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ALMOST COMPLETELY DECOMPOSABLE

TORSION FREE ABELIAN GROUPS

E. L. LADY

ABSTRACT. A finite rank torsion free abelian group  G  is almost com-

pletely decomposable if there exists a completely decomposable subgroup

C  with finite index in  G.  The minimum of [G: C]  over all completely de-

composable subgroups  C  of G  is denoted by  ¿(G).  An almost completely

decomposable group  G  has, up to isomorphism, only finitely many sum-

mands.   If ¿(G)  is a prime power, then the rank   1   summands in any de-

composition of  G  as a direct sum of indecomposable groups are uniquely

determined.  If G  and H   are almost completely decomposable groups, then

the following statements are equivalent: (i) G © L % H © L   for some

finite rank torsion free abelian group  L. (ii)   ¿(G) = i(H)  and H   contains a

subgroup  G      isomorphic to  G   such that \_H: G   ]  is finite and prime to

¿(G),  (iii) G © L ^ 77 © L   where L   is isomorphic to a completely decom-

posable subgroup with finite index in  G.

A finite rank torsion free abelian group  G  is almost completely decom-

posable if there is a completely decomposable subgroup   C having finite index

in  G.  It is well known that direct sum decompositions of such groups need

not be unique.  In fact, this class of groups is the source of all the most

familiar examples of nonunique decompositions of finite rank torsion free

abelian groups.  This paper will show, however, that the situation is not com-

pletely unruly. We show that in certain situations cancellation of direct sum-

mands is possible. We show that a maximal completely decomposable Sum-

mand is unique up to isomorphism. We show tnat an almost completely decomposable

group  G has, up to isomorphism, only finite many summands.  We show that

there are only finitely many groups  H fot which there exists a finite rank

torsion free abelian group  L  such that   G © L % H © L. Theorem 11 charac-

terizes such groups  H.

All groups in this paper, unless indicated otherwise, are finite rank tor-

sion free abelian groups.  In general, we will follow the notation and conven-
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tions of [2].  In particular, if H is a subgroup of  G, H^ denotes the smallest

pure subgroup of  G containing  H.  An isomorphism class of rank 1 groups is

called a type. The type determined by a rank 1 group A  is denoted by  t(A).

The set of types is partially ordered by writing  t(A) < t(B) if Horn (A, B) f-

0. If   x e G , then   t(x) denotes   l((x)f). We say that  G is homogeneous of

type  t if  t(%) = t for all  0 4- x e G, and that  G is completely decomposable

if  G is a direct sum of rank 1 groups.  If  G is completely decomposable, then

G. will denote a maximal r-homogeneous summand of  G , so that  G = 0LC  .

If  r is a type, then   G(z")  is the subgroup of   G consisting of those  x

with  l(x) > t.  We will use   G (t) to denote the pure subgroup of  G generated

by all  G(o)  for a > r, and  G(S) to denote the subgroup generated by all  G(a)

with a e S, where S is a set of types.

Torsion free groups   G and H ate quasi-isomorphic if  G is isomorphic

to a subgroup of finite index in  H.  This is equivalent to the existence of

monomorphisms from  G into H and from H into  G. We will call  G and  H

K-equivalent if  G© L % H © L  for some finite rank torsion free abelian group

L.

1.  Regulating subgroups.  The concept of a regulating subgroup of an al-

most completely decomposable group is the key to everything that follows.

Definition.  If  G is an almost completely decomposable group, z'(G)  will

denote the minimum of   [G: C]    where  C ranges over the set of all completely

decomposable subgroups of G. A regulating subgroup of  G is a completely

decomposable subgroup  C with finite index in  G such that, for each type  r,

G(r) = CT © G*(r).

Notice that if  C is a regulating subgroup of  G, then, for each type  r,

Cr is pure in   G.  The existence of regulating subgroups follows from the fol-

lowing theorem:

Theorem 1.  A completely decomposable subgroup  C of an almost com-

pletely decomposable group  G  is a regulating subgroup if and only if [G: C]

= i(G).  If D  is any completely decomposable subgroup of G, then \_G: D]  is

a multiple of i(G).

Proof.  We show first that if  C and  D  are regulating subgroups of G, then

[G : C] = [G: Di, Notice that  C and  D ate quasi-isomorphic, hence isomor-

phic. Choose a minimal type r such that  CT4 0 and let S = ía|CCT^ Q, o f t\,

Cs = ©2$ CŒ, Ds = ©2^. D   . Then  Cs and Ds are regulating subgroups of

G(S)    so that, by induction, we may assume that [G(S)  : Cs] = [G(S)^.: Ds].

