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Almost complex structures and

calibrated integral cycles in contact 5-manifolds

Costante Bellettini

Communicated by Nicola Fusco

Abstract. In a contact manifold .M5; ˛/, we consider almost complex structures J that

satisfy, for any vector v in the horizontal distribution, d˛.v; J v/ D 0. We prove that two-

dimensional integral cycles whose approximate tangent planes have the property of being

J -invariant and positively oriented are in fact smooth Legendrian curves except possibly

at isolated points and we investigate how such structures J are related to calibrations.
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1 Introduction

The last fifteen years have seen a growing interest regarding links between the

theory of vector bundles and the geometry of submanifolds. Striking examples of

intimate correlations were found in many geometrical and physical problems. Don-

aldson and Thomas exhibited in [4] relations between some invariants in complex

geometry and spaces of solutions to Yang–Mills equations. Tian showed in [19]

that some particular sequences of Yang–Mills fields present a loss of compactness

along calibrated rectifiable currents. Taubes (see [18]) proved that Seiberg–Witten

invariants in a symplectic 4-manifold coincide with Gromov invariants. Mirror

symmetry (see in particular [17]) described, in the framework of a String The-

ory model, a phenomenon regarding Special Lagrangian cycles (see [9] for an

overview).

A common feature in these situations is the important role played by the so-

called calibrations. This notion is strongly related to the theory of minimal sub-

manifolds. For a history of calibrations the reader may consult [11]. In the founda-

tional essay [8] the authors exhibited and studied several rich “Calibrated geome-

tries”.

The author was partially supported by the Swiss Polytechnic Federal Institute Graduate Research

Fellowship ETH-01 09-3.
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In [1], together with T. Rivière, we analyzed the regularity of Special Leg-

endrian integral cycles in S5. That result is generalized in this work to contact

5-manifolds with certain almost complex structures.

Setting and main result. Let M D M
5 be a five-dimensional manifold endowed

with a contact structure1 defined by a one-form ˛ that satisfies everywhere

˛ ^ .d˛/2 ¤ 0: (1.1)

Remark that the existence of a contact structure implies the orientability of M.

We will assume M oriented by the top-dimensional form ˛ ^ .d˛/2.

Condition (1.1) means that the horizontal distribution H of four-dimensional

hyperplanes ¹Hpºp2M defined by

Hp WD Ker p̨ (1.2)

is “as far as possible” from being integrable. The integral submanifolds of maximal

dimension for the contact structure are of dimension two and are called Legendri-

ans.

Given a contact structure, there is a unique vector field, called the Reeb vector

field R˛ (or vertical vector field), that satisfies ˛.R˛/ D 1 and �R˛
d˛ D 0.

An almost-complex structure on the horizontal distribution H is an endomor-

phism J of the horizontal sub-bundle which satisfies J 2 D � Id. Given a horizon-

tal, everywhere non-degenerate two-form ˇ, i.e. a two-form such that �R˛
ˇ D 0

and ˇ ^ ˇ ¤ 0, we say that an almost-complex structure J is compatible with ˇ

if the following conditions are satisfied:

ˇ.v; w/ D ˇ.J v; J w/; ˇ.v; J v/ > 0 for any v; w 2 H: (1.3)

In this situation, we can define an associated Riemannian metric gJ;ˇ on the hori-

zontal sub-bundle by setting

gJ;ˇ .v; w/ WD ˇ.v; J w/:

We can extend an almost-complex structure J defined on the horizontal distri-

bution, to an endomorphism (still denoted J ) of the tangent bundle T M by setting

J.R˛/ D 0: (1.4)

Then it holds J 2 D � Id CR˛ ˝ ˛.

With this in mind, extend the metric to a Riemannian metric on the tangent

bundle by

g WD gJ;ˇ C ˛ ˝ ˛: (1.5)

1 For a broader exposition on contact geometry, the reader may consult [2] or [10].
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This extensions will often be implicitly assumed. Remark that R˛ is orthogonal

to the hyperplanes H for the metric g:

g.R˛; X/ D ˇ.R˛; JX/ C ˛.R˛/˛.X/ D 0 for X 2 H D Ker ˛: (1.6)

Example. We describe the standard contact structure on R
5. Using coordinates

.x1; y1; x2; y2; t / the standard contact form is � D dt � .y1dx1 C y2dx2/. The

expression for d� is dx1 ^ dy1 C dx2 ^ dy2 and the horizontal distribution is

given by

Ker � D Span¹@x1
C y1@t ; @x2

C y2@t ; @y1
; @y2

º: (1.7)

The standard almost complex structure I compatible with d� is the endomorphism

´

I.@xi
C yi@t / D @yi

;

I.@yi
/ D �.@xi

C yi@t /;
i 2 ¹1; 2º: (1.8)

Note that I and d� induce, as described above, the metric

g� WD d�. � ; I �/ C ˛. � /˛. � /

for which the hyperplanes Ker � are orthogonal to the t -coordinate lines, which

are the integral curves of the Reeb vector field. The metric g� projects down to the

standard euclidean metric on R
4, so the projection

� W R
5 ! R

4;

.x1; y1; x2; y2; t / ! .x1; y1; x2; y2/
(1.9)

restricts to an isometry from .Ker �; g� / to .R4; geucl/.

The following will be useful in the sequel:

Remark 1.1. Observing (1.7), we can see that, for any q 2 R
4, all the hyperplanes

H��1.q/ are parallel in the standard euclidean space R
5. Thus the lift of a vector

in R
4 D ¹t D 0º with base-point q to an horizontal vector based at any point of

the fiber ��1.q/ has always the same coordinate expression along this fiber.

We will be interested in two-dimensional Legendrians which are invariant for

suitable almost complex structures defined on the horizontal distribution. What

we require for an almost-complex structure J on the horizontal sub-bundle is the

following Lagrangian condition:

d˛.J v; v/ D 0 for any v 2 H: (1.10)
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This requirement amounts to asking that any J -invariant 2-plane must be La-

grangian for the symplectic form d˛. It is also equivalent to the following anti-

compatibility condition:

d˛.v; w/ D �d˛.J v; J w/ for any v; w 2 H: (1.11)

It is immediate that (1.11) implies (1.10). On the other hand, using (1.10),

0 D d˛.J.v C w/; v C w/

D d˛.J v; v/ C d˛.J w; w/ C d˛.J v; w/ C d˛.J w; v/

D d˛.J v; w/ C d˛.J w; v/;

so

d˛.J v; w/ D d˛.v; J w/ for any horizontal vectors v and w:

Writing this with J v instead of v, and being J an endomorphism of H , we obtain

(1.11).

By an integral cycle S we mean an integer multiplicity rectifiable current with-

out boundary. These are the generalized submanifolds of geometric measure the-

ory. They have the fundamental property of possessing at almost every point x an

oriented approximate tangent plane TxS . For the topic, we refer the reader to [6]

or [7]. We will deal with integral cycles of dimension 2.

For the sequel, we will recall the notion of calibration, confining ourselves to

two-forms. For a broader exposition, and for the connections to mass-minimizing

currents, the reader is referred to [8, 9, 11].

Given a two-form � on a Riemannian manifold .M; g/, the comass of � is

defined to be

k�k� WD sup¹h�x; �xi W x 2 M; �x is a unit simple 2-vector at xº:

A form � of comass one is called a calibration if it is closed (d� D 0); when it is

non-closed it is referred to as a semi-calibration.

Let � be a calibration or a semi-calibration; among the oriented two-dimen-

sional planes that constitute the Grassmannians G.x; TxM /, we pick those that,

represented as unit simple 2-vectors, realize the equality h�x; �xi D 1. The Grass-

mann bundle thus contains the distinguished subset G .�/ of 2-planes calibrated

by �:

G .�/ D
[

x2M

¹�x 2 G.x; TxM / W h�x; �xi D 1º:

Given a (semi)-calibration �, an integral cycle S of dimension 2 is said to be

(semi)-calibrated by � if

for H
2-almost every x; TxS 2 G .�/:
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If d� D 0, a calibrated cycle is automatically homologically mass-minimizing.

However, we will be typically concerned with semi-calibrated cycles: these are

generally only almost-minimizers (also called �-minimizers) of the area functional:

in the last section we will see some cases when they are also stationary, in the sense

of vanishing mean curvature.

The main result in this work is the following

Theorem 1.2. Let M be a five-dimensional manifold endowed with a contact form

˛ and let J be an almost-complex structure defined on the horizontal distribution

H D Ker ˛, such that d˛.J v; v/ D 0 for any v 2 H .

Let C be an integer multiplicity rectifiable cycle of dimension 2 in M such

that H
2-a.e. the approximate tangent plane TxC is J -invariant and positively

oriented2.

Then C is, except possibly at isolated points, the current of integration along a

smooth two-dimensional Legendrian curve.

In [1], together with T. Rivière, we proved the corresponding regularity property

for Special Legendrian Integral cycles3 in S5. From [1, Proposition 2], it follows

that Theorem 1.2 applies in particular to Special Legendrians in S5 and therefore

generalizes that result (also compare Proposition 2.2 of the present paper, where

we describe a direct application of this theorem to semi-calibrations).

In this work we looked for a natural general setting in which an analysis analo-

gous to the one in [1] could be performed. This led to the assumptions taken above,

in particular to conditions (1.10) and (1.11).

The key ingredient that we need for the proof of Theorem 1.2 is the con-

struction of families of three-dimensional surfaces4 which locally foliate the five-

dimensional ambient manifold and that have the property of intersecting positively

the Legendrian, J -pseudo holomorphic cycles of Theorem 1.2. In [1], due to the

fact that we were dealing with an explicit semi-calibration in a very symmetric

situation, the three-dimensional surfaces could be explicitly exhibited ([1, Sec-

tion 2]). Here we will achieve this by solving, via a fixed point theorem, a perturba-

tion of Laplace’s equation. After having achieved this, the proof can be completed

by following that in [1] verbatim.

