike Page we evaluate the double integrals over

the visible portion of the neutron star surface directly. We use the cos2 w rule to calculate the photon distribution function at the surface, and so

we do not define a grid of pre-calculated distribution functions as Page does.

As a first approximation, we focus on the variation of the observed bolometric flux with the angle J of the line of sight with the magnetic

dipole axis. This angle is a function of the phase angle (g), the inclination of the dipole to the rotation axis (a), and the line of sight to the

rotation axis (z):

cos J ¼ cos z cos a þ sin z sin a cos g ð40Þ

(Greenstein & Hartke 1983). For simplicity, in the discussion that follows we will take a ¼ z ¼ p=2; therefore J ¼ g, and we refer to J ¼ 0; p

as on-phase and J ¼ p=2; 3p=2 as off-phase.

We repeat the calculation for several values of the stellar radius (with fixed mass) to determine the effects of general relativity on the light

curves: gravitational redshift and the deflection of null geodesics (self-lensing, or more concisely ‘lensing’).

To quantify the effect of gravitational lensing on the light curves of magnetized neutron stars, we calculate the mean value of the

bolometric flux emitted by the surface over the visible region of the star. We assume that the flux at a given location on the surface is

proportional to cos2 w, where w is the angle between the radial direction and the magnetic field.

For clarity, we treat the gravitational redshift separately. Fig. 7 depicts the ratio of the mean value of the flux over the visible portion of the

star to the flux that would be emitted if the magnetic field were normal to the surface throughout (i.e., an isotropic temperature distribution).

In the limit of infinite radius, i.e., if lensing is unimportant, we find that for a uniform field,

f̄ ðJ ¼ 0Þ ¼
1

2
f ðw ¼ 0Þ and f̄ ðJ ¼ p=2Þ ¼

1

4
f ðw ¼ 0Þ: ð41Þ

For a dipole field, the calculation is slightly more complicated. First, we used equation (10) to determine the angle of the field with respect to

the radial direction. Secondly, from equations (36) and (37), we find that the emergent flux is a function of the field strength. For a dipole

configuration, the magnitude of the field varies as

b ~

�����������������������

3 cos2 v þ 1
p

ð42Þ

along the surface of the star. Since we are most interested in fixing the internal temperature at high densities, we assume that the flux is

proportional to B
0:4 from equation (37), which reduces the flux for v , p=2 further beyond the cos2 w rule. We obtain

f̄ ðJ ¼ 0Þ ¼ 0:663f ðw ¼ 0Þ and f̄ ðJ ¼ p=2Þ ¼ 0:393f ðw ¼ 0Þ: ð43Þ

If we did not include the effect that the flux is a function of field strength as well as orientation, we would have obtained 0.717 and 0.444 for the

above values.
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Figure 6. Flux as a function of angle for B ¼ 1014
; 1015 and 1016 G. The solid curve is cos2 w.
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We find that the mean flux is greater for the dipole configuration than for a uniform field for all viewing angles if R=Rs < 5, and that the

variation in the light curve is generally smaller. We have taken MNS ¼ 1:4 M(, yielding a Schwarzschild radius, Rs, of 4.125 km. The

theoretical predictions for the radius of a 1:4-M( neutron star range from 6.5 to 14 km (Pandharipande 1971; Wiringa, Fiks & Fabrocini 1988;

Thorsson, Prakash & Lattimer 1994), depending on the details of the equation of star at supernuclear densities.

As Page (1995) found, lensing dramatically reduces the variation of the observed flux with phase by making more than half the surface

visible at any time. Interestingly, for the range of radii from 7.248 to 8.853 km, we find that the flux is greater when the magnetic poles are

located perpendicular to the line of sight. For this range of radii, over 90 per cent of the surface is visible. Emission from both of the hotspots

reaches the observer leading to a larger flux. For radii less than 7.248 km, the entire surface is visible and again the peaks are on phase. Page

found a similar effect for the same range of radii.

