D. JANSSENS AND L. VANHECKE
KODAI MATH. J.
4 (198D, 1-27
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Abstract

We determine an orthogonal decomposition of the vector space of some
curvature tensors on a co-Hermitian real vector space, in irreducible compo-
nents with respect to the natural induced representation of U(n) x1. One
of the components is used to introduce a Bochner curvature tensor on a
class of almost co-Hermitian manifolds (or almost contact metric manifolds),
called C(«a)-manifolds, containing e.g. co-Kihlerian, Sasakian and Kenmotsu
manifolds. Other applications of the decomposition are given.

1. Introduction.

In his study on Betti numbers of Kéhler manifolds, S. Bochner introduced a
tensor which had to take over in his theory the role of the Weyl tensor on
Riemannian manifolds. More precisely, a conformally flat manifold was considered
as an extension of a real space form. So, a Bochner flat Kdhler manifold had to
be an extension in the same sense of a complex space form.

The Weyl tensor is well known as a conformal invariant of Riemannian
manifolds but the Bochner tensor on Kidhler manifolds was defined in a completely
formal way. Several attempts were made to find a geometrical interpretation.

Besides Kihler manifolds and the more general almost Hermitian manifolds,
one has also studied classes of odd-dimensional manifolds with additional structures,
namely the almost co-Hermitian manifolds or almost contact metric manifolds; in
particular Sasakian, co-Kédhlerian and Kenmotsu manifolds.

A natural problem arises here: Is it possible to construct a “ Bochner cur-
vature tensor” for these classes of manifolds? A nice way to introduce this
tensor is to use decomposition theory of spaces of curvature tensors. Singer and
Thorpe obtained in this way the Weyl tensor [20] (see also [17]) and the Bochner
tensor was derived with the Hermitian version of this decomposition in [16], [21].
Proceeding in the same way, the second author defined a Bochner tensor for
AH;-manifolds (a class of almost Hermitian manifolds containing e.g. the nearly
Kéhler manifolds) [24], [27]. The general case is given completely in [34].

In this paper we define with a decomposition theory a Bochner curvature

Received October, 18, 1979



2 DIRK JANSSENS AND LIEVEN VANHECKE

tensor for a class of almost contact metric manifolds. The elements of this class
are called almost C(a)-manifolds and are introduced in section 2. They are defined
by a condition on the Riemann curvature tensor. Examples are Sasakian and
co-Kédhlerian manifolds, and also the manifolds studied by Kenmotsu [12]. In
sections 3 and 4 we develop the algebraic theory of C-curvature tensors on
co-Hermitian vector spaces and prove the decomposition theorem. In section 5
we give a complete algebraic characterization of the orthogonal decomposition
by considering the naturally induced representation of U(n)X1 in the space of
C-curvature tensors. The components of this decomposition are the irreducible
components of this representation. Geometrical applications are given in section
6 and in section 7 we derive some useful inequalities relating the norm of the
curvature tensor, the norm of the associated Ricci tensor and the scalar curvature.
Finally we study in section 8 the decomposition of proper generalized Cla)-cur-
vature tensor fields (i.e. Cla)-curvature tensor fields satisfying the second Bianchi
identity) on Sasakian manifolds. As for Riemannian and Kihler manifolds [177,
[16], the Codazzi equation for the Ricci tensor will play an important role.

We note that the Bochner tensor obtained in this paper for the class of
Sasakian manifolds is just the C-Bochner tensor introduced by Matsumoto and
Chiiman [15]. C(0)-curvature tensor fields en Sasakian manifolds are the S-cur-
vature like tensor fields introduced in [337.

2. Almost Cla)-manifolds.

Let M be a real (2n+1)-dimensional C® manifold and 2(M) the Lie algebra
of C= vector fields on M. An almost co-complex struciure on M is defined by a
C= (1, I)-tensor field ¢, a C= vector field & and a C* 1-form y» on M such that
for any point x& M we have

n(§2)=1,

where I denotes the identity transformation of the tangent space 7T .47 at x.
Manifolds equipped with an almost cocomplex structure are called almost cocomfilex
or almost contact manifolds. A Riemannian manifold A with metric tensor ¢ and
with an almost cocomplex structure (o, &, %) such that

VX, YEX(M): gloX, oY y=p(X, ¥)—7(X)7(¥)

is an almost co-Hermitian or an almost conlacl melric manifold. The existence of
an almost cocomplex structure on M is equivalent with the existence of a reduc-
tion of the structural group tc «W(n)1, i.e. all the matrices of ©@(21--1) of the
forr
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where A and B are real (n, n)-matrices.
The Sasaki form (or fundamental 2-form) @ of an almost co-Hermitian

manifold (M, g, ¢, &, 1) is defined by
DX, V)=g(X, 1)

for all X, Yez(M) and this form satisfles pA@"=0. This means that every
almost co-Hermitian manifold is orientable and that (7, @) defines an almost
cosymplectic structure on M. If this associated structure is cosymplectic (d@=
dn=0), M is called an almost co-Kihler manifold. When @=dy, the associated
almost cosymplectic structure is a contact structure and M is an almost Sasakian
manifold. It is known that conversely every contact manifold has an almost
Sasakian structure.