2 Representing a 2-plane as a simple 2-vector v^w, the condition of J -invariance means v^w D
J v^J w. With (1.4) in mind, we see that a J -invariant 2-plane must be tangent to the horizontal

distribution. The orientation is positive in that it agrees with the one induced by J . In other

words the approximate tangent must be a.e. an oriented 2-plane of the form v ^ J v. We will

also use the term J -pseudo holomorphic to describe this condition.
3 Special Legendrian cycles are briefly described in Section 4, where the reader may also find

other examples where Theorem 1.2 applies.
4 This existence result is where (1.10) and (1.11) play a determinant role.
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The same idea was present in [15], where, in an almost complex 4-manifold,

the authors produced J -holomorphic foliations by solving a perturbed Cauchy–

Riemann equation. In the present work, the equation turns out to be of second

order and, in order to prove the existence of a solution, we need to work in adapted

coordinates (see Proposition 3.2 and the discussion which precedes it).

The existence of foliations that intersect positively a calibrated cycle fails in

general. The lack of such foliations can make the regularity issue considerably

harder: in particular the description of the current as a multiple valued graph fails

and the PDE describing the current can become supercritical (see the introduction

of [16] for details).

Positive foliations are typical of “pseudo-holomorphic behaviours”; they exist

in dimension 4 (see [18] and [15]) and in this work we show that this is the case

also in dimension 5 under the mildest possible assumptions.

We remark that the proof of the regularity result, an overview of which is pre-

sented at the end of Section 3, basically follows the structure of [18] and [15], with

changes required because there is a fifth dimension to deal with, which introduces

new difficulties (compare also the introduction of [1, pages 6–11]).

The results needed for the proof of Theorem 1.2 are in Section 3 and the reader

may go straight to that. In Section 2 we show the existence of J -structures satis-

fying (1.10) or (1.11) and discuss how they are related to two-forms, in particular

to semi-calibrations. In the last section we discuss examples and possible applica-

tions of Theorem 1.2.

2 Almost complex structures and two-forms

2.1 Self-dual and anti self-dual forms

On a contact 5-manifold .M; ˛/, take an almost-complex structure I compatible

with the symplectic form d˛, and let g be the metric defined by

g.v; w/ WD d˛.v; Iw/ C ˛ ˝ ˛:

The metric g induces a metric on the horizontal sub-bundle H , which also in-

herits an orientation from M.

Any horizontal two-form can be split in its self-dual and anti self-dual parts as

follows.

Let � be the Hodge-star operator acting on the cotangent bundle T �
M. Define

the operator

? W ƒ2.T M/ ! ƒ2.T M/; ?.ˇ/ WD �.˛ ^ ˇ/; (2.1)

and remark that the image of ? is horizontal and ? naturally restricts to an auto-
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morphism of the space of horizontal forms ƒ2.H/:

? W ƒ2.H/ ! ƒ2.H/; ?.ˇ/ WD �.˛ ^ ˇ/: (2.2)

This operator satisfies ?2 D id.

This yields the orthogonal eigenspace decomposition

ƒ2.H/ D ƒ2
C.H/ ˚ ƒ2

�.H/; (2.3)

where ƒ2
˙.H/ is the eigenspace relative to the eigenvalue ˙1 of ?. These eigen-

spaces are referred to as the space of self-dual and the space of anti self-dual

two-forms5.

In other words, we can restrict ourselves to the horizontal sub-bundle with the

inherited metric and orientation and define the Hodge-star operator on horizontal

forms by using the same definition as the general one, but confining ourselves to

the horizontal forms. We get just the ? defined above.

2.2 From a two-form to J

In a contact 5-manifold .M; ˛/, given a horizontal two-form ! (with some con-

ditions), is there an almost complex structure compatible with ! and satisfying

d˛.J v; v/ D 0 for any v 2 H?

In this section, by answering positively the above question with the conditions

(2.4) and (2.5) below, we will also establish the existence of such anti-compatible

almost complex structures.

Assume that, on a contact 5-manifold .M; ˛/, a two-form ! is given that satis-

fies

! ^ d˛ D 0 (2.4)

and

! ^ ! ¤ 0: (2.5)

Conditions (2.4) and (2.5) automatically give that ! is horizontal6, �R˛
! D 0.

Without loss of generality, we may assume that

! ^ ! D f .d˛/2 for a strictly positive7 function f . (2.6)

Take an almost-complex structure I compatible with the symplectic form d˛,

and let g D gd˛;I be the metric defined by g.v; w/ WD d˛.v; Iw/ C ˛ ˝ ˛.

5 This is basically how self-duality was defined in [19].
6 This can be checked in coordinates pointwise. Alternatively one can adapt the proof of [3, Pro-

position 2].
7 Indeed, the non-zero condition in (2.5) implies that (2.6) holds with f either everywhere posi-

tive or everywhere negative. The case f < 0 can be treated after a change of orientation on M

just in the same way.
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Decompose ! D !C C !�, where !C is the self-dual part and !� is the anti

self-dual part. By definition d˛ is self-dual for g: so we have

!� ^ d˛ D h!�; d˛idvolgjH D 0;

since ƒ2
C and ƒ2

� are orthogonal subspaces. Therefore (2.4) can be restated as

!C ^ d˛ D 0: (2.7)

Consider now the form8

Q!C WD
p

2

k!Ck!C:

It is self-dual and of norm
p

2, so there exists a unique almost complex structure

on the horizontal bundle that is compatible with g and Q!C. It is defined by

J WD g�1. Q!C/:

We want to show that d˛.J v; v/ D 0 for any v 2 H .

To this end, it is enough to work pointwise in coordinates. We can choose an

orthonormal basis for H (at the chosen point) of the form ¹e1 D X; e2 D IX;

e3 D Y; e4 D IY º and denote by

¹e1; e2; e3; e4º (2.8)

the dual basis of orthonormal one-forms. Then d˛ has the form e12 C e34, where

we use eij as a short notation for ei ^ ej . The forms e12 C e34, e13 C e42 and

e14 C e23 are an orthonormal basis for ƒ2
C. The fact that !C is orthogonal to d˛

implies that

!C D a.e13 C e42/ C b.e14 C e23/: (2.9)

and k!Ck2 D 2.a2 Cb2/, therefore Q!C D cos �.e13 Ce42/Csin �.e14 Ce23/ for

some � depending on the chosen point, cos � D ap
a2Cb2

, sin � D bp
a2Cb2

. Then

the explicit expression for J is

J.e1/ D cos �e3 C sin �e4;

J.e2/ D � cos �e4 C sin �e3;

J.e3/ D � cos �e1 � sin �e2;

J.e4/ D cos �e2 � sin �e1

(2.10)

and an easy computation shows that d˛.v; J.v// D 0 for any v 2 H .

8 The notation k � k denotes here the standard norm for differential forms coming from the metric

on the manifold. It should not be confused with the comass, which is denoted by k � k�. They

are in general different: for example, in R
4 with the euclidean metric and standard coordinates

.x1; x2; x3; x4/, the two-form ˇ D dx1 ^ dx2 C dx3 ^ dx4 has norm kˇk D
p

2 and comass

kˇk� D 1.
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Next we prove that this J is compatible with !, in the sense of (1.3).

The almost complex structure J is surely compatible with !C, since this form is

just a scalar multiple of Q!C, and the metric associated to . Q!C; J / is
k!Ckp

2
g when

restricted to the horizontal bundle.

Let us now look at !�. It is interesting to observe that

!�.v; w/ D !�.J v; J w/: (2.11)

This can be once again checked pointwise in coordinates, as above. An orthonor-

mal basis for ƒ2
C is given by the forms e12�e34, e13�e42 and e14�e23, therefore

!� is a linear combination of these forms, each of which can be checked to satisfy

the invariance expressed in (2.11) with respect to J .

On the other hand, these anti self-dual forms do not give a positive real number

when applied to .v; J v/ for an arbitrary v 2 H . However, due to (2.6) we can

show that !.v; J v/ D !C.v; J v/ C !�.v; J v/ > 0 for any v.

Indeed, write again

!C D a.e13 C e42/ C b.e14 C e23/; (2.12)

!� D A.e12 � e34/ C B.e13 � e42/ C C.e14 � e23/: (2.13)

So we can compute

!C ^!C D .a2 Cb2/.d˛/2 and !� ^!� D �.A2 CB2 CC 2/.d˛/2: (2.14)

Condition (2.6), recalling that !C ^ !� D 0, then reads

f .d˛/2 D !C^!CC!�^!� D
�

.a2 C b2/ � .A2 C B2 C C 2/
�

.d˛/2 (2.15)

with a positive f , so .a2 C b2/ > .A2 C B2 C C 2/. Observe that

!�.ei ; J.ei // D ˙B cos � ˙ C sin �;

with cos � D ap
a2Cb2

, sin � D bp
a2Cb2

. We can bound

j ˙ B cos � ˙ C sin � j �
p

B2 C C 2;

so

!.ei ; J.ei // D !C.ei ; J.ei // C !�.ei ; J.ei //

D
p

a2 C b2 C !�.ei ; J.ei //

�
p

a2 C b2 �
p

A2 C B2 C C 2 > 0:

This means that the almost complex structure J is compatible with ! in the

sense of (1.3) and they induce a metric Qg.v; w/ WD !.v; J w/ for which J is or-

thogonal and ! is self dual and of norm
p

2. This gives a positive answer to the

question raised in the beginning of this section.
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Moreover we get

Proposition 2.1. Given a contact 5-manifold .M; ˛/, there exist almost complex

structures J such that d˛.v; J v/ D 0 for all horizontal vectors v.