The emitted spectra from the visible portion of the neutron star surface is the sum of blackbody spectra of various temperatures. To

determine the emitted spectra, we calculate the distribution of blackbody temperatures on the surface; i.e., we estimate the distribution function

df̄ =dTeff . With this distribution function, it is straightforward to calculate the emergent spectrum averaged over the visible portion of the surface

as

f̄q ¼

�∞

0

df̄

dTeff

1

jT4
eff

"

4p2c2

q3

exp ð"q=kTÞ ¹ 1
dTeff : ð44Þ

The factor of jT
4
eff converts the flux to an effective area of emission (Ā). The calculation of df̄ =dTeff is numerically more tractable than dĀ=dTeff

and allows us to account for the total energy emitted more reliably.

We calculate df̄ =dTeff in similar fashion to f̄ . To expedite the calculation, we note that given the cos2 w rule the neutron star surface has a

limited range of effective temperatures, specifically between 0 and Teffðw ¼ 0Þ. Consequently, we define

T̃ ¼
Teff

Teffðw ¼ 0Þ
; ð45Þ

df̄

dT̃
¼

df̄

dTeff

Teffðw ¼ 0Þ

For observations on-phase (J ¼ 0) and without lensing (R → ∞), the flux-weighted temperature distribution can be calculated directly if the

envelope is uniformly magnetized. It is given by

df̄

dT̃
¼ 4T̃

7
f ðw ¼ 0Þ: ð47Þ

The result for the dipole cannot be written explicitly and is not illustrative.

For a general geometry (J Þ 0), we expand this function in an orthonormal basis on the interval 0 to 1. Specifically, we assume that for

0 # T̃ # 1

df̄

T̃
¼
X

∞

l¼0

AlQlðT̃Þ ð48Þ
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Figure 7. The average of the bolometric flux over the visible portion of the neutron star for J ¼ 0; p=2. The upper pair is for a dipole, and the lower is a uniform

field configuration.
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and zero otherwise, where

QlðT̃Þ ¼
�������������

2l þ 1
p

Plð2T̃ ¹ 1Þ: ð49Þ

The PlðxÞ are the Legendre polynomials. From the properties of these orthonormal functions, we have A0 ¼ f̄ , and Al is calculated by inserting

the weighting function QlðT̃Þ into the integrands in the calculation for f̄ . We recall that we have assumed, T̃ ¼ cos1=2 w.

Using an orthonormal basis dramatically speeds the calculation of the distribution. Additionally, because the PlðxÞ are polynomials, it is

straightforward to calculate conventional statistics of the distribution:

T̃

 �

¼
1

f̄

�

1

0

T̃
df̄

dT̃
dT̃ ¼

���

3
p

6

A1

A0

þ
1

2
; ð50Þ

T̃
2


 �

¼

���

5
p

30

A2

A0

þ

���

3
p

6

A1

A0

þ
1

3
: ð51Þ

Unfortunately, with this basis is impossible to insist that distribution is everywhere non-negative, i.e., that no temperatures contribute negative

flux. However, if a sufficiently large number of Al are calculated, the intervals where df̄ =dT̃ < 0 can be made to be arbitrarily small and to have

an arbitrarily small contribution to the total flux. We compare the results of the expansion with Equation (47), and find that the maximum

relative error in the expansion coefficients between the two techniques is approximately 9 × 10¹5.

Fig. 8 depicts the results of this calculation for four values of the stellar radius with J ¼ 0; p=2. In the left-hand panel, we see in the

absence of general relativistic effects that when the neutron star is off-phase more flux is produced at lower blackbody temperatures than when

the magnetic dipole is pointing toward the observer. For the smallest radius considered (R ¼ 6:25 km), the entire surface of the neutron star is

visible and a large portion of the front hemisphere has a second image. In this case, both the flux-weighted temperature distributions at J ¼ 0

and p=2 are peaked at the maximum effective temperature. However, the distribution off-phase has a more well-populated tail extending

toward lower temperatures than on-phase.

The right-hand panel depicts a value of the stellar radius (R ¼ 8:85 km) where there is practically no variation of f̄ with phase.

Additionally, we see that the flux-weighted temperature distributions are nearly constant with phase. Also depicted is the temperature

distributions for R ¼ 7:9 km, the radius where the off-phase peaks are maximized. Here again, the distributions do not change appreciably with

phase. We conclude that for 7 & R & 9 km, it would be difficult to detect variation of the spectra with phase, if the neutron star surface indeed

radiates as a blackbody.