The Nijenhuis tensor of the (1, 1)-tensor field ¢ 1s the (1, 2)-tensor field
Lo, ©] defined by

Lo, o XX, V)=[¢X, oV I—[X, Y]—¢[ X, oY ]—cl¢X, Y],

where [ X, Y] is the Lie bracket of X, Yex(M). An almost cocomplex structure
is called wntegrable if [p, p1=0 and normal if [, ¢]+2dnQRE=0. An integrable
almost cocomplex structure is a cocomplex structure. A co-Kdhler manijold (or
normal cosymplectic manifold) is an integrable (or equivalently, a normal) almost co-
Kéhler manifold, while a Sasakian manifold is a normal almost Sasakian manifold.

For an extensive study of these manifolds we refer to [4], [6] and [19]
where many examples are given. On the other hand, Kenmotsu studied in [12]
another class of almost co-Hermitian manifolds, defined by the following conditions
on the associated almost cosymplectic structure:

dn=0,

WONX, Y, Z)=2 & {508y, 23,
3xv.z

where © denotes the cyclic sum. We call such manifolds almosi Keunoisu

manifolds. A normal almost Kenmotsu manifold is a Kenmoisu manifold. The

warped product RX F (F being a Kéhler manifold and f(1)=ce', c= R}) provides

an example [5], [12].

The classes of co-Kéhler, Sasakian and Kenmotsu manifolds are precisely the
three classes which occur in a classification theorem of connected almost co-
Hermitian manifolds M?*** for which the automorphism group has maximal
dimension (n+41)* (see [22]).

The Riemannian connections ¥V of Sasakian, co-Kihler and Kenmotsu manifolds
have some well known properties which allow us to characterize these manifolds.

THEOREM 2.1. Let (M, g, ¢, &, n) be an almost co-Hermitian manmfold with

T

Riemanman connection N, Then
(i) M s co-Kdhlerian of and only 1f Vo=0;
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(ii) M is Sasakian if and only if
VX, Yex(M): Nxp)Y=g(X, i—n(Y)X;
(i) M is a Kenmotsu mamfold 1f and only 1f
VX, Yex(M): (Vxp)Y=glpX, Y)E—n(Y)pX.

Kenmotsu used (iii) for the definition of his class of manifolds [12]. Furthermore
we have

THEOREM 2.2. & is a Killing vector field for co-Kdhler and Sasaki manifolds,
i.e
VX, Yex(M): g(Vi, YV)+g(X, Vé)=0,

while for Kenmotsu manifolds we have
VX, Yex(M): g(Vx&, V)—g(X, Vvé)=0.

Finally, the Riemann curvature tensor R on these manifolds satisfies some
interesting identities which will play an important role in the decomposition
theory.

THEOREM 2.3. Let R be the Riemann curvature tensoron M and X, Y, Z, W
ex(M). We have
(i) for M co-Kdhlerian:

RX, Y, Z Wy=R(X, Y, oZ, oW);
(ii) for M Sasakian:
RX, Y, Z W)=R(X, Y, oZ, oW)—g(X, Z)g(Y, W)+g(X, W)g(Y, Z)
+8(X, Z)g(Y, oW)—g(X, oW)g(Y, ¢Z);
(iii) for a Kenmotsu manifold M :
RX, Y, Z W)=R(X, Y, oZ, oW)+g(X, Z)g(Y, W)—g(X, W)g(Y, Z)
—g(X, 2)g(Y, oW)+g(X, oW)g(Y, ¢Z).

With this theorem in mind we give

DErFINITION 2.4. An almost Cla)-manifold M is an almost co-Hermitian
manifold such that the Riemann curvature tensor satisfies the following property :

Jae= R such that for all X, Y, Z, Wex(M):
RX, Y, Z W)y=R(X, Y, oz, oW)+a{—g(X, Z)g(¥Y, W)+g(X, W)g(Y, Z)
+e(X, p2)g(Y, oW)—g(X, oW)g(Y, ©Z)}.
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A normal almost C(a)-manifold is a Cla)-manijold.

Co-Kihlerian, Sasakian and Kenmotsu manifolds are respectively C(0)-, C(1)-
and C(—1)-manifolds. We give now some examples for other values of a.

