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Almost conformal Ricci solituons on 3-dimensional
trans-Sasakian manifold
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Abstract

In this paper we have shown that if a 3-dimensional trans-Sasakian
manifold M admits conformal Ricci soliton (g, V, λ) and if the vector
�eld V is point wise collinear with the unit vector �eld ξ, then V is a
constant multiple of ξ. Similarly we have proved that under the same
condition an almost conformal Ricci soliton becomes conformal Ricci
soliton. We have also shown that if a 3-dimensional trans-Sasakian
manifold admits conformal gradient shrinking Ricci soliton, then the
manifold is an Einstein manifold.
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1. Introduction

In 1982 Hamilton [9] introduced the concept of Ricci �ow and proved its existence.
This concept was developed to answer Thurston's geometric conjecture which says that
each closed three manifold admits a geometric decomposition. Hamilton also [9] classi�ed
all compact manifolds with positive curvature operator in dimension four. The Ricci �ow
equation is given by

(1.1)
∂g

∂t
= −2S
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on a compact Riemannian manifold M with Riemannian metric g.

A self-similar solution to the Ricci �ow [9], [14] is called a Ricci soliton [10] if it moves
only by a one parameter family of di�eomorphism and scaling. The Ricci soliton equation
is given by

(1.2) £Xg + 2S = 2λg,

where £X is the Lie derivative, S is Ricci tensor, g is Riemannian metric, X is a vector
�eld and λ is a scalar. The Ricci soliton is said to be shrinking, steady, and expanding
according as λ is positive, zero and negetive respectively.

A. E. Fischer developed the concept of conformal Ricci �ow [7] during 2003-04 which is
a variation of the classical Ricci �ow equation that modi�es the unit volume constraint of
that equation to a scalar curvature constraint. The conformal Ricci �ow onM whereM is
considered as a smooth closed connected oriented n-manifold is de�ned by the equation [7]

(1.3)
∂g

∂t
+ 2(S +

g

n
) = −pg

and r(g) = −1,
where p is a scalar non-dynamical �eld(time dependent scalar �eld), r(g) is the scalar
curvature of the manifold and n is the dimension of manifold.

In 2015, N. Basu and A. Bhattacharyya [2] introduced the notion of conformal Ricci
soliton equation as

(1.4) £Xg + 2S = [2λ− (p+
2

n
)]g,

where λ is constant.
The equation is the generalization of the Ricci soliton equation and it also satis�es the
conformal Ricci �ow equation.

The concept of Ricci almost soliton was �rst introduced by S. Pigola, M. Rigoli, M.
Rimoldi, A. G. Setti in 2010 [12]. R. Sharma has also done excellent work in almost Ricci
soliton [13]. A Riemannian manifold (Mn, g) is an almost Ricci soliton [1], if there exist
a complete vector �eld X and a smooth soliton function λ :Mn → R satisfying,

Rij +
1

2
(Xij +Xji) = λgij ,

where Rij and Xij +Xji stand for the Ricci tensor and the Lie derivative £Xg in local
coordinates respectively. It will be called expanding, steady or shrinking, respectively, if
λ < 0, λ = 0 or λ > 0.
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We introduce the notion of almost conformal Ricci soliton by

(1.5) £Xg + 2S = [2λ− (p+
2

n
)]g.

where λ :Mn → R is a smooth function.

Now a gradient Ricci soliton on a Riemannian manifold (Mn, gij) is de�ned by [6]

(1.6) S +∇∇f = ρg,

for some constant ρ and for a smooth function f on M . f is called a potential function
of the Ricci soliton and ∇ is the Levi-Civita connection on M . In particular a gradient
shrinking Ricci soliton satis�es the equation,

S +∇∇f − 1

2τ
g = 0,

where τ = T − t and T is the maximal time of the solution.

Again for conformal Ricci soliton if the vector �eld is the gradient of a function f ,
then we call it as a conformal gradient shrinking Ricci soliton [4]. For conformal gradient
shrinking Ricci soliton the equation is

(1.7) S +∇∇f = (
1

2τ
− 2

n
− p)g.

where τ = T − t and T is the maximal time of the solution and f is the Ricci potential
function.

