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ALMOST COMPLEX MANIFOLDS WITH TOTAL BETTI NUMBER THREE

JIAHAO HU

Abstract. We show the minimal total Betti number of a closed almost complex manifold of dimen-
sion 2n ≥ 8 is four, thus confirming a conjecture of Sullivan except for dimension 6. Along the way,
we prove the only simply connected closed complex manifold having total Betti number three is the
complex projective plane.

1. Introduction

The group Sp(2n,R) of symplectic transformations and the group GL(n,C) of complex linear trans-
formations of a 2n–dimensional real vector space share a common maximal compact subgroup—the
unitary group U(n). Consequently smooth manifolds admitting almost symplectic structures are
the same as those admitting almost complex structures. An almost symplectic structure is a non-
degenerate two form ω, while an almost complex structure is an automorphism J of the tangent
bundle so that J2 = −id. With any given Riemannian metric, ω and J generates one another in view
of Sp(2n,R) ∩ O(2n) = GL(n,C) ∩ O(2n) = U(n). Two different integrability conditions are usually
imposed to remove the word almost. They are: the symplectic condition dω = 0 yielding a local Dar-
boux chart, or the complex condition that the Nijenhaus tensor NJ = 0 yielding a local holomorphic
chart.

The symplectic condition is directly reflected in the topology of closed manifolds: the de Rham
cohomology class of the symplectic form ω generates a subring that is isomorphic to the de Rham
cohomology of CPn. This implies:

Fact. The minimal total Betti number (i.e. the sum of all Betti numbers) of a 2n–dimensional closed
symplectic manifold is n+ 1.

In contrast, however, the topological consequence of the complex condition is widely unknown,
except in dimension two and four, featuring the work of Riemann and Kodaira. Motivated by that the
complex realm should be mirror to the symplectic realm, Dennis Sullivan proposes to study the minimal
total Betti numbers of complex manifolds with respect to their dimensions. In mirror correspondence
to the above fact, he formulated:

Conjecture (Sullivan). 1 The minimal total Betti number of a 2n–dimensional closed complex man-
ifold is min{n+ 1, 4}.

The object of this paper is to confirm this conjecture except when n is 3. We note total Betti number
4 is achieved by Hopf and Calabi-Eckmann manifolds in all even dimensions. Also a confirmation for
n = 3 will imply S6 admits no complex structure.

It turns out quite surprisingly, even though the conjecture is made for complex manifolds, Albanese
and Milivojević [1] proved this statement in fact holds in the almost complex category when n is neither
3 nor of the form 2l for l ≥ 10. Our result below settles the latter case they left out.

Theorem 1.1. Let M be a closed almost complex manifold of dimension 2n ≥ 8. Then the total Betti
number of M is ≥ 4.

1According to Sullivan, he was inspired by how information is beautifully organized through graphs in fluid dynamics,
e.g. K41, and observing the minimal total Betti numbers of symplectic manifolds grow linearly with respect to dimension,
fitting into a nice linear graph. This conjecture thus gives the corresponding graph for complex manifolds a particularly
nice form: first grows linearly and then flats out. See also [1, Fig. 1].
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By Poincaré duality, the total Betti number of a (nonempty positive dimensional) closed orientable
manifold is at least two. In [1] it is shown (positive dimensional) almost complex manifolds having
total Betti number exactly two must live in dimension 2 and 6. Theorem 1.1 is therefore achieved by
studying almost complex manifolds with total Betti number 3. Our main theorem in this direction is:

Theorem 1.2. Let M be a positive dimensional closed almost complex manifold whose total Betti
number is 3. Then dimM = 4 and M is complex cobordant to CP2.

As consequences of Theorem 1.2, we immediately obtain:

Theorem 1.3. LetM be a simply connected closed almost complex manifold whose total Betti number
is 3. Then M is homeomorphic to CP2.

Theorem 1.4. Let M be a simply connected closed complex manifold whose total Betti number is 3.
Then M is biholomorphic to CP2.