Since  CT ©  GiS)^ = G(r) + G(S)„ we have
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[G:C]= [G:Ct © G(5)J[Cf ©G(5)^:C]

= [G:G(r)+G(S)J[G(i)^:Cs]= [G:Dr © G(S)*][G(S)*:DS] = [G:Dl.

It now suffices to show that if  D  is a completely decomposable sub-

group of  G and  D is not a regulating subgroup, then there exists a com-

pletely decomposable subgroup  C of  G  so that [G: D]   is a proper multiple

of [G: C] (hence  [G: £>] ^ z'(G)). Let  r and S be chosen as before.  The

computation above shows that [G: D] = [G: Dt © G(S)*][G(S)*: D.J. Choose,

by induction, a regulating subgroup  Cç  of  GiS),,. and choose by [2, Proposi-
a.

tion 86.5, p. 114], a subgroup  CT of G so that G(r) = Cr © G (r). Since D

is not a regulating subgroup, either  G(t) 4 DT © G^(r) and [G: Dr © G(S)+]

is a proper multiple of [G: CT © G(S)*\ or D~ is not a regulating subgroup

of GCS)^ and, by induction, [G(S)*: Ds]  is a proper multiple of [G(S)*: Cs].

In either case, C. © C^  is the desired subgroup  C.

Corollary 2.   // G a/za? ß are K-equivalent almost completely decompos-

able groups, then  i(G) = z'(ß).

Proof.  Let  C and  D be regulating subgroups of  G and  H, and let  r

and  5 be as in the proof of Theorem 1. If  G © L % ß © L, it follows that

G/(G(t) + GiS)J % H/(H(t) + HiS)*).  Also  G(S)* © L(S)* % H(S)* © L(S)*,

hence   G(S)* and H(S)* are K-equivalent, so by induction [G(S)*: Cs] =

[H(S)m: Ds]. Thus

[G : C] = [G: G(r) + G(S)J[G(S)* : Cs] = [ß : H(r) + H(S)J[H(S)* : D^] = [H : D].

Remark.  If  C and  D  are regulating subgroups of  G, it need not be the

case that  G/C % G/D.  For instance, let A, B  and  ß be noncomparable

rank 1 groups and let  K be a rank 1 group with  t(K) < infi t(A), t(B)î  and

t(K) ¿ t(ß). Let p be a prime such that none of A, B, H, K ate ¿/-divisible

and choose a, b, h, k  in  A, B, H, K all with ¿»-height 0.  Let  G be genera-

ted by A, B, ß, K and (a + b)/p, (h + k)/p. Let  K     be the pure subgroup

of G generated by  k + (a + è)/p. Then  C = A © B © H © K and D = /l©

B ® H ® K'   ate regulating subgroups of G.  But G/C ** Z(/») © Z(p) where-

as  G/D *Z(p2).

Corollary 3.   // G and H are almost completely decomposable groups,

then  KG © H) = i(G)i(H).

Proof.  If  C and  D are regulating subgroups of  G and  ß, then   C ® D

is a regulating subgroup of G ® H, and [G © «: C ©D] = [G: C] [ß: D].
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isomorphism, only finitely many summands.  There are only finitely many

groups H which are K-equivalent to  G.

Proof.  Let  72 be a positive integer and  D  a completely decomposable

group.  Then there are, up to isomorphism, only finitely many almost com-

pletely decomposable groups  ß  such that   z'(ß) = n and  D  is a regulating

subgroup of  H.  In fact,  ß % nH and nD CnH C D.  But  D/nD is a finite

group, so there are only finitely many subgroups of  D  containing nD.  Now

if ß is K-equivalent to  G, then  z'(G) = z'(ß)  and D is isomorphic to a regu-

lating subgroup of  G (because  G and  ß are quasi-isomorphic).  On the oth-

er hand, if ß  is a summand of G, then   z'(ß)  is a divisor of  z'(G)  and  D is

isomorphic to a summand of a regulating subgroup of ß.  So in either case,

there are only finitely many such H.

2. Completely decomposable summands. In general, completely decom-

posable groups do not have the cancellation property. The following theorem

shows, however, that cancellation is sometimes possible. This theorem is a

special case of a result in [l].

Theorem 5.   Let G = A(BH = B®C where A   is a r-homogeneous com-

pletely decomposable group and H has no quasi-summands of type t.  Then

B and C have summands B .  and C.   so that G = B, © C. © H.  In particular,

if also  G ** A ©ßj, then H ^ H ..

Outline of proof.  Let a and ß be the projections onto A  and B. The

hypothesis on  ß  implies that the restriction to  H(r) of  aß must be zero

Hence  ß(r)  is invariant under ß so that there exist summands  B,   and  C.

of B(t) and C(t) such that G(r) = B t© Ct© ß(r). It follows that G = Bj © Cx © H.