2. Preliminaries:

Let M be a connected almost contact metric manifold with an almost contact metric
structure (φ, ξ, η, g) where φ is a (1, 1) tensor �eld, ξ is a vector �eld, η is a 1-form and
g is the compatible Riemannian metric such that

(2.1) φ2(X) = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0,

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ),

(2.3) g(X,φY ) = −g(φX, Y ),

(2.4) g(X, ξ) = η(X),

for all vector �eld X,Y ∈ χ(M).
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An almost contact metric structure (φ, ξ, η, g) onM is called a trans-Sasakian structure
[11], if (M×R, J,G) belongs to the classW4 [8], where J is the almost complex structure
on M × R de�ned by J(X, f d

dt
) = (φX − fξ, η(X) d

dt
) for all vector �elds X on M and

smooth functions f on M ×R. It can be expressed by the condition [5],

(2.5) (∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX),

for some smooth functions α, β on M and we say that the trans-Sasakian structure is of
type (α, β). From the above expression we can write

(2.6) ∇Xξ = −αφX + β(X − η(X)ξ),

(2.7) (∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ),

For a 3-dimensional trans-Sasakian manifold the following relations hold:

(2.8) 2αβ + ξα = 0,

(2.9) S(X, ξ) = (2(α2 − β2)− ξβ)η(X)−Xβ − (φX)α,

S(X,Y ) = (
r

2
+ ξβ − (α2 − β2))g(X,Y )− (

r

2
+ ξβ − 3(α2 − β2))η(X)η(Y )

− (Y β + (φY )α)η(X)− (Xβ + (φX)α)η(Y ),(2.10)

where S denotes the Ricci tensor of type (0, 2), r is the scalar curvature of the manifold
M and α, β are smooth functions on M .

For α, β = constant the following relations hold:

(2.11) S(X,Y ) = (
r

2
− (α2 − β2))g(X,Y )− (

r

2
− 3(α2 − β2))η(X)η(Y ),

(2.12) S(X, ξ) = 2(α2 − β2)η(X),

(2.13) R(X,Y )ξ = (α2 − β2)(η(Y )X − η(X)Y ),

(2.14) QX = (
r

2
− (α2 − β2))X − (

r

2
− 3(α2 − β2))η(X)ξ,

where Q is the Ricci operator given by S(X,Y ) = g(QX,Y ). Again,

(£ξg)(X,Y ) = (∇ξg)(X,Y )− αg(φX, Y ) + 2βg(X,Y )− 2βη(X)η(Y )− αg(X,φY )

= 2βg(X,Y )− 2βη(X)η(Y ) [∵ g(X,φY ) + g(φX, Y ) = 0].
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Putting the above value in the conformal Ricci soliton equation (1.4) and taking n = 3
we get

S(X,Y ) =
1

2
[2λ− (p+

2

3
)]g(X,Y )− 1

2
[2βg(X,Y )− 2βη(X)η(Y )

= Ag(X,Y )− βg(X,Y ) + βη(X)η(Y ),(2.15)

where A = 1
2
[2λ− (p+ 2

3
)].

Hence we can state the following proposition.

Proposition 2.1 : If a 3-dimensional trans-Sasakian manifold admits conformal Ricci
soliton (g, ξ, λ), then the manifolds becomes an η-Einstein manifold.

Also,

(2.16) QX = AX − βX + βη(X)ξ.

Again for almost conformal Ricci soliton

S(X,Y ) = λg(X,Y )− 1

2
(p+

2

3
)g(X,Y )− βg(X,Y ) + βη(X)η(Y )

= (B + λ− β)g(X,Y ) + βη(X)η(Y ),

where B = − 1
2
(p+ 2

3
).

Thus we can state the following proposition.

Proposition 2.2 : A 3-dimensional trans-Sasakian manifold admitting almost confor-
mal Ricci soliton (g, ξ, λ) is an η-Einstein manifold.

Example of a 3-dimensional trans-Sasakian manifold:

In this section we construct an example of a 3-dimensional trans-Sasakian manifold.To
construct this, we consider the three dimensional manifold M = {(x, y, z) ∈ R3 : z 6= 0}
where (x, y, z) are the standard coordinates in R3. The vector �elds

e1 = e−z(
∂

∂x
− y ∂

∂z
), e2 = e−z

∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M. Let g be the Riemannian metric de�ned by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0.

Let η be the 1-form which satis�es the relation

η(e3) = 1.

Let φ be the (1, 1) tensor �eld de�ned by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Then we
have

φ2(Z) = −Z + η(Z)e3,
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g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M3). Thus for e3 = ξ, (φ, ξ, η, g) de�nes an almost contact metric
structure on M. Now, after calculating we have

[e1, e3] = e1, [e1, e2] = ye−ze2 + e−2ze3, [e2, e3] = e2.