Indeed, we can get a two-form ! satisfying (2.4) and (2.6). This can be done

locally9 and then we can get a global form by using a partition of unity on M. The

previous discussion in this subsection then shows how to construct the requested

almost complex structure from !, thereby proving that anti-invariant almost com-

plex structures exist.

Also remark that the almost complex structure J anti-compatible with d˛ that

we constructed is orthogonal for the metric g associated to d˛ and I . Indeed,

after having built the two-form ! satisfying (2.4) and (2.6), we defined J from its

self-dual part (suitably rescaled) and from the metric g.

By changing the almost complex structure I compatible with d˛, we can get

different anti-compatible structures.

We conclude with the following proposition, which gives a condition to ensure

the applicability of Theorem 1.2 to a semi-calibration.

Proposition 2.2. Let .M; ˛/ be a contact 5-manifold, with a metric g defined10 by

g D d˛. � ; I �/ for an almost complex structure I compatible with d˛.

Let ! be a two-form of comass 1, k!k� D 1, such that

! ^ d˛ D 0; ! ^ ! D .d˛/2:

Then ! is self-dual with respect to the metric g. Moreover the almost complex

structure J WD g�1.!/ is anti-compatible with d˛ and the (semi)-calibrated two-

planes are exactly the J -invariant and positively oriented ones.

Therefore Theorem 1.2 applies to such a two-form !, yielding the regularity of

!-(semi)calibrated cycles. The Special Legendrian semi-calibration treated in [1]

fulfils the requirements of Proposition 2.2.

Proof of Proposition 2.2. Decompose ! D !CC!� as in (2.12) and (2.13). Eval-

uating ! on the unit simple 2-vector

1p
a2 C b2 C A2

e1 ^ .ae3 C be4 C Ae2/

we get
p

a2 C b2 C A2. The condition k!k� D 1 implies a2 C b2 C A2 � 1.

9 For example, work on an open ball where we can apply Darboux’s theorem (see [2] or [10]),

which allows us to work with the standard contact structure of R
5 described in the introduction

(compare the explanation at the beginning of Section 3.1).
10 This is equivalent to asking that d˛ is self-dual and of norm

p
2 for g.
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On the other hand, explicating ! ^ ! D .d˛/2 as in (2.14), we obtain

a2 C b2 � A2 � B2 � C 2 D 1:

Hence �B2 � C 2 � 2A2, which trivially yields A D B D C D 0, so ! is a

self-dual form.

A self-dual form of comass 1 expressed as in (2.12) must be of the form

cos �.e13 C e42/ C sin �.e14 C e23/

and the corresponding almost-complex structure J D g�1.!/ has the expression

(2.10) and is anti-compatible with d˛.

Take two orthonormal vectors v; w. Since !.v; w/ D hv; �J wig , we have that

!.v; w/ D 1 , w D J v;

from which we can see that the semi-calibrated 2-planes are exactly those that are

J -pseudo holomorphic for this J .

2.3 From J to a two-form

In this subsection, we want to answer the following question, in some sense the

natural reverse to the one raised in the previous subsection.

Assume that, on a contact 5-manifold .M; ˛/, an almost-complex structure J

on the horizontal distribution H is given, which satisfies d˛.J v; v/ D 0 for any

v 2 H . Is there a two-form that is compatible with J in the sense of (1.3)?

Let I be an almost-complex structure compatible with the symplectic form d˛,

and let g be the metric on M defined by g.v; w/ WD d˛.v; Iw/ C ˛ ˝ ˛.

Define a two-form � by

�.X; Y / WD d˛

�

JX;
1

2
.JI � IJ /Y

�

:

We can see that � is compatible with J as follows:

�.JX; J Y / D 1

2
d˛.JX; JIJ Y C IY /

D �d˛.X;
1

2
IJ Y / C d˛

�

X;
1

2
JIY

�

D �.X; Y /;

�.X; JX/ D 1

2
d˛.X; JIJX C IX/

D 1

2
d˛.JX; IJX/ C 1

2
d˛.X; IX/ > 0;

where we used the anti-compatibility property (1.11). It also follows that the met-
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ric Qg.X; Y / WD �.X; J Y / C ˛ ˝ ˛ is related to g by Qg.X; Y / D 1
2
.g.X; Y / C

g.JX; J Y // when restricted to the horizontal sub-bundle.

It can be checked by direct computation that � also satisfies � ^ d˛ D 0. As in

formula (2.8), one works pointwise in local coordinates using a basis of the form

¹e1 D X; e2 D IX; e3 D Y; e4 D IY º.

The two-form � is a semi-calibration on the manifold M endowed with the

metric Qg. Indeed, since J preserves the Qg-norm, for any two vectors v; w at p

which are orthonormal with respect to Qg it holds that

�.v; w/ D hv; �J wi Qg � jvj Qg jJ wj Qg D jvj Qg jwj Qg D 1;

and equality is realized if and only if J v D w0. This means that a 2-plane is

�-calibrated if and only if it is J -pseudo holomorphic, so Theorem 1.2 applies

to �-semicalibrated cycles11.

If J is an orthogonal transformation with respect to g, the anti-compatibility

with d˛ yields, for all horizontal vectors X; Y ,
8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

g.X; Y / D g.JX; J Y /

D d˛.JX; IJ Y / D d˛.X; JIJ Y /

D d˛.IX; .IJ /2Y /

D �g.X; .IJ /2Y /

) g.X; .Id C.IJ /2/Y / D 0:

Thus .IJ /2 D � Id when restricted to H , so IJ D �JI .

Hence �.X; Y / WD d˛.X; JIY /. In this case � is a self-dual form of norm
p

2

and comass k�k� D 1 with respect to g.12

3 Proof of Theorem 1.2

3.1 Positive foliations

The regularity property in Theorem 1.2 is local. It is therefore enough to prove

the statement for an arbitrarily small neighbourhood B5.p/ � M of any chosen

p 2 M.

From Darboux’s theorem, we know that there is a diffeomorphism13 ˆ from a

ball centered at the origin of the standard contact manifold .R5; dt � y1dx1 �
y2dx2/ to such a neighbourhood B5.p/, with ˆ�.˛/ D dt � .y1dx1 C y2dx2/.

11 We remark here that, being semi-calibrated, such a cycle will satisfy an almost-monotonicity

formula at every point, as explained in [12].
12 Observe that, in this case, we have that pointwise ¹Id; I; J; IJ º form a quaternionic structure.
13 In the usual terminology, for example see [10] or [2], it is called a contactomorphism or contact

transformation.
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The structure J on M can be pulled-back to an almost complex structure on R
5

via ˆ:

.ˆ�J /.X/ WD .ˆ�1/�ŒJ.ˆ�X/� for X 2 R
5:

The Lagrangian condition (1.10) yields

d.ˆ�˛/..ˆ�J /X; X/ D .ˆ�d˛/..ˆ�1/�J.ˆ�X/; X/

D d˛.J.ˆ�X/; ˆ�X/ D 0 (3.1)

for any X horizontal vector in R
5. Therefore the induced almost complex structure

ˆ�J is anti-compatible with the symplectic form d.ˆ�˛/ D dx1dy1 C dx2dy2.

It is now clear that we may assume that we are working in a ball centered at 0

of the standard contact structure .R5; �/ with an almost complex structure J such

that d�.v; J v/ D 0.

In view of the construction of “positive foliations”, we can start with the fol-

lowing question: given a point p in R
5 and a J -invariant plane through p, can we

find an embedded Legendrian disk that is J -invariant and has the chosen plane as

tangent at p?

The following is of fundamental importance:

Remark 3.1. Given a Legendrian immersion of a 2-surface in R
5, any tangent

plane D to it necessarily satisfies the condition d˛.D/ D 0 (see [13]). The anti-

compatibility condition (1.11) is therefore a necessary condition for the local ex-

istence of J -invariant disks through a point in any chosen direction.

On the other hand, also from [13], we know that every Lagrangian in R
4 can be

uniquely lifted to a Legendrian in R
5 after having chosen a starting point in R

5.

In this subsection we will prove, in particular, the sufficiency of condition (1.11)

for the local existence of a J -invariant Legendrian for which we assign its tangent

at a chosen point.

With a slight abuse of notation, we can view J.0/ as an almost complex struc-

ture on R
4. With the notation in (1.9) and Remark 1.1 in mind, we define the

almost complex structure J0 on the horizontal distribution of R
5 by

J0Œ.��1/.V /� WD .��1/ŒJ.0/.V /�;

for any vector V in R
4 with arbitrary base-point.

By definition, J and J0 agree at the origin. Let us analyse, in a first moment, the

case J D J0 everywhere. Due to the fact that J0 is projectable onto R
4 things get

simple and we can explicitly find an embedded Legendrian disk that is J0-invariant

and with tangent at 0 the given D. This goes as follows: the plane D is J.0/-in-

variant in R
4, and by the condition d˛.D/ D 0 it is Lagrangian for the symplectic
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form d˛. Therefore, by the result in [13], the plane can be lifted to a Legendrian

surface QD in R
5 passing through 0. This surface is then trivially J0-invariant, due

to the fact that J0 projects down to J.0/, and the tangent to QD at 0 is D since

H0 D R
4.

What about the case of a general J ? We want to use a fixed point argument

in order to find a J -invariant Legendrian close to QD. To achieve that, we need to

ensure that we are working in a neighbourhood of the origin in R
5 where J � J0

is bounded in a suitable C m;�-norm.