Proof of Theorem 1.3. The only zero–dimensional simply connected manifold is R0, whose total Betti
number is one, hence dimM > 0. Then by Theorem 1.2, M is a 4–manifold. Since M is now assumed
to be simply connected, H1(M ;Z) = 0. Thus by the universal coefficient theorem, H2(M ;Z) is free.
Furthermore by Poincaré duality and the total Betti number three assumption,H2(M ;Z) is of rank one.
So the intersection form of M is determined by its signature, which is equal to one by Theorem 1.2
(because signature is a cobordism invariant). Our theorem then follows from Freedman’s theorem
[2, Theorem 1.5] that the homeomorphism type of a simply connected closed smooth 4–manifold is
determined by its intersection form. �

Proof of Theorem 1.4. This follows from Theorem 1.3 and Yau’s theorem [7, Theorem 5] that any
compact complex surface homotopy equivalent to CP2 is biholomorphic to CP2. �

It should be noted the simply-connectedness assumption is essential to both Theorem 1.3 and
Theorem 1.4. There do exist non-simply-connected complex surfaces, so called fake projective planes
(see e.g. [6]), having the same Betti numbers as CP2.

The heart of our proof of Theorem 1.2 lies in the integrality of the signature and (especially) the
Todd genus of an almost complex manifold. Another important ingredient is, on an almost complex
manifold the Todd class coincides with the Â class up to the exponential of half the first Chern class
(see [3, pp. 197]):

(1.1) Â = ec1/2 Td .

In particular if all the Chern numbers that involves the first Chern class are zero, then the Todd
genus is equal to the Â genus. Our major technical tool is therefore the intimate relation between the
signature and the Â genus, which we will establish in Section 2. In Section 3 we prove Theorem 1.2
and derive Theorem 1.1 as an easy corollary.
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Theorem 1.1 was also independently obtained by Zhixu Su and was announced by her in a conference
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2. Relation between the signature and Â genus

Let us introduce our notation. Throughout M is a nonempty closed oriented smooth manifold of
dimension dimM = 2n > 0. The total Betti number of M is the sum of all Betti numbers of M ,
namely

∑

i≥0 dimHi(M ;Q). By pi we mean the ith Pontryagin class of M . If M is further almost

complex, ci will be its ith Chern class. The symbol
∫

M
means pairing a cohomology class with the
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fundamental class of M . The signature, Euler characteristic, Â genus and Todd genus (if defined) of

M will be denoted by σ(M), χ(M), Â(M) and Td(M) respectively.
Since the appearance of Hirzebruch’s celebrated work on multiplicative sequences and his signature

theorem, σ(M) and Â(M) are known to be rational linear combinations of Pontryagin numbers. That
is,

(2.1) σ(M) =
∑

hi1,...,ir

∫

M

pi1 · · · pir , Â(M) =
∑

ai1,...,ir

∫

M

pi1 · · · pir .

The coefficients of
∫

M
pm can be obtained by applying the Cauchy formula to the characteristic power

series associated to the signature and Â genus, which are Qσ(z) =
√
z

tanh
√
z
and QÂ(z) =

√
z/2

sinh(
√
z/2)

respectively (see [4, pp. 16,19], [3, pp.9-11]). The results are well-known (cf. [3, pp. 12-13]):

hm =
22m(22m−1 − 1)

(2m)!
Bm, am =

−Bm

2(2m)!
.

Here

(2.2) Bm =
(2m)! · ζ(2m)

22m−1π2m

is the mth nontrivial Bernoulli number without sign, ζ is the Riemann zeta function (see [4, pp.
129-131]). For instance

B1 =
1

6
, h1 =

1

3
, a1 = −

1

24
;B2 =

1

30
, h2 =

7

45
, a2 = −

1

1440
.

Clearly hm and am are related by

(2.3) hm = −22m+1(22m−1 − 1)am.

This immediately proves the following well-known lemma (cf. [4, pp. 90]).

Lemma 2.1. Let M be a manifold of dimension 4k with
∫

M
pk being the only possibly nonzero

Pontryagin number. Then
σ(M) + 22k+1(22k−1 − 1)Â(M) = 0.

We will need a generalization of Lemma 2.1 in the following situation.

Lemma 2.2. Let M be a manifold of dimension 8k with
∫

M p2k and
∫

M p2k being the only possibly
nonzero Pontryagin numbers. Then

σ(M) + 24k+1(24k−1 − 1)Â(M) = 24k(22k − 1)2
( Bk

2(2k)!

)2
∫

M

p2k.

Proof. From Equation (2.1) we have

σ(M) = h2k

∫

M

p2k + hk,k

∫

M

p2k, Â(M) = a2k

∫

M

p2k + ak,k

∫

M

p2k.