DEFINITION 2.5. An almost a-Sasakian manifold M is an almost co-Hermitian
manifold such that ¢:;1[d7], as R, M is an a-Sasakian manifold if the struc-

ture is normal.
Just as for Sasakian manifolds [4] one can prove

THEOREM 2.6,
(1) An almost co-Hermitian manifold M 1s a-Sasakwan 1f and only 1f for all
X, Yex(M)

(Vxo)Y=a{g(X, Y)E—9n(Y)X}.
(ii) If M 1s a-Sasakwan, then & 1s a Killing vector field and

Vyb=—apX
for all Xe2(M).
(iii) An a-Sasakian manifold 1s a Cla®)-manifold.

If M is a Sasakian manifold, then by a so-called D-homothetic transformation
one can modify the Sasakian structure into an «-Sasakian structure for a>0. A
D-homothetic transformation is a transformation of the original metric g into a
new Riemannian metric g’ defined as follows:

£X, V=2 g~ X4 908, — V(N8 7(X)7(Y)

for all X, YeT M and all xM. The two metrics are homothetic when
restricted to the distribution 7=0. On the other hand (M, g, ¢, —&, —7) is a
(—1)-Sasakian structure if (M, g, ¢, § %) is Sasakian. Starting with the (—1)-
Sasakian structure one constructs a-Sasakian structures for a«<0. We note that
«-Sasakian manifolds are quasi-Sasakian [3]. They provide examples of C(A)-
manifolds with 1>0.

To obtain examples for A<0, we use the same procedure but starting now
with Kenmotsu manifolds.

DEFINITION 2.7. An almost a-Kenmotsu manifold is an almost co-Hermitian
manifold such that

dyp=0,

@OXX, ¥, )= 2a & (1Y, 2)),
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for acR, and all X, Y, Zex(M). M is an a-Kenmotsu manifold if the structure
is normal.

Here we have

THEOREM 2.8.
(1) An almost co-Hermitian manifold 18 an a-Kenmotsu manifold 1f and only 1f

(Vx@)Y=a{g(eX, Y)E—9(Y)pX},

where X, Yex(M).
(i) An a-Kenmotsu manifold 1s a C(—a®)-manifold.

Using the D-homothetic transformation defined by
g'(X, V)=alg(X, V)—5(X)np(Y)}, a>0,

on a Kenmotsu manifold, one obtains an a-Kenmotsu manifold with «>0. By
starting with (M, g, —p, —£, —») we obtain a (—a)-Kenmotsu manifold with
—a<0.

It is just for the class of almost C(a)-manifolds that we shall define a
Bochner curvature tensor. Therefore we develop a decomposition theory on an
appropriate space of curvature tensors over a co-Hermitian vector space. This
purely algebraic theory will give later on more information about important
special classes of almost C(a)-manifolds.

3. (C{a)-curvature tensors.

Let V be an n-dimensional real vector space with inner product g. A tensor
L of type (1, 3) over V is a bilinear mapping L: VX V—Hom(V, V), (x, y)—L(x, y).
L is called a curvature tensor if it has the following properties for all x, y, z, w
eV:

(1) Lx, y=—L(y, x);

(ii) L(x, y) is a skew symmetric endomorphism of V, i.e.

Lix, y, z, w)+L{x, y, w, 2)=0,
where
Lix, v, z, wy=g(x, y)z, w);

(iii) & L(x, y)z=0 where & denotes the cyclic sum (this is the first Bianchi
X, Y, 2

identity).
This means also that L is a symmetric double form of type (2, 2) which satisfies
the first Bianchi identity [8], [13].
The Ricct tensor Ly of type (0, 2) associated with L is the symmetric bilinear
function on VXV defined by Lg(x, y)=trace(ze V—L(z, x)y=V). The Ricci
tensor Q=Qxr(L) of type (1, 1) is given by Lg(x, y)=g(@x, y) and the trace of Q
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is called the scalar curvature [=I(L) of L.

Let P be a 2-plane of V with orthonormal basis {x, y}. Then k. (P)=
g(L{x, ¥)v, x) is independent of the chosen orthonormal basis and is called the
L-sectional curvature of P. If the function k;: P—Fk (P) is constant, we say
that L has constant sectional curvature.

The curvature tensors L over V form a subspace of the vector space of
(1, 3)-tensors over V, and we denote this subspace by (V). It has a natural
inner product <, ) induced from that on V:

~ 7 ~
&L, L= ]2k=1g(L(ez, e,)er, L(e, epey),
{e;} being an arbitrary orthonormal basis of V.
Next, let V be a (2n+1)-dimensional real vector space with a cocomplex
structure (g, £, ) and a co-Hermitian scalar product g, i.e. ¢ is a linear operator
on V, §+0€V and ye V* (the dual space of V) such that

@'=—I+7RE,
né&=1,
Vx, ye Vi glex, on)=glx, y)—npx)n(3).