It is well known that this theorem fails if we merely suppose that ß has

no rank 1 summands of type r. (For instance, cf. [2, Theorem 90.4, p. 138].)

For almost completely decomposable groups, however, we do have the follow-

ing weaker theorem :

Theorem 6.   // G  z's an almost completely decomposable group and G —

A © ß = B © K where A, B are r-homogeneous and H, K have no rank 1

summands of type  t , then A «¿ B.

Proof.  Note that  A  and  B  are necessarily completely decomposable

groups.  By [2, Lemma 86.8, p. 115]  H n B  is a r-homomoneous completely

decomposable summand of  B  and hence of  ß (because  ß  is a summand of

G). Thus  ß O B = 0  by the hypothesis on H. Thus the projection onto A   maps
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B  monomorphically into A, so  rank  B < rank A.  By symmetry, rank A =

rank B, so A % B.

Corollary 7.   // G  zs a« almost completely decomposable group, then a

maximal completely decomposable summand of G  is unique up to isomorphism.

It does not follow from Theorem  6 that any two decompositions of  G  in-

to a direct sum of indecomposable groups will involve the same number of

summands of a given type r. This is because, as is well known, Gj © G2

may have a rank 1 summand even when neither  Gj  nor  G2  do.  However, this

cannot occur if  z'(G)  is a prime power.  The proof of this depends on the fol-

lowing technical lemma:

Lemma 8.   Let G be an almost completely decomposable group and C

a regulating subgroup, and suppose  i(G) = p    for some prime p.  For some

type T, let C, be a rank  1 summand of C   and let S = \o\o~ f t\.  Then  C,

z's a summand of G  if and only if C. ffi G(S)* is a pure subgroup of G.   Other-

wise (Cj © G(S))*/(C j © G(S)*)  is a cyclic p-group.

Proof.  Let  cf>: (Cj © G(S))* —* Cj   be defined by multiplication by  p

followed by the projection of  Cj ®G(S)* onto C,. Since Cj and GTS)* are pure, <f

induces a monomorphism of (C, © G(S))*/(C, © G(S)*)  into  C./p  C,, which

is a cyclic /»-group. Now if G = Cj©ß, then G(S)* C H, so Cl(BG(S)* is

pure. Conversely, suppose that  C. © G(S)* is pure. We may suppose that

C = Cj© C2 © C,  where C2 has rank 1 and t(CJ < r and C(S) C C,, since

otherwise  G = C.(B G(S)*.  Then by induction on the rank of  G, C.   is a sum-

mand of (C, © C,)*   and  C    may be chosen so that (C, © C,)* = C, © C,*.

Then since   C2  and  Cj © C,* ate pure and  C2 has rank 1, it follows that

G/(Cj © C2 © C,*)  is trivial or acyclic //-group. In the former case we are

done.  Otherwise, let  g £ G be a representative for a generator of this group.

Then, for some  s < k, psg = c: + c2 + c    £ Cy © C2 © C,* where both  Cj +

c3 and c2 have p-height 0 and Cj ^0. Now since  t(C2) < t(C,), we have

that ht (cf) < ht(cf) for a = p, whenever ht Ac f) = », and with finitely

many exceptions otherwise.  Choose  m  so that  1 + mps is divisible by

large powers of the exceptional primes.  Then  C, © C, C C, © Cl where C' =

(c2 +   (I + mp )cj ) *.  Then g + mc:  £(C'2 ffi C,)+ and  g + t/zCj  represents

a generator of  G/(Cj ffi C2 © C3Hî).  Hence G = Cj © (C2  © Cj^.

Theorem 9.   Lei  G area" ß  èe almost completely decomposable groups

such that i(G)  and i(H) are powers of the same prime p, and neither G nor

H has a rank 1 summand.   Then G ©ß Aas no rank 1 summand. Any two
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decompositions of G as a direct sum of indecomposable groups will involve

the same number of rank 1 summands of each type  t.

Proof.  Suppose that  G®H = A © K where rank A  = 1  and t(A) = r. Let

C and D be regulating subgroups of  G and  ß, and let  a be the projection

onto  A.  Then  A Ç CT © D? ©G**(r) ffi ß*(r).  Let  Cj  and  Dj  be the compo-

nents of A   in C   and Df and let  S = !ct|ct ^l t\. It follows from Lemma 8 that

a((Cj ffi GÍS^/aíCj ffi G(S)*) is trivial or a cyclic ¿»-group. In the latter

case, since  a(G(S)*) = 0, a(C f) Ç pa(G) = pA 4 A. Likewise either a(D A

ÇpA 4 A  or a(Dx) = a((D x ffi H(S))*).  But a(G^(r)) = a(ß#(r)) = 0, so A =

a(Cj) + a(D,). Hence we may assume, say, thata((C[ ffi G(S))*) = a.(Cf). This

means that (C: ffi G(S))* Ç Cj ffi K. Since  G(S)* C K, this means that  Cj ffi

GTS)*  is pure, so, by Lemma 8, C,   is a summand of G, a contradiction.  The

last statement of the theorem now follows by applying the first part to the in-

decomposable summands of  G and using Corollary 7.