By [3, Lemma 1.4.1] hk,k and ak,k can be expressed as

(2.4) hk,k =
1

2
h2
k −

1

2
h2k, ak,k =

1

2
a2k −

1

2
a2k.

Therefore we get

σ(M) + 24k+1(24k−1 − 1)Â(M)

= (h2k + 24k+1(24k−1 − 1)a2k)

∫

M

p2k + (hk,k + 24k+1(24k−1 − 1)ak,k)

∫

M

p2k

= 24k(22k − 1)2a2k

∫

M

p2k

= 24k(22k − 1)2
( Bk

2(2k)!

)2
∫

M

p2k.
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Here the second to last equality follows from Equation (2.3) and Equation (2.4). �

Next we turn to almost complex manifolds.

Lemma 2.3. Let M be an almost complex manifold of dimension 8k with
∫

M c22k and
∫

M c4k being
the only possibly nonzero Chern numbers. Then

24k+1
[

(24k−1 − 1)(1 − rk) + (3− 22k+1)
]

· Td(M) = (1 + rk) · σ(M)− 24k+1(22k − 1)2
B2k

(4k)!
· χ(M),

where rk is defined by
(

4k
2k

)

B2
k · rk = B2k.

Proof. Since M is assumed to be almost complex, its top Chern class coincides with its Euler class,
therefore

∫

M c4k = χ(M). Also its Pontryagin numbers can be recovered from its Chern numbers. The
only possibly nonzero Pontryagin numbers are:

∫

M

p2k =

∫

M

[(−1)k2c2k]
2 = 4

∫

M

c22k,

∫

M

p2k =

∫

M

c22k + 2

∫

M

c4k.

Notice all the Chern numbers involving c1 vanish, so by Equation (1.1) we have Â(M) = Td(M).
Therefore from the proof of Lemma 2.2 we have

(2.5) σ(M) + 24k+1(24k−1 − 1)Td(M) = 24k+2(22k − 1)2a2k

∫

M

c22k.

On the other hand, we also have

(2.6) Td(M) = Â(M) = a2k

∫

M

p2k + ak,k

∫

M

p2k = (a2k + 4ak,k)

∫

M

c22k + 2a2kχ(M).

Combining Equation (2.5) and Equation (2.6) to eliminate
∫

M c22k, we get

(2.7) 24k+2(22k − 1)2a2k[Td(M)− 2a2kχ(M)] = (a2k + 4ak,k)[σ(M) + 24k+1(24k−1 − 1)Td(M)].

We note
a2k + 4ak,k

2a2k
= 1 + rk.

Then the desired identity is a straightforward consequence of Equation (2.7) by dividing by 2a2k and
reorganizing the terms. �

We end this section by estimating the sizes and the relative sizes of the coefficients appearing in
Lemma 2.3. For simplicity, let us denote

CTd = 24k+1[(24k−1 − 1)(1− rk) + (3 − 22k+1)], Cσ = 1 + rk, Cχ = 24k+1(22k − 1)2
B2k

(4k)!
.

Then the conclusion of Lemma 2.3 reads as

CTd · Td(M) = Cσ · σ(M)− Cχ · χ(M).

Lemma 2.4. We have the estimates

1 < Cσ <
3

2
, 0 < Cχ < 8(

2

π
)4k, CTd ≥

3

5
· 28k−3.

Proof. By Equation (2.2) and the definition of rk, we see rk = 1
2

ζ(4k)
ζ(2k)2 . Since

ζ(2k)2 =
(

∑

m≥1

1

m2k

)(

∑

m≥1

1

m2k

)

>
∑

m≥1

1

m4k
= ζ(4k),

we have

1 < Cσ = 1 + rk <
3

2
.
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By Equation (2.2) and ζ(4k) < ζ(2) = π2/6 < 2 we get

0 < Cχ = 4
(22k − 1

π2k

)2

ζ(4k) < 8(
2

π
)4k.

Finally, for k ≥ 2

CTd > 24k+1[
1

2
(24k−1 − 1) + (3− 22k+1)] > 24k+1[24k−2 − 22k+1] ≥ 28k−2 >

3

5
· 28k−3.

As for k = 1, one can directly verify r1 = 1
5 and CTd = 3

5 · 25.
�

Corollary 2.5. We have the further estimates

CTd

Cσ + Cχ
> 4k,

Cσ

Cχ
≥ 3k.