I is the identity transformation on V. From this we deduce at once
@(&)=0, pep=0, Im p=Ker p=1{}*, g, §)=1,

and # is the dual vector of §&. Further, every co-Hermitian vector space has a
special type of orthonormal basis, called a ¢-basis, consisting of (e, ge, &;
1=1, -+, n). A 2-plane P of V containing & is called a &-plane while a 2-plane
PC{&}* is called a ¢@-plane. A ¢-plane for which o(P)=P is a holomorphic
@-plane. Such plane has an orthonormal basis of type (x, ¢x) with g(§, x)=0.

Now let L be a curvature tensor over the co-Hermitian vector space V. The
restriction of %; to a &-plane P is called the &-sect:onal curvature of P and the
restriction to a holomorphic ¢-plane P is called the ¢-holomorphic sectional cur-
vature of P. This will be denoted by ¢;.

Based on theorem 2.3 and definition 2.4 we consider now a special class of
curvature tensors over V.

DEFINITION 3.1. A C-curvature tensor L over a co-Hermitian vector space
V is a curvature tensor such that

Lix, v, z, w)y=L(x, v, ¢z, pw)talg(A(x, y)z, w)—g(N(x, vz, gw)}

for an «< R and for all x, y, z, weV. Here A is the curvature tensor defined
by Alx, Wz=(xAy)z=g(y, z2)x—g(x, z)y. The number « is called the fype of
L and a C-curvature tensor of type « is called a Cla)-curvature tensor.

A C(D-curvature tensor is a Sasakian curvature tensor; a C(0)-curvature
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tensor is a co-Kdhler or CK-curvature tensor and a C(—1)-curvature tensor is a
Kenmotsu curvature tensor.

The set of all C(a)-curvature tensors over V will be denoted by Kge(V)
and the union of all Ky (V), a=R (thus the set of all C-curvature tensors) is
a subspace of (V). For this space we use the notation K (V). We note that
Kow({V)=CK(V) is a subspace of (V).

As one can see from the definition, there is a strong relation between the
notion of type of a C-curvature tensor and the notion of type of a K,-curvature
tensor on a Hermitian vector space [24], [25], [27], [29].

To precise the analogy of CK-tensors with Kj-tensors (or Kidhler curvature
tensors on a Hermitian vector space [16]) we consider the notion of a cocomplex
linear map.

DErFINITION 3.2. Let Vg, & n) and V'(¢’, &, 5') be cocomplex vector spaces
over R. A linear map ¢: V=V’ is cocomplex if

(1) @ f=f-p;

(ii) Ik R* such that fe=kE;

(iii) Jl=R* such that f*p'=iy.

it follows easily that for a cocomplex map k=I[ and that an orthogonal map
f: V-V’ where V and V' are co-Hermitian, is cocomplex linear if and only if

¢'of=fop and f§=£".
THEOREM 3.3. LeX(V) s a CK-tensor over V if and only i1f L(x, y) 1s

cocomplex linear for all x, y&'V.

Proof. Let L(x, y) be cocomplex linear. Then L(x, y)6=%k& and so
g(Lx, »)§, &=L(x, y, §, §)=0=kg, §)=Fk. This means that L(x, v, z, §)=0
for x, y, z€ V. Further we have

g(L(x, mez, pw)=gleL{x, Mz, ew)=g(L(x, y)z, w)—p(L(x, y)z2)p(w)
and so L(x, v, oz, pw)=L(x, y, z, w).

Conversely, let L be a CK-tensor. Then we have for all x, y, ze V that
Lix, v, & w)y=L(x, v, ¢€, pw)=0 and thus L(x, y)6=0. Further »(L(x, y)z)=
L(x, v, z, £)=0 and

glo(L(x, ¥)2), pw)=g(L(x, y)z, w)—n(L(x, y)z2)n(w)
=g(L(x, y)z, w)=g(L(x, y)pz, pw).
Since this holds for all gpw and also for &, we get ¢°L(x, y)=L(x, y)-¢.

The following theorem is an immediate consequence of the definition of a
C(a)-curvature tensor.
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THEOREM 3.4. If LeXKow(V), then
(1) VYxeV, Vy, ze{&}*: L(y, z, x, £)=0;
(ii) Vx, yeV: L(x, & v, ) =—aglex, o).
If LeCK(V), then
(iii) VxeV: L(x, £=0;
(iv) VYax, y, z, we{§t: Lx, v, z, wy=L(x, v, ¢z, ow).