To calculate the spectra themselves, it is convenient to define the following functions,

F lðq̃Þ ¼
15

p4
q̃3

�1

0

QlðT̃Þ
1

T̃4

1

exp ðq̃=T̃Þ ¹ 1
dT̃ ; ð52Þ

where q̃ ¼ "q=kTeffðw ¼ 0Þ, so that

f̄qðqÞ ¼
"

kTeffðw ¼ 0Þ

X

∞

l¼0

AlF l

"q

kTeffðw ¼ 0Þ

� �

: ð53Þ
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Figure 8. The fractional distribution of observed flux as function of the surface blackbody temperature. The left-hand panel depicts the distribution for the

minimal (R=Rs ¼ 1:52) and maximal radii (R ¼ ∞) considered. The right-hand panel depicts the distribution at a radii where f̄ ðJ ¼ 0Þ ¼ f̄ ðJ ¼ p=2Þ (R ¼ 8:85

km) and where the off-phase peaks are maximized (R ¼ 7:9 km). All the curves are normalized to have an integral of unity from T̃ ¼ 0 to 1.
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Since Al has units of flux, we obtain the correct units of flux-time for f̄ q.

To convert to the observed spectra, we must account for gravitational redshift and interstellar absorption; we obtain (Page 1995)

f
observed
q ðqÞ ¼ f̄qðe¹Ls qÞe¹Ls

R
2
∞

D2
e¹NHjðqÞ

; ð54Þ

where

R∞ ; Re
Ls ; ð55Þ

where e¹Ls is given in equation (6). The final term accounts for interstellar absorption, and D is the distance to the neutron star. For jðEÞ we use

the Morrison & McCammon (1983) cross-sections.

Fig. 9 depicts the spectra in the ROSAT energy range for two neutron stars. Each of the spectra (light curves) is well fitted by a blackbody

(heavy curves) at the mean effective temperature with an additional hard component. The mean effective temperature (Tmean) is defined by
�

f
observed
q ðqÞdq ¼ jT

4
mean

R
2
∞

D2
ð56Þ

for NH ¼ 0, i.e., it is the equivalent blackbody temperature that accounts for all of the energy emitted from the neutron star surface. The hard

component is most significant when the star is observed at right angles to the magnetic axis, and originates from the portions of the hot polar

caps that are visible even when the star is off-phase.

In Appendix A, we present two XSPEC models which are available over the WWW. With these models, one may simulate observations

from various X-ray instruments to estimate the observed pulsed fractions for the models discussed in this section. We give an example in

Fig. A1.

5.4 Neutron star cooling

We can use the results of the preceding sections to determine the effects of the magnetic field on neutron star cooling rates. Specifically, we take

the ratio of the total flux from the surface with and without a magnetic field for the same core temperature. We have used the results of

Hernquist & Applegate (1984). To determine the core temperature for a given flux, we combine their equations (4.7) and (4.8), switching from

the first relation to the second when the surface effective temperature drops below 4:25 × 105 K. The results do not depend qualitatively on

whether equation (4.7) or (4.8) of Hernquist & Applegate is used.

To compare our calculated temperature–flux relation with the results for isotropic heat transport, we multiply the fluxes for the magnetized

envelopes by 0:4765 to account for a dipole field configuration. Additionally, we assume in our calculations that the envelope is isothermal

above the density (rmax) at which the first Landau level fills, and use the temperature (Tmax) at this density to estimate the flux in the

unmagnetized case. Only for the strongest field strength considered (B ¼ 1016 G) do our analytic calculations extend to the core density

Ultramagnetized neutron star envelopes 611
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Figure 9. The observed spectra from a neutron star with Teffðw ¼ 0Þ ¼ 7:5 × 105 K from a distance of 250 pc with an intervening absorption column of

NH ¼ 1020cm¹2. The thin curves show the spectra, and the thick curves show blackbody spectra at the mean effective temperature of the neutron star. For the

R ¼ ∞ model, we have taken R=Rs → ∞ while R ¼ 20 km to give the surface area of the neutron star, while neglecting general relativistic effects.
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assumed by Hernquist & Applegate (1984) of 10
10

g cm
¹3

; however, we do not expect the results to be strongly sensitive to this cut-off density,

as our solutions (for w Þ p=2) are nearly isothermal at high densities.