Proof. By Lemma 2.4

CTd

Cσ + Cχ
>

3 · 28k−3

15/2 + 40(2/π)4k
≥

3 · 28k−3

15/2 + 40(2/π)4
>

28k−3

5
> 4k,

and
Cσ

Cχ
>

1

8
(
π

2
)4k ≥ 3k for k ≥ 3.

For k = 1, 2 one can directly verify Cσ

Cχ

= 3, 15 respectively, so the desired estimate holds. �

The estimates in Lemma 2.4 and Corollary 2.5 are not sharp. Nevertheless they will be sufficient
for our applications.

3. Proof of main theorems

In this section we prove Theorem 1.1 and Theorem 1.2. Recall the following theorem of Milnor (cf.
[5]).

Theorem 3.1 (Milnor). Two stably almost complex manifolds are complex cobordant if and only if
they have the same Chern numbers.

Proposition 3.2. If M is an almost complex manifold of dimension 8k with
∫

M
c22k and

∫

M
c4k being

the only possibly nonzero Chern numbers. Then either M is complex cobordant to the empty manifold
or the total Betti number of M is at least 3k.

Proof. If Td(M) 6= 0, then since Td(M) is an integer, by Lemma 2.3 and Corollary 2.5 we get

Total Betti number ≥ max{|σ(M)|, |χ(M)|} >
CTd

Cσ + Cχ
|Td(M)| > 4k.

If Td(M) = 0 but σ(M) 6= 0, then again by Lemma 2.3 and Corollary 2.5 we have

Total Betti number ≥ |χ(M)| =
Cσ

Cχ
|σ(M)| ≥ 3k.

If Td(M) = σ(M) = 0, then from Equation (2.5) and Equation (2.6) we have
∫

M c22k = 0 and
∫

M
c4k = χ(M) = 0. So all the Chern numbers of M are zero, hence M is complex cobordant to the

empty manifold by Theorem 3.1. �

We are ready to prove our main theorems.

Theorem 1.2. Let M be a positive dimensional closed almost complex manifold whose total Betti
number is 3. Then dimM = 4 and M is complex cobordant to CP2.
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Proof. By [1, Theorem 2.2, Theorem 3.3, Remark 4.2] dimM is either 4 or divisible by 211. We must
show the latter cannot happen. Assume otherwise dimM = 8k for some k ≥ 2. Since the total Betti
number of M is assumed to be three, by Poincaré duality the only non-trivial rational cohomology
groups are H0, H4k and H8k, each of which is one-dimensional. Therefore the only possibly nonzero
Chern numbers are

∫

M
c22k and

∫

M
c4k. Then by Proposition 3.2, either M is complex cobordant to

the empty manifold which contradicts with
∫

M c4k = χ(M) = 3 6= 0 (if it is complex cobordant to the
empty manifold then all its Chern numbers are zero by Theorem 3.1), or the total Betti number is at
least 3k ≥ 9 which contradicts the total Betti number three assumption. This completes the proof of
our first assertion.

To prove the second assertion, notice now
∫

M c2 = χ(M) = 3 and

σ(M) =

∫

M

p1
3

=

∫

M

1

3
(c21 − 2c2) =

1

3

∫

M

c21 − 2.

Meanwhile (cf. [3, pp. 14]),

Td(M) =

∫

M

1

12
(c21 + c2) =

1

12

∫

M

c21 +
1

4
.

It follows that σ(M) + 3 = 4 · Td(M), so σ(M) ≡ 1 modulo 4. Similar as before, by Poincaré duality
and the total Betti number three assumption, the middle cohomology is one-dimensional. So σ(M)
must be one. This in turn implies

∫

M c21 = 9. We observe the Chern numbers of M are the same as

those of CP2. So by Theorem 3.1 we conclude M is complex cobordant to CP2. �

Remark 3.3. We here communicate another proof of that 8k-manifolds with total Betti number three
cannot admit almost complex structures, independently obtained by Zhixu Su2. Briefly, in such case
the Chern classes c1, . . . , c2k−1 are torsion, then from Hattori-Stong relations one can show

∫

M
c22k

is divisible by [(2k − 1)!]2. This extra divisibility combined with a careful 2-adic examination of the
signature equation gives the result.

Theorem 1.1. Let M be a closed almost complex manifold of dimension 2n ≥ 8. Then the total Betti
number of M is ≥ 4.

Proof. This follows from Theorem 1.2 and [1, Theorem 2.2] that almost complex manifolds with total
Betti number two exist only in dimension 2 and 6. �
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