For each LeX(V) we construct an a-associated curvature tensor P(L, a) by
P(L, a)(x, y)=L(x, y)—an(x, y)

and it follows that LeKsw(V) if and only if P(L, a)eCK(V). So the spaces
Keowr(V) are affine subspaces of A(V) for each @. The C(a)-curvature tensor
L has constant g-holomorphic sectional curvature ¢ if and only if P(L, @) has
constant ¢-holomorphic sectional curvature c—a.

Concerning the sectional curvatures of L& K¢ (V), we see at once that the
&-sectional curvature is always constant and equal to «. For the case of constant
¢-holomorphic sectional curvature we have an explicit expression for L.

THEOERM 3.5. L&Hcw(V) has constant ¢-holomorphic sectional curvature ¢
1f and only 1f for all x, vy, z€V

c+3a
4

+p()yp2)—p(»xp@)+n(nEglx, 2)—n(x)Eg(y, 2)}.

L(x, y)z= N x, y)z+fc—zg{/\(¢x, oy)z+-28(x, oy)pz

Proof. Let P€CK(V) with constant ¢-holomorphic sectional curvature c—a.
By a well known linearization technique we get for all x, v, z, we {£}*:

P(x, 3, 2, w)=%{g(x, w)g(y, 2)—&(y, wg(x, 2)—g(x, pw)g(z, ¢¥)
+2(y, pw)g(z, ex)+2g(px, ¥)g(z, pw)}.
Now, let x&V. Then x=—¢?x-+5(x)s. Hence for all x, y, 2, weV
Plx, y, z, w)=P(p*x, ¢*y, ¢z, ¢"w).
Since ¢*x< {£}+ and (p*+¢)x=0 we obtain easily
P(x, y)z= C—Eﬁ{/\m wWz+Ngx, oy)z+28(x, ¢y)pz
+ () yn@)— (a2 +9(»)Eg(x. 2)—n(x)ég(y, 2)}.
The result follows now from L(x, y)z=P(x, y)z-+ta (x, y)z.

This result is well known for C(1)-curvature tensors [4], C(0)-curvature
tensors [147] and C(—1)-curvature tensors [12]. There is a formal analogy with
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the expression for the curvature tensor of a generalized complex space form [26].

Just as for Kéahler curvature tensors, the behaviour of the Ricci tensor plays
an important role in the decomposition theory (the tensor is complex linear for
K-curvature tensors). We have

THEOREM 3.6. Let LeX (V). Then Qr(L) 15 cocomplex linear.

Proof. Let P denote the associated curvature tensor of L. Then
Qr(P)=Qr(L)—2nal .

Since PECK(V) we have g(Qn(P)x, E):mi:P(x, e,, e, £)=0 where {e)} is an

orthonormal basis of V. Hence Qz(P)é=0 and so Qz(L)§=2naé.

Next we have g(Qr(L)x, §)=g(x, Qr(L)E)=0 for n< {£}* and so 7p(Qx(L)x)
=0. Further p(Qr(L)8)=2na; so n-Qr(L)=2nay.

Finally we prove ¢°Qr(L)=Qx(L)-p. Let {e, e, & 1=1, -+, n} be a ¢-basis
for V. Then for x, ye {§}*

gQALpx, )= Lipx, e, e M+Lpx, & & 3).

Now
2n Zn 2n
; Lipx, e, e, y)= ; Lio®x, ge,, oo, ¢y)=— ; L(x, e, e, @)
and
Lipx, &, &, y)y=agle®x, py)=—ag(x, ¢3)=—L(x, §, &, o).
Hence

gQrL)px, v)=—g(Qr(L)x, 0y)=g(eQa(L)x, ¥).
Since g(Qr(L)px, §)=0=g(eQr(L)x, &) we obtain for x< {£}*

(Qr(L)e@)x=(p-Qr(L))x .
Finally
(o Qr(LNE=¢Cna&)=0=(Qr(L)¢)5,

which proves the required result.

To finisch this section we give some examples of C-curvature tensors we
need later on. We frequently use the curvature tensor 4 over V, defined by

H(x, Mz=n(x)yn@)—p(mxp@+y(»Eglx, 2)—n(x)Eg(y, 2).

Further Homes(V) denotes the space of all symmetric cocomplex linear endomor-
phisms of the co-Hermitian vector space (V, ¢, &, », g) with dimension 2n-1.

EXAMPLE 3.7. Let a, a=R and A, BeHomes(V). Then C, 5 4 « with
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Caaolx, V)=A(Ax, Av)+A(Bx, Ay)+ NpAx, oBy)+AN(Bx, pAy)
+2g(Ax, pv)pB—2g(px, By)pA+34(Ax, By)+I(Bx, Ay)
+an(x, y)+a—a){Alpx, oy)+H(x, ¥)+2g8(x, py)p}

is a Cla)-curvature tensor.
If Aé=Fk& and B&=I§, we obtain

Qr(Cy 5, o )=(tr B=DA+(tr A—k)B+2(AB+BA)
+2{an+D~atI—{2kl+k tr B+itr A+2(n+1)0a—a)} p&E,
{Cup o o)=2tr Atr B—2[tr A~2ktr B+2tr AB+2tr BA
—2kl+2n{2a(n-+1)—a}.
Some special cases have special importance later on. Therefore we put

Casa=Cuagsaa, Casg=Cap,.