Fig. 10 depicts the results of this comparison. We find that for the weakest field strength considered (B ¼ 1014 G), the magnetic field

has little effect on the total luminosity of the star. However, for cooler core temperatures and stronger magnetic fields, the difference in

the luminosities can be up to a factor of 10. The flux ratio is sensitive to the core temperature because equations (36) and (37) have a

slightly different power-law index than the model assumed for the unmagnetized envelope (0.392). The inflection in each of the curves occurs

when the material near non-degenerate–degenerate interface melts as the core temperature increases. All the curves swing upward for high

values of Tmax, because for high fluxes (i.e., high core temperatures) our assumption that the temperature is constant for r > rmax no longer

holds.

Because strongly magnetized neutron stars emit significantly more flux, we expect that the thermal history of magnetars should be

dramatically different from that of neutron stars with weaker magnetic fields. We discuss this issue further in Heyl & Hernquist (1997).

6 C O N C L U S I O N S

We have presented an analytic technique for calculating the thermal structure of ultramagnetized neutron star envelopes. We use the exact

thermal conductivities in an intense magnetic field of Silant’ev & Yakovlev (1980) and Hernquist (1984) in the non-degenerate and degenerate

regimes respectively. We make two simplifying approximations. First, we assume that the interface between degenerate and non-degenerate

material is abrupt. Hernquist (1985) numerically calculated the thermal structure for B ¼ 10
14

G without this assumption. Our agreement with

this earlier result shows that an abrupt interface is a good approximation. Secondly, we use a standard simplification in the study of stellar

atmospheres, namely to use the radiative zero solution to fix the outer boundary condition (Schwarzschild 1965). Because the equation for the

thermal structure in the outermost layers is qualitatively similar to the relation for an unmagnetized envelope, we conclude that, as in the

unmagnetized case (Hernquist & Applegate 1984), this is also an accurate approximation.

A distinct approach is to treat the entire problem numerically, which allows us to estimate directly the possible errors that our simplifying

assumptions introduce and alleviates the problem of how to treat the regions where more than one Landau level is filled. Numerical models for

parallel and transverse conduction for B ¼ 10
12

¹ 10
14

G and r < 10
10

g cm
¹3

are presented in Heyl & Hernquist (1998).

We find that the relation between transmitted flux, core temperature and field strength may be approximated by a power law, and that the

effective temperature is proportional to cos1=2 w, where w is the angle between the radial direction and the local direction of the magnetic field.

Using the geometric result, we calculate the observed spectra as a function of viewing angle including the effects of general relativity for dipole

and uniform field configurations. We extend the conclusions of previous work. If the surface is assumed to radiate as a blackbody, and neutron

stars have radii within the currently accepted range, the anisotropic heat transport induced by a dipole field configuration is insufficient to

produce the observed pulsed fractions even for ultramagnetized envelopes.

Pavlov et al. (1994) argue that in addition to the transmission of heat through the envelope, the emission at the surface is also strongly

anisotropic. Anisotropic emission can naturally produce large pulsed fractions even when the temperature on the surface is uniform (Shibanov
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Figure 10. The ratio of fluxes in magnetized envelopes to those in unmagnetized ones. We have assumed that the envelope is isothermal above the densities given

in the legend to estimate the unmagnetized fluxes.
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et al. 1995; Zavlin et al. 1995). Additionally, the composition of the atmosphere may have a profound effect on the emergent radiation. A

magnetized iron atmosphere produces substantial limb darkening for w , p=2, and the decrement is strongest at high energies (Rajagopal,

Romani & Miller 1997). It is straightforward to graft these atmospheres on to the thermal envelopes calculated here to obtain the observed

time-dependent spectra for a variety of realistic neutron star models. These effects along with anisotropic conduction may be sufficient to

account for the large observed pulsed fractions.
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Astrophysics and Cosmology, Vol. 759 of Annals of the New York Academy of Sciences, The New York Academy of Sciences, New York, p. 291