3.   K-equivalence.  We will now characterize K-equivalence for almost

completely decomposable groups. The most difficult part of the proof, given

in the following lemma, applies to all finite rank groups.

Lemma 10.   Let G   and H  be  K-equivalent finite rank torsion free abe-

lian groups.  If n  is a positive integer, then H  contains a subgroup  G     iso-

morphic to G such that   [H : G ]    is prime to n.

Proof.  We may suppose that  G and  ß are reduced.  For each positive

integer m, there is a largest subgroup G     of  G so that  m\G    = G   .  Each
o ' o e        r      m mm

G     is pure, so for sufficiently large  m, we have  G    = G    . , = • • • , hence   G
777 r ' I O 1 m 777 + 1 ' 771

is divisible, hence  G    «= 0.  Without loss of generality, we may suppose that

n is a multiple of ml.  Hence  nA 4 A  fot every nonzero subgroup A  of  G.

Now suppose  G ® L ?*s H (B L  where  L  has finite rank.  Let

E(G)= End(G)///End(G)

and for any group A  let

H(A)= Hom(G, A)/72Hom(G, A).

Then  H(A)  is a finite length right  E(G)-module and H  is an additive functor.

Hence H(G) ffi H(L)% H(ß) ffi H(L) and so H(G) % H(ß) by the Krull-Schmidt

theorem.  In particular, H(ß)  is cyclic.  Let t/> €Hom(G, ß)  represent a gen-

erator for H(ß).  Now for any group  A, let F(A) be the subgroup of A/nA gen-

erated by (/(G) + nA)/nA  fot all  / e Hom(G, A).  Then  F  is an additive func-

tor, so that  F(ß) % F(G) = G/nG by the Krull-Schmidt  theorem, and we con-
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elude that F(ß) = H/nH, since H/nH % G/nG and H/nH is finite. Since

clearly F(ß) = (d>(G) + nH)/nH, we see that <f induces an isomorphism from

G/nG onto H/nH. From the fact that this induced map is monic we infer first

that  d> is monic, and second that <f(G) n nH = ncpAG), so that  H/dAG) has no

elements with order dividing n. Hence   G    = 0(G)  is the desired subgroup.

Remarks.  (1) It follows from Lemma 10 that if  G and ß  are K-equiva-

lent and  pG = G for all but finitely many primes  p, then  G *fc H.

(2)  If  G and ß are K-equivalent, then by Lemma 10  there exist sub-

groups  G .^ G 2^i G of ß so that [ß: G.] and [ß: G2] are relatively prime.

It follows (as in the proof of Theorem 11) that H  is isomorphic to a summand

of G ® G.   In particular, if  G © G has, up to isomorphism, only finitely many

summands, then there are only finitely many such H.

Theorem 11.  Let G and H be almost completely decomposable groups.

Then the following statements are equivalent:

(i)   G and H are K-equivalent.

(ii)  z'(G) = z'(ß) and H contains a subgroup G     with G   ^ G  and[H:G']

finite and prime to  i(G).

(iii) G ® L ^ H ® L where L  is isomorphic to a regulating subgroup of

G.

Proof, (i) ■"* (ii). By Corollary 2 and Lemma 10.

(ii) =» (iii). Let n = i(G), m = [H: G ' ] and choose integers r and s so

that rm + sn = 1. Let D be a regulating subgroup of ß and map ß into G ©

D by h\-*(rmh, snh) and map G ® D onto ß by (x, y) h-> x + y. Since rmh +

snh = h, H has been embedded as a summand in G © D. If L is a complemen-

tary summand, then L and D are quasi-isomorphic, so L is almost completely

decomposable. By Corollary 3, z'(L) = i(D) = 1, so L is completely decompos-

able. Thus  L%D,

(iii) => (i).  Obvious.

Remark. It can in fact be shown that if G and H ate K-equivalent al-

most completely decomposable groups of rank  r, and if  L  is isomorphic to a

rank  r - 1   summand of a regulating subgroup of  G, then  G ® L <%s H © L.  The

proof is tedious and computational and will not be given here.
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