4

c

ExampLE 3.8. For C=Cc¢; 1, (ceR) we have k:§, /=1 and
8

Clx, = T2 NG, 2+ S8 Ao, o)+, ) H28(x, pyph,
Qu{C)= MEEIGRER I g,

C)=5 tn(2n+1e+3a) e —ar).

C has constant ¢-holomorphic sectional curvature ¢. By theorem 3.5 we know
that conversely, any C(a)-curvature tensor with constant ¢-holomorphic sectional
curvature is of this form C.

4. The decomposition theorem.

Let (V, g, ¢, & 7) be a co-Hermitian vector space of dimension 2n+1 and
K (V) the subspace of X(V) formed by the C-curvature tensors. The natural
induced inner product on K (V) will also be denoted by g. Just as for the
Weyl tensor [17], [20] and for the Bochner tensor [16], [217], we determine a
decomposition of K (V) into a direct sum of orthogonal subspaces. The con-
sidered subspaces are in some sense inspired by the decomposition given in [24],
[27] for K,-curvature tensors. In section 5 we shall show that the components
are irreducible for a natural induced representation of U(n)X1 on HK(V).

LEMMA 4.1. Let C(V)={LeX (V)| p,=0}. Then for LeC,(V) we have
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L(x, 3)=FBA&, )~ Npx, g)—3(x, y)—2¢(x, p3)¢},
where ac R.

Proof. This is a special case of theorem 3.5 with ¢=0. C(V) is thus a
l-dimensional subspace of K o(V).

LEMMA 4.2. Let CHV) be the orthogonal complement of C(V) wn K (V).
Then CH{V)=CK(V).

Proof. Let Lec(V) with type « and let [ be an arbitrary element of
HKe(V). We take an orthonormal basis {¢,, pe,, §; a=1, -, n} and put esn+;=¢,
epx=@e,, a¥*=n-+a. We consider now

~, 2n+1 ~
g(L, L):A' B%?D:I LiscpLascp,

where Lypcp=L(ey, ez, ¢¢, ep). When A=2n-+1 we write L pcp as Lepep.
First we have by lemma 4.1

L= %{3513]'5111—35ki5jl_5kj*ali*+5ki*5]l*+25ij*5kl*} ’

Lifszaaik-
Hence
~ 2n ~ 2n ~
gL, )= 3 szlezjkl+4 LigkeLisks
1,7,k I=1 1, k=1
3a 2n ~ o W~ ~
:-2—1’,21szji_?l,%l(Ltjj*i*+Li*z]j*)-

Using the first Bianchi identity and the fact that L is a C(a’)-curvature tensor,
we get

4.0 g(L, D)=2nBn+Daa’.
Hence, LeCi(V) if and only if a’=0.

LEMMA 4.3. Let C(V)={LeCK(V) with ¢ constant}. Then for LcCyV)
we have

L(x, 3= {Nx D)+ Nlpx, o3)+5(x, 3)+28(x, 03¢},
where ceR.

Proof. Apply theorem 3.5 with @a=0. So Cx(V) is a 1-dimensional subspace
of CK(V).
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Now let é(V) be the orthogonal complement of C(V)DCV) in K (V).
Then we have

LEMMA 4.4. C(V)={LeCK(V) with I(L)=0}.

Proof. Let LeCy(V)PC,(V) and ZEC(V). Lemma 4.2 implies that [ CK(V).
From theorem 3.5 we have

3 —
A D+ Ao, o He, 94260, 02,

Lix, y)=

Hence

~ 2n ~ 2n ~
g(L, L)= J;llezjkszju‘Hl Lifk$Lz$k$

2 1, k=1

c+3a 2 ~ e—a) m o~
= - Ll]ji—i_A - L”ji-

1,7=1 2 1, 9=1

Further, since figgi:O we have
4.2) g(L, Dy=2c(D),

which proves the required result.

LEMMNA 4.5, Let Co(V)={LeCK(V) with Qr(L)=0}. Then Cx(V) 1s a sub-
space of C(V).

Proof. Trivial.
So we get
THEOREM 4.6. We have
Ke(V)=C(VYDC,(VYBCVYDC,(V) (orthogonal)
where C{V) 1s the orthogonal complement of Cx(V) mn CN‘(V).