Silant’ev N. A., Yakovlev D. G., 1980, Ap&SS, 71, 45

Thorsson V., Prakash M., Lattimer J. M., 1994, Nucl. Phys. A, 572, 693

Tsuruta S., 1979, Phys. Rep., 56, 237

Tsuruta S., Canuto V., Lodenquai J., Ruderman M., 1972, ApJ, 176, 739

Urpin V. A., Yakovlev D. G., 1980, Astrophysics, 15, 429

Van Riper K. A., 1988, ApJ, 329, 339

Van Riper K. A., Lamb D. Q., 1981, ApJL, 244, L13

Wiringa R. B., Fiks V., Fabrocini, A., 1988, Phys. Rev. C, 38, 100

Yakovlev D. G., 1984, Ap&SS, 98, 37

Yakovlev D. G., Urpin V. A., 1980, SvA, 24, 303

Yancopoulos S., Hamilton T. T., Helfand D. J., 1994, ApJ, 429, 832

Zavlin V. E., Pavlov G. G., Shibanov Y. A., Ventura J., 1995, A&A, 297, 441

A P P E N D I X A : X S P E C M O D E L S

Rather than present results for specific instruments and bandpasses, we supply our results in machine-readable form. We have calculated

neutron star spectra for several values of R=Rs, and J ¼ 0; p=2. We assume a dipole field configuration and the cos
2 w rule. The model is

calculated for
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Teff;∞ðw ¼ 0Þ ¼ Teffðw ¼ 0Þ

��������������������������������

1 ¹
Rs

R
¼ 106 K;

r

ðA1Þ

where Rs ¼ 2GM=c
2. Teff;∞ðw ¼ 0Þ may be varied by applying a redshift and renormalization to the spectra. For ease of use by the X-ray

astronomy community, we have created XSPEC table models with the data.

Within XSPEC, the models may be convolved with the response matrix for various X-ray instruments and compared with observed

spectra. By using the redshift (z) and normalization (K) parameters we may obtain models for different effective temperatures and radii:

K ¼
R∞;km

D10

� �2 Teff;∞

106K

� �3

; ðA2Þ

z ¼
106K

Teff;∞
¹ 1; ðA3Þ

where R∞;km is the source radius in km as observed at infinity, i.e.,

R∞ ¼ ReLs ¼ R 1 ¹
Rs

R

� �¹1=2

ðA4Þ

from equation (55), and D10 is the distance to the neutron star in units of 10 kpc. This particular choice is consistent with the definition of the

bbodyrad model in XSPEC.

Each additive model contains the single interpolation parameter Rs=R, which ranges from 0 to 0.6601. As an illustration, Fig. A1 depicts

one of the models convolved with the ROSAT PSPC response function for R=Rs → ∞, R ¼ 20 km and D ¼ 250 pc, with NH ¼ 1020 cm¹2. Here

we have used the wabs model to calculate the interstellar absorption, which assumes the Morrison & McCammon (1983) cross-sections.

The error bars are calculated for an exposure of 10
4

s. For these parameters, the variation of the thermal flux with phase is apparent in the

spectra. However, as we saw in the previous sections, as R=Rs decreases, the variation in the thermal flux weakens.

The table models are available at the following URLs:

http://www.cco.caltech.edu/,jsheyl/analytic_ ns/p0.fits for J ¼ 0

http://www.cco.caltech.edu/,jsheyl/analytic_ ns/p90.fits for J ¼ p=2.

The XSPEC software itself is available at

ftp://legacy.gsfc.nasa.gov/software/xanadu/ ,
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Figure A1. The calculated model spectra convolved with the ROSAT PSPC response matrix for J ¼ 0 (upper points) and J ¼ p=2 (lower points). The model

parameters are described in the text. The error bars are for an exposure of 10
4

s.
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and an on line manual is provided at

http://www.merate.mi.astro.it/,xanadu/xspec/u_ manual.html.

This paper has been typeset from a TEX=L
A

TEX file prepared by the author.
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