The Riemannian connection ∇ of the metric is given by the Koszul's formula

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

(2.17) −g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

By Koszul's formula we get

∇e1e1 = −e3,∇e2e1 = −ye−ze2 −
1

2
e−2ze3,∇e3e1 = −1

2
e−2ze2,

∇e1e2 =
1

2
e−2ze3,∇e2e2 = ye−ze1 − e3,∇e3e2 =

1

2
e−2ze1,

∇e1e3 = e1 −
1

2
e−2ze2,∇e2e3 =

1

2
e−2ze1 + e2,∇e3e3 = 0.

From the above we have found that α = 1
2
e−2z, β = 1 and it can be easily shown that

M3(φ, ξ, η, g) is a trans-Sasakian manifold.

3. Some results for conformal Ricci soliton and almost conformal

Ricci soliton on 3-dimensional trans-Sasakian manifold

A conformal Ricci soliton equation on a Riemannian manifold M is de�ned by

£V g + 2S = [2λ− (p+
2

3
)]g,

where V is a vector �eld.

Let V be pointwise co-linear with ξ i.e. V = γξ where γ is a function on 3-dimensional
trans-Sasakian manifold. Then

(£V g + 2S − [2λ− (p+
2

3
)]g)(X,Y ) = 0,

which implies

(£γξg)(X,Y ) + 2S(X,Y )− [2λ− (p+
2

3
)]g(X,Y ) = 0.

Applying the property of Lie derivative and Levi-civita connection we have

γg(∇Xξ, Y ) + (Xγ)g(ξ, Y ) + (Y γ)g(ξ,X) + γg(∇Y ξ,X) + 2S(X,Y )

−[2λ− (p+
2

3
)]g(X,Y ) = 0.
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Using (2.3) and (2.6) in the above equation we obtain

2βγg(X,Y )− 2γβη(X)η(Y ) + (Xγ)η(Y ) + (Y γ)η(X)

(3.1) +2S(X,Y )− [2λ− (p+
2

3
)]g(X,Y ) = 0.

Replacing Y by ξ and using (2.12) in (3.1) we get

(3.2) Xγ + (ξγ)η(X) + 2[2(α2 − β2)η(X)]− [2λ− (p+
2

3
)]η(X) = 0.

Again putting X = ξ in (3.2) we get

(3.3) ξγ =
1

2
[2λ− (p+

2

3
)]− 2(α2 − β2).

Using (3.3) in (3.2) we have

Xγ + (
1

2
[2λ− (p+

2

3
)]− 2(α2 − β2))η(X) + 2(2(α2 − β2)η(X))

−[2λ− (p+
2

3
)]η(X) = 0,

which implies

(3.4) Xγ =
1

2
[2λ− (p+

2

3
)]η(X)− 2(α2 − β2)η(X).

Applying exterior di�erentiation in (3.4) and considering λ as constant we have

(3.5)
1

2
[2λ− (p+

2

3
)]− 2(α2 − β2) = 0,

(since dη 6= 0).

Using (3.5) in (3.4) we have

Xγ = 0

implies γ is constant.

Hence from (3.1) we have

2βγg(X,Y )− 2γβη(X)η(Y ) + 2S(X,Y )− [2λ− (p+
2

3
)]g(X,Y ) = 0

i.e.

S(X,Y ) =
1

2
[2λ− (p+

2

3
)]g(X,Y )− βγg(X,Y ) + γβη(X)η(Y ).

Putting X = Y = ei where {ei} is orthonormal basis of the tangent space TM where
TM is a tangent bundle of M and summing over i we get,

(3.6) r =
3

2
[2λ− (p+

2

3
)]− 3βγ + γβ.

Now for conformal Ricci soliton r = −1, so putting this value in the above equation we get

(3.7) λ =
1

2
p+

2

3
βγ.
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So we can state the following theorem:

Theorem 3.1 : A 3-dimensional trans-Sasakian manifold admitting conformal Ricci soli-
ton and if V is point-wise collinear with ξ, then V is a constant multiple of ξ. Also the
value of λ = 1

2
p+ 2

3
βγ provided α, β are constants.

Again for almost conformal Ricci soliton we consider that λ is a smooth function.
Then applying exterior derivative in (3.4) we get

(3.8)
1

2
[2λ− (p+

2

3
)]− 2(α2 − β2) = 0

and

(3.9) dλ = 0.

So λ is a constant function and from (3.4) and (3.8) we get γ is constant.