To find the dimensions of the subspaces C;(V) and Cx(V) we use essentially
a result proved in [217.

THEOREM 4.7. If (V, ¢, & 0, g 15 a @n+t1)-dimensional co-Hermitian vector

2 2
space, then dim JCC(V):,nL@Z;H)

%nz(n—l)(n +3).

+1, dim C(V)=n?*—1 and dim Cx(V)=

Proof. Let W=Ker ». Then W is a Hermitian vector space with (g|W, ¢| W)
as Hermitian structure. We consider (W), the space of curvature tensors L
over W satisfying the Kihler identity L(x, v, z, w)=L(x, ¥, ¢lwz, ¢lww). It is
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clear that X,(W) is isomorphic with CK(V). Indeed, the restriction L, of
LeCK(V) to W belongs to 4,(V) and conversely any L, X, (W) can be extended
uniquely to an element L of CK(V) (see theorems 3.3 and 3.4). Further, Qx(L;)
=0 if and only if Qr(L)=0 and the holomorphic ¢-sectional curvature of L is
the holomorphic sectional curvature of L,. This means that C.(V), Cx(V), Ci(V)
are isomorphic with the subspaces in the decomposition of K (W) given in [16],
[21]. The dimensions of these subspaces and of & (W) are given in [217. This
gives the required result.

Now let LeHowo(V). Then we have
L= é Li+Lyg,
=1

where L,eC/(V) and Lz=Cs(V). We determine the explicit expressions for

these projections.

First, L, has to be a C(a)-tensor and the expression is given by lemma 4.1.
To know L, we use lemma 4.3 and determine ¢. Since [(L)=I[(L)-~I(L,) (using
lemma 4.4) we get from example 3.8

_ L) —an@nt1)
. n(n+1)
and hence
_ ULy —anBn+1)
L 0= )

To determine L, we prove

(NG, M)-EAlex, o) +d(x, y)+28(x, ¢}

LEMMA 4.8. For all ¢, be R and c¢ll A=Homes(V), the CK-curvatuie lensors
L defined by
L=aC, ;+4-b0Cy
belong to CH(V).

Proof. Let [Lecy(V). Then LeCK(V) and Lz=0. Further, since Ac
Home*(V), ¢x is an eigenvector of A if x is an eigenvector and both have the
same eigenvalue. Hence we may chcose a ¢-hasis of eigenvectors {e,. ¢e,, &;
a=1, ---, n} for V. We have

2R

§<L; f): 2 [‘ljlell’jl]kl

1, 7, R I==1

and using example 3.7 we obtain

(L, D=8 3 {alh+2)+25) L.y

1=

where 1, is the eigenvalue of ¢,. So
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A~ 27 ~ 2n ~ 2n ~
g(L, Ly=8a 21 AL g)t8a 21 AL g),, 166 21 (L R)is
1= 3= 2=
Since LNR:O we get g(L, Z):O.
Now we put L;=aCy ;+bC, ; and determine a, b and A so that Lz—

Lig+ L;r+ Lip. This implies immediately that A=Qg(L), which is indeed
cocomplex linear, and

1 2an—I(L)
= oie Y iy
We put
L. (L)+2an
2An+1)

Then we have proved

3
THEOREM 4.9. Let LeKowolV)., Then L= > L,+Lp with L, =C{V" und
v=1
sEC(V). Further

o .
Li(x, y>:~4—{3Mx, = ox, on)—H(x, y)—28(x, ¢3¢},

2k—3an
Lutx, =20, ),

Zan—knED o
I, I\A, !

1
" ))== — - ; T, 9 4.
Lix, ») A1) (QR<L>.1(\, V)

2n(n+2)
Ly(x, W=1 e Y o, W)
s(x, W=L(x, y)— Z<”+*2) QR<L>,1(X, ¥) 4(*{;_‘_*2*) I IC T
+ %1?172*{#2/\@, vi+nAlox, ey +a(x, y)+2¢(x, orje;.

DEFINITION 4.10. Let L=X.(V). Then Ly is called the C-Bochner leusor
associated with L. L is called C-Bochner flat if Lz=0.

This allows us to introduce now in a natural way the notion of C-Hochner
curvature tensor on an almost Cla)-manifold. Indeed, in every tangent space the
Riemann curvature tensor R defines a C(a)-curvature tensor. By taking the
corresponding Rp-component at each point, we get the C-Bochner curvature
tensor field B on the almost Cla)-manifold M. If B=0, M is called a C-Bochner
fat manifold.

For Sasakian manifolds our definition coincides with the tensor introduced,
using the Bootby-Wang fibration, in [15] (see also [32]).
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5. The irreducibility of the decomposition.