Dilate R
5 about the origin as follows:

ƒr W .x1; y1; x2; y2; t / !
�

x1

r
;
y1

r
;
x2

r
;
y2

r
;

t

r

�

:

This dilation changes the contact structure: indeed, pulling-back the standard con-

tact form by ƒ�1
r , we get

r2

�

1

r
dt � .y1dx1 C y2dx2/

�

I

thus the horizontal hyperplanes are

Span¹@x1
C ry1@t ; @x2

C ry2@t ; @y1
; @y2

º:

The dilation has therefore the effect of “flattening” (with respect to the euclidean

geometry) the horizontal distribution14.

We also pull back by ƒr the almost complex structure J and for r small enough

we can ensure that kƒ�
r J � J0kC 2;� D rkJ � J0kC 2;�.Br / is as small as we want.

Finding Legendrians in the dilated contact structure that are invariant for ƒ�
r J is

the same as finding J -invariant Legendrians in .R5; �/ in a smaller ball around 0:

we can go from the first to the second via ƒ�1
r . It is then enough to work in

.R5; .ƒ�1
r /��/, with the almost complex structure ƒ�

r J .

By abuse of notation, we will drop the pull-backs and forget the factor r2; our

assumptions, to summarize, will be as follows:

˛ D
�

1

r
dt � .y1dx1 C y2dx2/

�

;

d˛ D dx1 ^ dy1 C dx2 ^ dy2;

kJ � J0kC 2;�.B1/ � " for an arbitrarily small ".

(3.2)

14 The dilation . x1
r ;

y1
r ; x2

r ;
y2
r ; t

r2 /, on the other hand, would leave the horizontal distribu-

tion unchanged. This non-homogeneous transformation would still allow the proof of Proposi-

tion 3.2, but in view of Propositions 3.5 and 3.7 it is convenient to work with the “flattened”

distribution.



Almost complex structures and calibrations in contact 5-manifolds 353

Basic example. What can we say about an almost complex structure J on .R5; �/

such that d�.v; J v/ D 0 (and d�.v; w/ D �d�.J v; J w/) for all horizontal vec-

tors v and w?

These conditions, applied to the vectors @x1
C y1@t ; @x2

C y2@t ; @y1
; @y2

, to-

gether with J 2 D � Id, give, after little computation, that J must have the fol-

lowing coordinate expression for some smooth functions �; ˇ; ; ı of five coordi-

nates15:
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

J.@x1
C y1@t / D �.@x1

C y1@t / C ˇ.@x2
C y2@t / C @y2

;

J.@x2
C y2@t / D ��.@x2

C y2@t / C ı.@x1
C y1@t / � @y1

;

J.@y1
/ D �@y1

C ı@y2
C 1 C �2 C ˇı


.@x2

C y2@t /;

J.@y2
/ D ��@y2

� 1 C �2 C ˇı


.@x1

C y1@t / C ˇ@y1
:

(3.3)

Local existence of J -invariant Legendrians. The results that we are going to

prove, in particular the proofs of Propositions 3.2, 3.5 and 3.7, follow the same

guidelines as the proofs presented in the appendix of [15], with some necessary

changes. In particular, equation (3.11) takes the place of equation (A.2) in [15]. In

the five-dimensional contact case that we are addressing, therefore, we will face a

second order elliptic problem, in contrast to the four-dimensional almost-complex

case where the equation was of first order.

With Remark 3.1 in mind, we will see that, in order to produce a solution of our

problem, we will need to adapt coordinates to the chosen data, i.e. the point and

the direction. Later on, with (3.24) and (3.28), we will understand the dependence

on the data for the solutions obtained.

At that stage we will be able to produce the key tool for the proof of The-

orem 1.2: foliations made of three-dimensional surfaces having the property of

intersecting any J -invariant Legendrian in a positive way, see the discussion fol-

lowing Proposition 3.7.

Proposition 3.2. Let .R5; ˛/ be the contact structure described in (3.2), with the

corresponding J0, and let J be an almost-complex structure defined on the hori-

zontal distribution H D Ker ˛ such that d˛.J v; v/ D 0 for any v 2 H .

If " D kJ � J0kC 2;�.B1/ is small enough16, then for any J -invariant 2-plane

D passing through 0, there exists locally an embedded Legendrian disk that is

J -invariant and goes through 0 with tangent D.

15 We assume here that  ¤ 0. Remark that ˇ and  cannot both be 0, since J 2 D � Id.
16 It will be clear after the proof that " must be small compared to 1

kJ0kN 2 , where N is a constant

depending on an elliptic operator defined from J0.
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Recalling the discussion at the beginning of this section, we can see that we are

actually showing the following:

Proposition 3.3. Let M be a five-dimensional manifold endowed with a contact

form ˛ and let J be an almost-complex structure defined on the horizontal distri-

bution H D Ker ˛ such that d˛.J v; v/ D 0 for any v 2 H .

Then at any point p 2 M and for any J -invariant 2-plane D in TpM, there

exists an embedded Legendrian disk L that is J -invariant and goes through p

with tangent D.

Proof of Proposition 3.2. Step 1. Before going into the core of the proof, in the

first two steps we perform a suitable change of coordinates.

The hyperplane H0 coincides with R
4 D ¹t D 0º. Up to an orthogonal change

of coordinates in H0 D R
4 (the t -coordinate stays fixed), we can assume to have

D D @x1
^ J.@x1

/, with d˛ D dx1dy1 C dx2dy2. This can be done as follows.

If D D v ^ J.v/, for a horizontal unit vector v at 0, choose an orthogonal coor-

dinate system, still denoted by .x1; y1; x2; y2/, defined by ¹@x1
; @y1

; @x2
; @y2

º WD
¹v; I.v/; W; IW º, where I is the standard complex structure in (1.8) and W is a

vector orthonormal to v and J.v/ for the metric g� in (1.9).

There is freedom on the choice of W ; in step 2 we will determine it uniquely

by imposing a further condition17. Before doing this we are going to make the

notation less heavy.

This linear change of coordinates has not affected the fact that the hyperplanes

H��1.q/ are parallel18 in the standard coordinates of R
5. This means that, if we

take a vector @xi
(resp. @yi

) in R
4, with base-point q 2 R

4, its lift to a horizontal

vector based at any point of the fiber ��1.q/ has a coordinate expression of the

form @xi
C Kxi @t (resp. @yi

C Kyi @t ), where

Kxi D Kxi .x1.q/; x2.q/; y1.q/; y2.q//;

Kyi D Kyi .x1.q/; x2.q/; y1.q/; y2.q//

are linear functions of the coordinates of q (they come from the last coordinate

change).

We are interested in the expression for J in a neighbourhood of the origin;

J acts on the horizontal vectors @xi
C Kxi @t , @yi

C Kyi @t . However, since the

functions Kxi , Kyi are independent of t , by abuse of notation we will forget about

the @t -components of the horizontal lifts and speak of the action of J on @xi
; @yi

,

keeping in mind that the coefficients of the linear map J are not constant along a

fiber, i.e. J cannot be projected onto R
4.

17 This will be needed in view of Step 4.
18 See remark 1.1.
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With this in mind, recalling (3.3), the expression for J in the unit ball B1.0/ �
R

5 is as follows: there are smooth functions �; ˇ; ; ı depending on the five coor-

dinates of the chosen point, such that19

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

J.@x1
/ D �@x1

C ˇ@x2
C @y2

;

J.@x2
/ D ��@x2

C ı@x1
� @y1

;

J.@y1
/ D �@y1

C ı@y2
C 1 C �2 C ˇı


@x2

;

J.@y2
/ D ��@y2

� 1 C �2 C ˇı


@x1

C ˇ@y1
:

(3.4)

Step 2. Denote the values of these coefficients at 0 by ı.0/ D ı0, ˇ.0/ D ˇ0,

�.0/ D �0, .0/ D 0. We take now coordinates that we underline to distinguish

them from the old ones, determined by the transformation

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

@x1
D @x1

;

@y1
D @y1

;

@x2
D 0
q

ˇ2
0 C 2

0

@x2
� ˇ0
q

ˇ2
0 C 2

0

@y2
;

@y2
D ˇ0
q

ˇ2
0 C 2

0

@x2
C 0
q

ˇ2
0 C 2

0

@y2
;

@t D @t :

(3.5)

In the new coordinates, the endomorphism J at 0 acts on @x1
as

J0.@x1
/ D �0@x1

C
q

ˇ2
0 C 2

0 @y2

and the symplectic form d˛ still has the standard expression.

From now on we will write these new coordinates again as .x1; y1; x2; y2; t /,

without underlining them.

To summarize what we did in steps 1 and 2: we will now work in the unit ball of

R
5 with the symplectic form d˛ D dx1dy1 C dx2dy2 on the horizontal distribu-

tion and an almost complex structure J such that kJ �J0kC 2;� < " for some small

19 In (3.4) we are assuming that  ¤ 0. This is not restrictive. We can assume to be working in an

open set where at least one of the functions ˇ and  is everywhere non-zero. If this is the case

for ˇ and not for  , a change of coordinates sending @x2
! @y2

and @y2
! �@x2

would lead

us to (3.4) again.
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" that we will determine precisely later on, and such that J is expressed by (3.4)

with smooth functions �; ˇ; ; ı depending on the five coordinates and satisfying

ˇ0 D 0, 0 > 0. The J -invariant plane D is given by D D @x1
^ J.@x1

/.

The double coordinate change in steps 1 and 2 can be characterized as the

unique change of coordinates such that

d˛ D dx1 ^ dy1 C dx2 ^ dy2 and D D @x1
^ J.@x1

/ D 0.@x1
^ @y2

/

(for a positive 0).