Hence we can conclude the following theorem:

Theorem 3.2 : If a 3-dimensional trans-Sasakian manifold admits almost conformal
Ricci soliton and if V is point-wise collinear with ξ, then V is a constant multiple of ξ
as well as λ becomes a constant function i.e. almost conformal Ricci soliton becomes
conformal Ricci soliton.

Now, from conformal Ricci soliton equation we have

(£ξg)(X,Y ) = 2β[g(X,Y )− η(X)η(Y )].

Using (2.11) in the above equation and from (1.4) we have

2β[g(X,Y )− η(X)η(Y )] + 2[(
r

2
− (α2 − β2))g(X,Y )− (

r

2
− 3(α2 − β2))η(X)η(Y )]

−[2λ− (p+
2

3
)]g(X,Y ) = 0.

For conformal Ricci soliton we have r = −1, so the above equation becomes

[2β + 2(
−1
2
− (α2 − β2))− (2λ− (p+

2

3
))]g(X,Y )

(3.10) −[2β + 2(
−1
2
− 3(α2 − β2))]η(X)η(Y ) = 0.

Now taking X = Y = ξ in (3.10) we get

2β + 2(
−1
2
− (α2 − β2))− (2λ− (p+

2

3
))− 2β

−2(−1
2
− 3(α2 − β2)) = 0,
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which gives

λ =
1

2
[4(α2 − β2) + (p+

2

3
)].

Since α2 6= β2 so
(1). Suppose α2 ≥ β2, then (α + β)(α − β) > 0 which implies α always greater than β.
Then λ > 0 and the conformal Ricci soliton is shrinking.
(2). Suppose α2 < β2 and (p+ 2

3
) > 4(α2 − β2), then (α+ β)(α− β) < 0 which implies

α always less than −β. Then λ > 0 and the conformal Ricci soliton becomes shrinking.
(3). Suppose α2 < β2 and (p+ 2

3
) < 4(α2 − β2), then (α+ β)(α− β) < 0 which implies

α always less than −β. Then λ < 0 and the conformal Ricci soliton becomes expanding.

Theorem 3.3 : A 3-dimensional trans-Sasakian manifold admitting a conformal Ricci
soliton (g, ξ, λ) satis�es the following relations:
1. For α > β, the conformal Ricci soliton is shrinking.
2. For α < −β and (p+ 2

3
) > 4(α2 − β2) the conformal Ricci soliton becomes shrinking.

3. For α < −β and (p+ 2
3
) < 4(α2−β2) the conformal Ricci soliton becomes expanding.

4. Almost conformal gradient shrinking Ricci soliton on 3-dimensional

trans-Sasakian manifold

A conformal gradient shrinking Ricci soliton equation is given by

(4.1) S +∇∇f = (
1

2τ
− 2

3
− p)g.

This reduces to

(4.2) ∇YDf +QY = (
1

2τ
− 2

3
− p)Y,

where D is the gradient operator of g.
From (4.2) it follows that

∇X∇YDf +∇XQY = (
1

2τ
− 2

3
− p)∇XY.

Now,

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df

= (
1

2τ
− 2

3
− p)[∇XY −∇YX − [X,Y ]]−∇X(QY ) +∇Y (QX) +Q[X,Y ],

where R is the curvature tensor.
Since ∇ is Levi-Civita connection, so from the above equation we get

(4.3) R(X,Y )Df = −∇X(QY ) +∇Y (QX) +Q[X,Y ] = (∇YQ)X − (∇XQ)Y.

Again di�erentiating equation (2.14) with respect to W and then putting W = ξ we get

(∇ξQ)X =
dr(ξ)

2
(X − η(X)ξ).



1388

So

(4.4) g((∇ξQ)X − (∇XQ)ξ, ξ) = g(
dr(ξ)

2
(X − η(X)ξ), ξ) = 0.

Putting this value in (4.3) we get

(4.5) g(R(ξ,X)Df, ξ) = 0.

Again from (2.13) and (4.5) we obtain

(α2 − β2)(g(X,Df)− η(X)η(Df)) = 0.

Since α2 6= β2, we have from the above equation

g(X,Df) = η(X)g(Df, ξ)

which implies

(4.6) Df = (ξf)ξ.

Now from (4.2) we have

g(∇YDf,X) + g(QY,X) = (
1

2τ
− 2

3
− p)g(Y,X)

i.e.

S(X,Y )− (
1

2τ
− 2

3
− p)g(Y,X) = g(∇Y (ξf)ξ,X)

= −α(ξf)g(φY,X) + β(ξf)g(X,Y )

− β(ξf)η(Y )η(X) + Y (ξf)η(X).(4.7)

Putting X = ξ in (4.7) we get

S(X, ξ)− (
1

2τ
− 2

3
− p)η(Y ) = Y (ξf).

So

(4.8) 2(α2 − β2)η(Y )− (
1

2τ
− 2

3
− p)η(Y ) = Y (ξf).

Now from (4.7) and interchanging X,Y we obtain

S(X,Y )− (
1

2τ
− 2

3
− p)g(Y,X) = −α(ξf)g(φX, Y ) + β(ξf)g(X,Y )

− β(ξf)η(Y )η(X) +X(ξf)η(Y ).(4.9)

Adding (4.7) and (4.9) we get

2S(X,Y )− 2(
1

2τ
− 2

3
− p)g(Y,X) = 2β(ξf)g(X,Y )− 2β(ξf)η(Y )η(X)

+ (ξf)(Y η(X) +Xη(Y )).(4.10)

Putting the value of Y (ξf) in the above equation we get

QY − (
1

2τ
− 2

3
− p)Y = β(ξf)Y − β(ξf)η(Y )ξ + 2(α2 − β2)η(Y )ξ

− (
1

2τ
− 2

3
− p)η(Y )ξ.
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Hence from (4.2) we can write

∇YDf = β(ξf)[Y − η(Y )ξ] + [2(α2 − β2)− (
1

2τ
− 2

3
− p)]η(Y )ξ.

Now,

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df

= ∇X(β(ξf)(Y − η(Y )ξ) + (2(α2 − β2)− (
1

2τ
− 2

3
− p))η(Y )ξ)

− ∇Y (β(ξf)(X − η(X)ξ) + (2(α2 − β2)− (
1

2τ
− 2

3
− p))η(X)ξ)

− ∇[X,Y ]Df

= 2(α2 − β2)[η(Y )∇Xξ − η(X)∇Y ξ]− β(ξf)[η(Y )∇Xξ − η(X)∇Y ξ]

− (
1

2τ
− 2

3
− p)[η(Y )∇Xξ − η(X)∇Y ξ]−∇[X,Y ]Df

+ β(ξf)[X,Y ].(4.11)

Also

∇[X,Y ]Df = β(ξf)([X,Y ]− η([X,Y ])ξ) + (2(α2 − β2)− (
1

2τ
− 2

3
− p))η([X,Y ])ξ

= β(ξf)[X,Y ]− β(ξf)∇Xη(Y )ξ + β(ξf)ξ(∇Xη)Y + β(ξf)∇Y η(X)ξ

− β(ξf)ξ(∇Y η)X + [2(α2 − β2)− (
1

2τ
− 2

3
− p)]∇Xη(Y )ξ

− [2(α2 − β2)− (
1

2τ
− 2

3
− p)]ξ(∇Xη)Y − [2(α2 − β2)− (

1

2τ

− 2

3
− p)]∇Y η(X)ξ + [2(α2 − β2)− (

1

2τ
− 2

3
− p)]ξ(∇Y η)X.(4.12)

Putting (4.12) in (4.11) and taking inner product with ξ we have

2(α2 − β2)− (
1

2τ
− 2

3
− p)− β(ξf) = 0.

From (4.8) we obtain,

β(ξf)η(Y ) = Y (ξf).(4.13)

Using (4.13) in (4.10) we have

S(X,Y )− (
1

2τ
− 2

3
− p)g(X,Y ) = β(ξf)g(X,Y ).

After contraction

(ξf) =
−1
nβ
− 1

β
(
1

2τ
− 2

3
− p) = C,

where C is a constant.

So from (4.6) we get

(4.14) Df = (ξf)ξ = Cξ

Therefore

g(Df,X) = g(Cξ,X)
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which gives

df(X) = Cη(X).

Applying exterior di�erentiation on the above relation we get
Cdη = 0 as d2f(X) = 0.

So from (4.14) we have found that f is constant as dη = 0.

Finally from (4.1) we get

S(X,Y ) = (
1

2τ
− 2

3
− p)g(X,Y )

= 2(α2 − β2)g(X,Y ).

Hence M is an Einstein manifold.

Thus we can conclude the following theorem:

Theorem 4.1 : If a 3-dimensional trans-Sasakian manifold admits conformal gradient
shrinking Ricci soliton, then the manifold is an Einstein manifold.

Acknowledgement: Authors are thankful to honorable referee for valuable sugges-
tions to improve the paper.
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