Step 3. We are looking for an embedded Legendrian disk with tangent D at the

origin, therefore we will seek a Legendrian that is a graph over D D @x1
^ @y2

.

Recall from [13] that the projection of any Legendrian immersion in R
5 is a La-

grangian in R
4 with respect to the symplectic form d˛. A Lagrangian graph over

D D @x1
^ @y2

must be of the form (see [8, III.2, in particular Lemma 2.2])

�

x1;
@f .x1; y2/

@x1
; �@f .x1; y2/

@y2
; y2

�

for some f W D2
x1;y2

! R: (3.6)

The minus in the x2-component is due to the fact that

I.@y2
/ D �@x2

;

while I.@x1
/ D @y1

. Our problem can be now restated as follows: find a function

f W D2 ! R such that the lift L with starting point 0 of the Lagrangian disk

L.x1; y2/ WD
�

x1;
@f

@x1
; � @f

@y2
; y2

�

is J -invariant20.

The J -invariance condition is a constraint on the tangent planes: it is expressed

by the following equation for the lift L of L:

J

�

@L

@x1

�

D .1 C �/
@L

@y2
C �

@L

@x1
; (3.7)

with � and � unknown, real-valued functions. However, thanks to what we ob-

served in step 1, the tangent vectors @L

@x1
and @L

@y2
to the lift L at any point have

the first four components which equal the vectors @L
@x1

and @L
@y2

at the projection of

the chosen point, independently of where we are lifting along the fiber; the fifth

component of @L

@x1
and @L

@y2
is uniquely determined by the other four and by the

20 By lift of L with starting point 0, we mean that the t -component of L.0; 0/ is 0.

At this point we can see how, in the five-dimensional contact case, the necessity of lifting

naturally leads to a second-order equation. In the four-dimensional almost-complex case, one

does not need to worry about lifting.
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point .x1; y1; x2; y2/ in R
4. We will therefore consider equation (3.7) only for

@L
@x1

and @L
@y2

.

We denote the partial derivatives

@f .x1; y2/

@x1
;

@f .x1; y2/

@y2
;

@2f .x1; y2/

@x2
1

;
@2f .x1; y2/

@x1@y2
;

@2f .x1; y2/

@y2
2

respectively by f1, f2, f11, f12, f22. Then

L.x1; y2/ D

0

B

B

B

B

@

x1

f1

�f2

y2

1

C

C

C

C

A

;
@L

@x1
D

0

B

B

B

B

@

1

f11

�f12

0

1

C

C

C

C

A

;
@L

@y2
D

0

B

B

B

B

@

0

f12

�f22

1

1

C

C

C

C

A

: (3.8)

It should be however born in mind that J does depend on where we are lifting!

After little manipulation, making use of (3.4), the equation in (3.7) reads

0

B

B

B

B

@

� � ıf12 � �

�f11 � .1 � /f12 � �f12 � �f11

�f C ˇ C 1C�2Cˇı�


f11 C �f12 C �f22 C �f12

 � 1 C ıf11 � �

1

C

C

C

C

A

D

0

B

B

B

B

@

0

0

0

0

1

C

C

C

C

A

; (3.9)

with �; ˇ; ; ı evaluated at the lift of

L D .x1; f1; �f2; y2/

in R
5 with starting point 0.

From the first and fourth line of (3.9) we get

� D �ıf12 C �; � D  � 1 C ıf11: (3.10)

The second line of (3.9) can be checked to hold automatically true with these

values of � and �. Then we need to find f solving the third line of (3.9) with the

� and � given in (3.10). We stress once again that (3.9) should be solved for f

with �; ˇ; ; ı depending on the lift of .x1; f1; �f2; y2/. Let us write the third line

of (3.9) explicitly. It reads

2
X

i;j D1

Mij fij D ı.f 2
12 � f11f22/ � ˇ C

2
X

i;j D1

Aij fij ; (3.11)
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where M and A are the matrices

M D
 

1C�2
0

0
��0

��0 0

!

; A D
 

1C�2Cˇı


� 1C�2
0

0
� � �0

� � �0 0 � 

!

: (3.12)

The matrix M is positive definite and satisfies, for any vector .�1; �2/ 2 R
2, the

ellipticity condition

2
X

i;j D1

Mij �i�j � k.�2
1 C �2

2 / for a positive k:

Remark also that, at the origin, ˇ.0/ D 0 and A is the zero matrix. The zero func-

tion f D 0, describes the disk D. We want to solve equation (3.11) by a fixed

point method in order to find a solution f close to 0. We will write Mf for the

elliptic operator on the left hand side of (3.11).

Consider the functional F defined as follows: for h 2 C 2;� let F .h/ be the

solution of the following well-posed elliptic problem:
´

M ŒF .h/� D ıh.h2
12 � h11h22/ � ˇh C Aij hhij ;

F .h/j@D2 D 0;
(3.13)

where by ıh, ˇh and Aij h we mean respectively the functions ı, ˇ and Aij evalu-

ated at the lift21 of .x1; h1; �h2; y2/ in R
5 and considered as functions of .x1; y2/.

A fixed point of F is a solution of (3.11). We know from elliptic regularity that

F .h/ belongs to the space C 2;� and Schauder estimates give

kF .h/kC 2;� � N kıh.h2
12 � h11h22/ � ˇh C Aij hij kC 0;� (3.14)

for an universal constant N (depending on k). To make the notation simpler in the

following, we will assume N > 2.

We are about to show the following claim: for kJ � J0kC 2;� small enough, the

functional F is a contraction from the closed ball

²

h 2 C 2;� W khkC 2;� � 1

48 max¹1; jı0jºN

³

(3.15)

into itself.

21 As always, we are lifting the point

.0; h1.0; 0/; �h2.0; 0/; 0/ 2 R
4

to the point

.0; h1.0; 0/; �h2.0; 0/; 0; 0/ 2 R
5:

This determines the lift of .x1; h1; �h2; y2/ uniquely.
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First of all, let us compute, for h; g 2 C 2;� ,

M ŒF .h/ � F .g/� D ıh.h2
12 � g2

12 C g11g22 � h11h22/

C .g2
12 � g11g22/.ıh � ıg/ C .ˇg � ˇh/

C Aij hhij � Aij ggij

D ıhŒ.h12 C g12/.h12 � g12/

C g11.g22 � h22/ C h22.g11 � h11/�

C .g2
12 � g11g22/.ıh � ıg/ C .ˇg � ˇh/

C Aij h.hij � gij / C .Aij h � Aij g/gij : (3.16)

Remark that we have bounds of the form
´

kıhkC 1 � kıkC 0 C 2krıkC 0khkC 2 ;

kıh � ıgkC 1 � 2.kıkC 2khkC 2 C 2krıkC 0/kh � gkC 2 ;
(3.17)

where the norms are taken in the unit ball B5
1 .0/. Similar bounds hold true for ˇ

and Aij .

For kJ �J0kC 2;� small enough, in particular if kıkC 2 � 2jı0j, Schauder theory

applied to equation (3.16) with boundary data .F .h/ � F .g//j@D2 D 0 gives

kF .h/ � F .g/kC 2;� � N
�

4jı0j.khkC 2;� C kgkC 2;� / C 4kgk2
C 2;�

C 4kˇkC 2 C 6kAkC 2

�

kh � gkC 2;� :
(3.18)

Let us now estimate, again by (3.14)

kF .h/kC 2;� � 4N jı0jkhk2
C 2;� C 2N kAkC 1khkC 2;� C kˇkC 1 : (3.19)

If kˇkC 2 C kAkC 2 � 1
24 max¹1;jı0jºN 2 , which surely holds for kJ � J0kC 2;�

small enough, by (3.18) and (3.19) we get that F is a contraction of the aforemen-

tioned ball (3.15). By Banach–Caccioppoli’s theorem, there exists a unique fixed

point f of F , so we get a solution to equation (3.11) of small C 2;�-norm.

More precisely, from (3.19) we get

kf kC 2;� � K."/; (3.20)

where K."/ is a constant that goes to zero as " ! 0.

The lift of .x1; f1; �f2; y2/ is an embedded, J -invariant, Legendrian disk that

we denote L0;D . This disk, however, does not necessarily pass through the origin.

Step 4. In step 3 we constructed a J -invariant disk that is a small C 2;�-pertur-

bation of D but that might not pass through 0.
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We need to generalize the construction performed in step 3. Let us set up nota-

tions: we are working in the unit ball of R
5, with coordinates .x1; y1; x2; y2; t /,

such that the point p in the statement of Proposition 3.2 is the origin 0 and D is

the plane @x1
^ J.@x1

/ D 0.@x1
^ @y2

/ at the origin (with 0 > 0). The almost

complex structure J satisfies kJ � J0kC 2;� < " for some positive " as small as we

want. An upper bound for " was described in step 3.

Denote by

Zr WD ¹.0; y1; x2; 0; t/ W x2
2 C y2

1 � r2; jt j � rº:

For any point P 2 B1.0/ � R
5, the set of J -pseudo holomorphic planes at P can

be parametrized by CP
1: we will use the following identification between HP

and C
2

@x1
D .0; 1/; JP .@x1

/ D .0; i/; @y1
D .1; 0/; JP .@y1

/ D .i; 0/: (3.21)

Passing to the quotient, we get a pointwise identification �P between the set

¹… W … is a J -pseudo holomorphic 2-plane in HP º and CP
1. We will denote by

…X the plane corresponding to X 2 CP
1. In this identification, for any point P ,

the planes @x1
^ JP .@x1

/ are represented by …Œ0;1�.

We denote by U
P
r the set of J -invariant planes at P which are identified via �P

with Ur WD ¹ŒW1; W2� 2 CP
1 W jW1j � r jW2jº. This allows us to regard the set

¹.P; …X / W P 2 Zr and …X 2 U
P
r º

as the product manifold Zr � Ur .

For any couple .P; X/ 2 Z1 � U1, we can set coordinates adapted to .P; X/

as follows: after a translation sending 0 to P , we can rotate the coordinate axis by

choosing vX , the orthogonal projection of @x1
onto the closed, two-dimensional,

unit ball in X and setting the new @x1
to be vX

jvX j . With this choice, we can perform

the same change of coordinates22 that we had in steps 1, 2 and 3.

Now, using a fixed point argument as in step 3, we can associate to any couple

.P; X/ 2 Z1 � U1 a J -invariant disk that we denote by LP;X .

The estimate given by (3.20) implies that jT LP;X �X j � K."/, so in particular

we have T LP;X 2 U1CK."/.

Hence LP;X is transversal to the three-dimensional plane ¹.0; y1; x2; 0; t/º.

Consider the point Q WD LP;X \ ¹.0; y1; x2; 0; t/º and the tangent plane to LP;X

at Q. We get a map

‰ W Z1 � U1 ! Z1CK."/ � U1CK."/;

‰.P; X/ D .Q; TQLP;X /:

22 In the sequel we will denote by EP;X the affine map which induces this change of coordinates.
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Condition (3.20) tells us that

k‰ � Id kC 2;� � K."/; (3.22)

where K."/ ! 0 as " ! 0. Therefore ‰ is invertible on an open set Ur , and Ur is

"-close to U1. So, for kJ � J0kC 2;� � " small enough, by inverting ‰ we get that

for every point Q in Zr and any J -invariant disk Y through Q lying in U
q
r , we can

find a couple .P; X/ 2 Z1 � U1 such that LP;X goes through Q with tangent Y .

In particular we can find an embedded, J -invariant Legendrian disk which goes

through 0 with tangent @x1
^ J @x1

.

Remark that, due to the smoothness of J , the same proof performed using the

space C m;� for any m � 2 rather than C 2;� would yield disks LP;X that are in fact

C m;�-smooth. Higher order smoothness, however, is not needed for the sequel.

We have thus proved Proposition 3.2.

Remark again that we have actually shown more: in the coordinates described

in (3.21), for each couple .p; X/, p 2 Z1, X 2 U1 � CP
1 we can find23 an em-

bedded, J -invariant Legendrian disk which goes through p with tangent X .

This will be useful for the next results.

Dependence on the choice of coordinates. In the previous proof we constructed,

from each couple .p; X/, p 2 Z1, X 2 U1 � CP
1, a disk Lp;X whose projection

Lp;X in R
4 is described, in suitable coordinates for which X D @x1

^ @y2
, as a

graph .x1; f1; �f2; y2/. To make notations adapted to what we want to develop

in this section, we will write f p;X instead of f for the function whose gradient

describes the graph.

Given .p; X/, in step 4 we chose uniquely the change of coordinates to per-

form in order to write the equations that lead to the solution f p;X of (3.11). We

denote the affine map that induces the change of coordinates by Ep;X . The func-

tion f p;X .x1; y2/ solves equation (3.11) with coefficients ı; ˇ; �;  depending on

Ep;X , therefore we will now write it as

M
p;X
ij f

p;X
ij D ıp;X

�

.f p;X /2
12 � .f p;X /11.f p;X /22

�

� ˇp;X C
2
X

i;j D1

A
p;X
ij .f p;X /ij ;

(3.23)

where M p;X and Ap;X are as in (3.12) but we explicated the .p; X/-dependence.

All the functions in (3.23) are functions of .x1; y2/, but we want to see how the

23 The above proof actually yielded the result for an open set Ur with r close to 1, but of course

we can assume that it holds for r D 1.
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solution f p;X .x1; y2/ changes with .p; X/. In this section we will denote by rX

and rp the gradients with respect to the variables X 2 U1 and p 2 Z1. The x1

and y2 derivatives will still be denoted by indices i; j 2 ¹1; 2º.

Lemma 3.4. As X 2 U1 and p 2 Z1 � R
5, the solutions f p;X of the corres-

ponding equations (3.23) satisfy

for s; l 2 ¹0; 1; 2º; krs
prl

Xf p;XkC 2;� � K."/; (3.24)

where K."/ is a constant that goes to 0 as " ! 0 (so we can make K."/ as small

as we want by dilating enough).

Proof. Differentiating (3.23) w.r.t. X , we get

M
p;X
ij .rXf p;X /ij D .rXıp;X /

�

.f p;X /2
12 � .f p;X /11.f p;X /22

�

C ıp;X
�

2.f p;X /12.rXf p;X /12

� .f p;X /11.rXf p;X /22 � .f p;X /22.rXf p;X /11

�

� rXˇp;X C .rXAp;X /ij .f p;X /ij

C A
p;X
ij .rXf p;X /ij � .rXM p;X /ij .f p;X /ij :

The quantities rXıp;X , rXM p;X etc., are all bounded in C 2;�-norm by some

constant K (uniform in p and X ) which depends on kJ kC 2;� and kEkC 2;� .

Recalling that kf p;XkC 2;� � K."/, by elliptic theory we get that rXf p;X sat-

isfies

krXf p;XkC 2;� � K."/ C krXˇp;XkC 0;� :

Ep;X was chosen so that the function ˇp;X .x1; y2/ satisfies ˇp;X .0; 0/ D 0 for

all .p; X/. Therefore

for s; l 2 ¹0; 1; 2º, rs
prl

Xˇp;X D 0 when evaluated at .x1; y2/ D .0; 0/:

Then it is not difficult to see that

for s; l 2 ¹0; 1; 2º; krs
prl

Xˇp;XkC 1 � K."/ for .x1; y2/ 2 D2:

Therefore

krXf p;XkC 2;� � K."/:

In an analogous fashion we can get estimates of the form

for s; l 2 ¹0; 1; 2º; krs
prl

Xf p;XkC 2;� � K."/:



Almost complex structures and calibrations in contact 5-manifolds 363

Legendrians as graphs on the same disk. For each couple .p; X/ 2 Z1 � U1,

we have that the embedded disk L‰�1.p;X/ passes through p with tangent X .

So far, each f p;X was produced in the system of coordinates induced by Ep;X ,

so Lp;X was seen as a graph on the unit disk in the 2-plane …X . However, thanks

to (3.20), Lp;X is also a C 2;�-graph over the disk of radius 1
2

in …Œ0;1� for any

X 2 U1. We will now look at all X 2 U1 and at all Lp;X as graphs on …Œ0;1�. In

particular we will concentrate on the planes …X through points .0; t/ 2 R
4 � R

and on L‰�1..0;t/;X/, the J -invariant Legendrian which goes through .0; t/ with

tangent X .

Any …X 2 U
.0;t/
1 , which is a J -invariant 2-plane through .0; t/, is described as

the graph over @x1
^ @y2

Š Œ0; 1� of an affine R
2-valued function

H X W .x1; y2/ ! .hX
1 ; �hX

2 /:

If t D 0, we can use complex notation, identifying H0 D R
4 with C

2 as in (3.21),

so

@x1
D .0; 1/; J0.@x1

/ D .0; i/; @y1
D .1; 0/; J0.@y1

/ D .i; 0/: (3.25)

Then, if X D ŒW1; W2�, we have that H X can be expressed as

H X W z ! � D W1

W2
z:

Otherwise, if t ¤ 0, H X is just an affine function since J.0;t/ ¤ J0 in general.

What about L‰�1..0;t/;X/, the projection of L‰�1..0;t/;X/ onto R
4? It was de-

scribed as the graph of the function “gradient of f ‰�1..0;t/;X/” over the unit disk

in the 2-plane given by the second component of ‰�1..0; t/; X/.

Of course, if we want to write it as a graph on @x1
^ @y2

, we will only be able

to do so on a restricted disk, for example ¹.x1; y2/ W jx2
1 C y2

2 j � 1
2
º. To simplify

the exposition, however, we will assume that f ‰�1..0;t/;X/ was defined on a larger

disk DX inside X so that, for any X 2 U1, L‰�1..0;t/;X/ can be written as a graph

on the unit disk ¹.x1; y2/ W jx2
1 C y2

2 j � 1º in the @x1
^ @y2

-plane.

We will denote by D0 the two-dimensional unit disk, and we will identify it

with ¹.x1; y2/ W jx2
1 C y2

2 j � 1º in the @x1
^ @y2

-plane.

It is not difficult to see that, for each choice of t and X , there are a diffeomor-

phism d from D0 to the enlarged disk DX and an affine transformation T of R
2

depending on X , t and ‰�1..0; t/; X/ such that, over D0, L‰�1..0;t/;X/ is the

graph of a function of the form

H t;X C F t;X W D0 ! R
2; with F t;X WD T ı rf ‰�1..0;t/;X/ ı d: (3.26)



364 C. Bellettini

Here the affine function H t;X represents the projection on R
4 of the disk X

through .0; t/. Both d and T , due to the estimate (3.22), have bounded derivatives

n; s; l 2 ¹0; 1; 2º; krn
z rs

prl
XTkL1 C krn

z rs
prl

XdkL1 � K < 1; (3.27)

uniformly in X 2 U1, p 2 Z1 and z 2 D0.

For X 2 U1, from the definition (3.26), using (3.27), (3.24) and (3.22), we get,

for n; s; l 2 ¹0; 1; 2º,

krn
z rs

prl
XF t;XkL1 � Kkrn

z rs
prl

Xf ‰�1..0;t/;X/kL1 � K."/; (3.28)

with K."/ ! 0 as " ! 0.

Construction of the three-dimensional surfaces: Polar foliation. Using coor-

dinates as in (3.25), so that the hyperplane H0 is identified with C
2, we expressed

each L‰�1..0;t/;X/ as the graph of the following function:

H t;X C F t;X W D0 ! R
2 D C;

which is a perturbation of the affine function H t;X representing the projection on

R
4 of the disk X through .0; t/.

For the construction that we are about to make, we need to fix a smooth deter-

mination of vectors VX 2 X for X 2 U1. There are many ways to do so, we will

do it as follows. In our coordinates @x1
2 Œ0; 1�. Then, in the unit disk centered at

0 inside X , choose the vector vX that minimizes24 the distance to @x1
and take

VX D vX

jvX j .

For any real t 2 .�1; 1/, and for each X 2 U1, at the point .0; t/ 2 R
5 (here

0 2 R
4), take the 2-plane given by X t WD VX ^ J.0;t/.VX /. In this notation, we

have X D X0. For each X and t , consider the Legendrian L‰�1..0;t/;X t / going

through the point .0; t/ with tangent X t : we will now denote it by QLt;X t . Since

t 2 .�1; 1/, the union

†X
0 WD

[

t2.�1;1/

QLt;X t (3.29)

gives rise to a three-dimensional smooth surface, as can be seen by writing the

parametrization of †X
0 on D0 � .�1; 1/ and using (3.28)25.

24 There is no geometric meaning in this particular choice, we are just suggesting a smooth deter-

mination of vectors, any choice would work the same.
25 Actually, from (3.28) we get that †X

0 is C 2-smooth. However, (3.24) and (3.28) can be proved

in the same way for higher-order derivatives, so we can get that †X
0 are as smooth as we want.
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Each QLt;X t has a projection QL0;X t onto R
4 which has a representation as the

graph on D0 of the function

H X t C F X t W D0 ! R
2 D C:

From QL0;X t , the surface QLt;X t is uniquely recovered by lifting with starting point

.0; t/.

Now with a little more effort we can show:

Proposition 3.5. For X 2 U1, the 3-surfaces †X
0 foliate the set

²

.�; z; t/ W j�j � jzj � 1; jt j � 1

2

³

� C � C � R D R
5:

Remark 3.6. Following the terminology used in [1], we can restate this propo-

sition by saying that there exist locally polar foliations made of 3-surfaces built

from embedded, Legendrian, J -invariant disks.

Proof. Choose any point q D .�q; zq; tq/ 2 B5 � R
5 D C � C � R which lies

inside the set ¹j�j � jzj � 1; jt j � 1
2
º. We need to show the existence and unique-

ness of X 2 U1 such that q 2 †X
0 .

For X 2 U1, denote by Q D Q.q; X/ the intersection point

Q D Q.q; X/ WD †X
0 \ ¹.�; z; t/ W z D zq; t D tqº: (3.30)

This is well defined because jT †X
0 �X j � K."/ and the 3-plane spanned by X

and @t is transversal to the 2-plane ¹.�; z; t/ W z D zq; t D tqº and they have a

unique intersection point. By intersection theory, for " small enough, Q is well

defined for all X 2 U1.

Consider the map

�q W U1 ! CP
1;

X ! Œ�Q; zq�:
(3.31)

Due to the structure of †X
0 , the intersection Q is actually realized, for a cer-

tain t , as

Q D QL0;X t \ ¹.�; z; t/ W z D zq; t D tqº (3.32)

and we can also write

�q.X/ D Œ.H X t C F X t

/.zq/; zq� (3.33)

for the right t .
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We will now prove that �q is a C 1-perturbation of the identity map, which is

nothing else but

Id W U1 ! U1;

X ! ŒH X .zq/; zq�:
(3.34)

More precisely, we will prove that, independently of q,

kr.�q � Id/kL1 � K."/; (3.35)

for a constant K."/ that is an infinitesimal of ".

We can use the chart X D ŒW1; W2� D W1

W2
on U1 � CP

1. Then we must esti-

mate

kr.�q � Id/kL1 D








rX

�

.H X t C F X t

/.zq/

zq
� H X .zq/

zq

�








L1

�


rzrX

�

H X t � H X C F X t �


L1

�


rzrX .H X t � H X /




L1 C


rzrXF X t


L1

� K."/;

thanks to (3.28).

Thus �q is a diffeomorphism from U1 to an open subset of CP
1 that tends to

U as " ! 0. This means that we can invert �q and, for any chosen q we can find

Xq WD .�q/�1.Œ�q; zq�/ such that q 2 †
Xq

0 .

Construction of the three-dimensional surfaces: parallel foliation. We are

always using coordinates as in (3.25), so that H0 is identified with C
2.

Choose a J -invariant plane X 2 U1 passing through 0. We are going to pro-

duce a family of “parallel” three-dimensional surfaces which foliate a neighbour-

hood of 0, where parallel means the following: each 3-surface has tangent planes

which are everywhere "-close to X ^ @t in C 2;�-norm.

This can be done in several ways, we choose the following. Take the vector v

in the unit ball inside X which minimizes the distance to @x1
, and set V D v

jvj .
Parallel transport (in the euclidean sense26) the vector V to each point P in the

2-plane ¹z D 0; t D 0º and consider the family of J -invariant planes

¹XP º WD ¹V ^ JP .V /ºP 2¹zD0;tD0º:

For each P , consider the line of points that project to P via � W R
5 ! R

4, and

denote them by .P; t/. Take the Legendrian, J -invariant 2-surface going through

26 Again, this is just a possible way of doing it: there is no direct geometric meaning.
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the point .P; t/ with tangent X t
P D V ^ J.P;t/.V /: we will denote it by QLP;t;X .

Define the three-dimensional surface

†X
P WD

[

t2.�1;1/

QLP;t;X : (3.36)

As in (3.29), this is a smooth 3-surface.

Proposition 3.7. For a fixed X 2 U1, the 3-surfaces ¹†X
P ºP 2¹zD0;tD0;j� j�1º foli-

ate the set

²

.�; z; t/ W j�j � 1; jzj � 1; jt j � 1

2

³

� C � C � R D R
5:

Remark 3.8. Again, in the terminology of [1], we are showing that there exist

(locally) families of parallel foliations made of 3-surfaces built from embedded,

Legendrian, (positively oriented) J -invariant disks. Each family is determined by

a “direction” X at 0.

Proof. Take any point q D .�q; zq; tq/ 2 B5 � R
5 D C � C � R. We denote by

Q D Q.q; X/ the intersection point

Q D Q.q; P / WD †X
P \ ¹.�; z; t/ W z D zq; t D tqº: (3.37)

This is well defined because jT †X
P �X j � K."/ and the 3-plane spanned by X and

@t is transversal to the 2-plane ¹.�; z; t/ W z D zq; t D tqº and they have a unique

intersection point. By intersection theory, for " small enough, Q is uniquely well

defined for all P 2 ¹z D 0; t D 0º.

Consider the map

�q W D2
1 � ¹z D 0; t D 0º ! R

2 Š ¹.�; z; t/ W z D zq; t D tqº;
P ! Q D Q.q; P /:

(3.38)

With an argument very similar to the one in Proposition 3.5, we can prove that

�q is a C 1-perturbation of the identity map and therefore the family

¹†X
P ºP 2¹zD0;tD0;j� j�1º (3.39)

foliates ¹j�j � 1; jzj � 1; jt j � 1
2
º.

Remark, from the construction of these 3-surfaces †, that each of them is made

by attaching (positively oriented) J -invariant Legendrian disks along a fiber of the

contact structure. This fact yields the following fundamental property.
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Positive intersection property. Each † constructed above has the property of in-

tersecting positively any transversal Legendrian that is J -invariant and positively

oriented.

The proof is just analogous to the corresponding Corollary 2.1 of [1]. The key

point is that two transversal J -pseudo holomorphic 2-planes in a hyperplane Hp

intersect themselves positively with respect to the orientation inherited by Hp. The

3-surfaces † are smooth perturbations of a 3-plane of the form X ^ @t , where X

is a (positively oriented) J -invariant 2-plane, so the result follows by continuity.

At this stage we have all the ingredients to show Theorem 1.2 by following the

proof in Sections 3, 4, 5, 6 and 7 of [1]. For the reader’s convenience, here follows

a brief overview of the aforementioned proof with references to the corresponding

sections of [1].

3.2 Structure of the proof

A standard blow-up procedure, combined with the almost-monotonicity formula

for semi-calibrated cycles27, yields that C has a “stratified” structure: the multi-

plicity is well defined and integer-valued at every point and, for Q 2 N, the set

C
Q of points having multiplicity � Q is open in M. This allows a localization of

the problem by restricting to C
Q and we can prove the final result by induction on

the multiplicity for increasing integers Q.

A first outcome of the existence of foliations with the positive intersection prop-

erty, is a self-contained proof of the uniqueness of tangent cones ([1, Section 4]).

This result was proved for general semi-calibrated cycles in [12] and for area-

minimizing ones in [21], using different techniques.

Next, still exploiting the algebraic property of positive intersection, we can lo-

cally describe our current C as a multi-valued graph from a two-dimensional disk

into R
3 ([1, Section 5]). The inductive step is divided into two parts: in the first

we show that singularities of order Q cannot accumulate onto a singularity of the

same multiplicity ([1, Sections 5 and 6]). In the second part, we prove that sin-

27 Recall that in Section 2.3 we remarked that J -invariant 2-planes are just the semi-calibrated

ones for a suitable two-form �, therefore an almost-monotonicity formula (see [12]) holds

with respect to the metric induced by J and �. Precisely, for any point x0, denoting by Br the

geodesic ball of radius r , we have that

M.C Br .x0//

r2
D R.r/ C O.r/

for a function R which is monotonically non-increasing as r # 0 and tends to the multiplicity

at x0 as r # 0, and a function O.r/ which is infinitesimal.
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gularities of multiplicity � Q � 1 cannot accumulate on a singularity of order Q

([1, Section 7]).

In the first part of the inductive step, we translate the J -invariance condition

into a system of first-order PDEs for the multi-valued graph ([1, Section 5]).

These equations are “perturbations” of the classical Cauchy–Riemann equations,

although in this case we have two real variables and three functions. We prove a

W 1;2-estimate on the average of the branches of the multi-valued graph ([1, The-

orem 5.1]). Then ([1, Section 6]) we complete the proof of the first part of the

inductive step by suitably adapting the unique continuation argument used in [18].

For the second part of the inductive step ([1, Section 7]) we use a homologi-

cal argument. On a space modelled on C � R, we produce a S2-valued function

u which allows to “count” the lower-multiplicity singularities by looking at its

degree on the level sets of juj ([1, Lemma 7.4]). A lower bound for the degree

([1, Lemma 7.5]) then yields the result. This argument is inspired to the one used

in [18], however the fifth coordinate induces a more involved and rather lengthy

argument.

4 Final remarks

Examples. Let us illustrate some examples where the regularity result of theo-

rem 1.2 applies.

� Let Y be a Calabi–Yau 3-fold and denote by ‚ the so-called holomorphic

volume form and by ˇ the symplectic form. Any28 hypersurface M 5 � Y of con-

tact type inherits a contact structure from the symplectic structure of Y (see [10]),

namely the structure associated to the one-form ˛ D �N ˇ, where N denotes a unit

Liouville vector field and � denotes the interior product. The form Re.�N ‚/ fulfils

the requirements of Proposition 2.2.

A typical situation is the following: let Y D C
3, with the standard complex

structure I , and ‚ D dz1^dz1^dz3. Take f to be a smooth and strictly plurisub-

harmonic function on C
3. Choose M 5 to be any level set ¹f D kº, for k 2 R;

this is a hypersurface of contact type, with N D rf
jrf j the normalized gradient

field (see [5]). The two-form

! D Re.�N ‚/

(restricted to M ) is a horizontal two-form for this contact structure and satisfies

!^d˛ D 0, !^! D .d˛/2. Moreover ! is of comass 1 (for the metric induced on

M by C
3), it is therefore a semi-calibration. Then we deduce from Proposition 2.2

28 A Calabi–Yau 3-fold has real dimension 6. By hypersurface we mean here that the real codi-

mension is 1.
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that integral cycles semi-calibrated by ! are smooth except possibly at isolated

point singularities.

This yields, for example, a regularity result on some Special Lagrangian cy-

cles in C
3 that are invariant under a non-zero vector field. Recall that a current is

Special Lagrangian if it is calibrated by the (closed) form

Re.‚/ D Re.dz1 ^ dz1 ^ dz3/:

In particular Special Lagrangians are mass-minimizers.

For example, a Special Lagrangian cycle that is invariant under the gradient

flow of a smooth and strictly plurisubharmonic function f W C
3 ! .�1; C1/

has, in every bounded region, a singular set made of at most finitely many flow

lines of rf .

� In the previous framework, we can also recover the Special Legendrians in S5.

Consider the canonical embedding E W S5 ,! C
3 and denote by N the radial

vector field N WD r @
@r

in C
3. The sphere inherits from the symplectic manifold

.C3;
P3

iD1 dzi ^ dzi / the contact structure given by the form

 WD E
��N

 

3
X

iD1

dzi ^ dzi

!

:

The 3-form � D Re.dz1^dz2^dz3/ is known as Special Lagrangian calibration

in C
3. The Special Legendrian semi-calibration is defined as the following two-

form on S5 (of comass 1):

! WD E
��N � D Re.z1dz2 ^ dz3 C z2dz3 ^ dz1 C z3dz1 ^ dz2/I

!-semicalibrated cycles are known as Special Legendrians.

We remark that there is a natural projection … W S5 ! CP
2 (Hopf projection)

whose kernel is given by the Reeb vectors of the contact distribution. The Reeb

vector field can be integrated to obtain closed orbits which are nothing but the

Hopf fibers ei�p, for p 2 S5 and � 2 Œ0; 2�/. Every Special Legendrian curve is

projected via … to a minimal Lagrangian in CP
2 (see [13]).

� The same as in the first example of this section applies, more generally, in

a contact 5-manifold with an SU.2/-structure, as defined in [3]. In the mentioned

work, it is proved that, if the data are analytic and hypo, then this 5-manifold

embeds in a Calabi–Yau 3-fold. Our regularity result, however, only requires the

SU(2)-structure on a contact 5-manifold.

� A special case of interest is that of a Sasaki–Einstein 5-manifold (see [2] and

the related notion of hypo-contact SU.2/-structures in [3]). In this case, denoting
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by ˛ the contact form, the structure I , compatible with d˛, is integrable on the

horizontal subbundle and there exists a holomorphic two-form � that is parallel

along the horizontal subbundle: with reference to Proposition 2.2, we can take

! D Re.ei��/, for a fixed � 2 Œ0; 2��, and get the regularity for !-semicalibrated

cycles.

It is interesting that, in such a contact manifold, a Legendrian curve is minimal

(i.e. stationary, the mean curvature vanishes) if and only if it is semicalibrated by

! D Re.ei��/, for a fixed � 2 Œ0; 2��.

This is the analog of what happens for Lagrangians in Calabi–Yau manifolds

(see [8, III.2.D]) and the proof is just the same as in that case.

� Let us look at the following situation, [14]. Let S3 be the unit sphere in R
4

and consider the following Riemannian 5-manifold:

N 5 D ¹.e1; e2/ 2 S3 � S3 W he1; e2iR4 D 0º;

endowed with the metric inherited from R
4 � R

4.

The tangent space to N 5 at a point .e1; e2/, is identified with those vectors

U D .U1; U2/ 2 R
4 � R

4 such that

hU1; e1iR4 D 0; hU2; e2iR4 D 0 and hU1; e2iR4 C hU2; e1iR4 D 0:

At every .e1; e2/ 2 N 5, consider the tangent vector v D .�e2; e1/ 2 T.e1;e2/N
5

and take the orthogonal hyperplane

H.e1;e2/ D v? � T.e1;e2/N
5:

The distribution H defines a contact structure on N 5. It can be described by the

one-form

˛.e1;e2/.U / D 1

2
.he1; U2iR4 � he2; U1iR4/

with associated symplectic form �.U; V / D hU1; V2iR4 � hV1; U2iR4 .

By integrating the Reeb vectors v, we get closed fibers isomorphic to S1 of the

form

¹.cos �e1 � sin �e2; sin �e1 C cos �e2/º�2Œ0;2�/:

The map29

… W N 5 ! G2.R4/ Š CP
1 � CP

1;

.e1; e2/ ! e1 ^ e2

is an orthogonal projection whose kernel is given by the Reeb vectors.

29 Here G2.R4/ denotes the Grassmannian of 2-planes in the space R
4. We have the identification

G2.R4/ Š CP
1 � CP

1 by splitting into the self-dual and anti self-dual components.
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Define the following two-form on N 5:

!.U; V / WD e1 ^ e2 ^ .U1 ^ V2 � V1 ^ U2/;

for U; V tangent vectors to N 5 at .e1; e2/. It can be checked that ! is a horizontal

form of comass 1 and our regularity result applies to !-semicalibrated cycles.

� In [20], the authors introduce the notions of Contact Calabi–Yau manifolds

and Special Legendrians in Contact Calabi–Yau manifolds. With regard to the no-

tation in [20], the two-form Re � is a calibration (it is assumed to be closed) and

Proposition 2.2 yields the regularity of calibrated cycles in dimension 5. We still

get the regularity result if we drop the closedness assumption on �.

What else? We conclude with a short motivational digression regarding Theo-

rem 1.2, in connection to general calibrations.

For a general calibrating two-form ' in a five-dimensional manifold M , let us

look, at every point, at the set G' of calibrated 2-planes: as explained in [8, The-

orem II.7.16] or [9, Theorem 4.3.2], there exist suitable orthogonal coordinates at

the chosen point such that G' is the same as the set of 2-planes calibrated by one

of the following canonical forms:

dx1 ^ dx2 C dx3 ^ dx4 or dx1 ^ dx2:

At the points where the first case is realized, we can define an almost complex

structure J such that calibrated 2-planes are identified with the J -invariant ones.

If moreover the manifold M is contact, then, as we already discussed, a calibrated

manifold (or also an integer multiplicity rectifiable current) can have as tangents

only those J -invariant planes which are Lagrangian for the symplectic form on the

horizontal distribution. Therefore, if we require the calibration to admit, for every

point p and calibrated 2-plane … at p, a calibrated submanifold passing through

p with tangent …, the corresponding J must fulfil conditions (1.10) and (1.11).

In many instances, a calibration is considered interesting if it admits a lot of

calibrated submanifolds30. Indeed, the richer the family of calibrated submanifolds

is, more examples of area-minimizing surfaces and their possible singularities can

we get. On a contact 5-manifold, therefore, our assumption on J includes, in some

sense, the most generic cases of calibrations.

This five-dimensional situation can be considered as the analogue of the one

addressed in [15] and [18] in dimension 4, or in [16] for general even dimension,

where the corresponding regularity for J -holomorphic cycles is proven.

30 This point of view is present both in [8] and in [9].
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