The decomposition constructed in section 4 can be characterized completely
by showing that the components are the irreducible components of the induced
natural representation of U(n)X1 in the space K(V). The decompositions given
in [20], [17], [16], [21] have the same irreducibility property if one considers
the structure group O(n) resp. U(n). This may be proved using Weyl’s invariants
theorem and the theory of quadratic invariants of the curvature tensor (see [17,
{10], £11], [310).

Let V be a (2n-+1)-dimensional co-Hermitian vector space and let p be the
standard representation of ¥U(n)x1 in V. Thus

o Un)X1—-GL(V); X—p(X),

where
A B 0
oX): V=V, v>y—-B A 0 |v.
0 0 1

The representation p induces a representation g of U(n)X1 in the space A(V)
by
g1 Un)X1—=GL{H(V)), g—5(g),
where
(@ LXx, ¥, z, w)y=L(p(g"Hx, p(g My, p(g Nz, p(g Hw).

U(n)x1 is the group of all orthogonal cocomplex linear transformations. So
g(X'x, X'2)=g(x, z) and @ X'=X"ep for all XeU(n)x1. This implies

THEOREM 5.1. K (V) s an wmvariant subspace of H(V) for §.
Further we have

THEOREM 5.2. (V) (=1, 2, 3) and Cgx(V) are wnvarwant subspaces of HKo(V)
for .

Proof. This is a straightforward verification using the fact that elements of
U(n)x1 are cocomplex linear and orthogonal, together with the defining proper-
ties of the subspaces.

Now we prove that there are precisely four irreducible components for the
representation §. Therefore we shall use the notion of the direct sum of two
representations.

LEMMA b5.3. Let p: G—GL(V) be a representation with a rreducible compo-
nents and p': G'—=GL(V') a representation with b irreducible components. G, G’
are groups and V, V' subspaces of a real vector space W. Then
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o+p"  GXG'—GL(VPV)
defined by
(o+p' g g)Xvtv)=p(gv+p (gHv

15 a representatron with a-+b irreducible components.

THEOREM 5.4. The representation g of Un)X1 wn H(V) 1s a direct sum of
two representations.

Proof. As in the proof of theorem 4.7 we consider & ,(W) with W=Ker 7.
Let ¢: Un)—GL(W) be the standard representation of U(n) in W and & the
induced representation of U(n) in K, (W).

Next, let 1: {e} =G L(C,(V)) be the trivial representation. Using the isomor-
phism between CK(V) and 4 (W) (see theorem 4.7) and identifying

A B 0
A B
—B A 0| with (( ), 1)
—B A
0 0 1

together with the property g(X)L=L for L&C(V), we obtain that the direct
sum &-+1 is precisely p.

Since & has three irreducible components if dim W>2 we obtain by lemma
5.3 that § has four irreducible components if dim V=5. Hence we have

THEOREM 5.5. The decomposition of theovem 4.6 1s a decomposition n 1rre-
ducible components 1f dim V=5.

In the case of dim V=3 we have only two irreducible components for § (then
dim W=2) and KX (V)=C(V)BC,(V), according with the result of theorem 4.7.
This implies that the C-Bochner tensor vanishes for C(a)-curvature tensors over
V if dim V=3.

6. Applications.

We shall give now some natural applications of the decomposition. They will
show the analogy of the C-Bochner tensor with the classical Weyl and Bochner
tensors.

THEOREM 6.1. C(V)DCAV)={LeKX(V) with ¢p constant}.
Proof. This is clear from theorem 4.9 and theorem 3.5.

It follows that a C-curvature tensor with constant ¢-holomorphic sectional
curvature has vanishing Bochner component.
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DEFINITION 6.2. A C-curvature tensor L is n-Einsterman if there exist a, b
=R such that

Vx, yeV: Lelx, y)=ag(x, y)+-bn(x)n(y).

This is equivalent with Qp(L)=al+b7®¢ and L is Einsteinian in the case b=0.
Further we have
LpE, &=a+b=2na.

Using example 3 we get

COROLLARY 6.3. A C-curvature tensor wilh constant @-holomorphic sectional
curvature 1s p-Einsteinian.

THEOREM 6.4, C(V)QCVYDC(V)={LeH (V)| L 1s p-Einsterman}.

Proof. Since Lgp=0, L is 5-Einsteinian if LeC(VYPCA(VIBC(V) (use
corollary 6.3).

Conversely, let Qr(L)=al+bpQE. A straightforward computation shows
that L,=0.

COROLLARY 6.5. L has constant @-holomorphic sectional curvature if and
only 1f Lpy=0 and L 1s y-Einstewnian.

We consider now again C(a)-manifolds.

DEFINITION 6.6. A Cla)-space form is a C(a)-manifold with pointwise constant
¢-holomorphic sectional curvature.

THEOREM 6.7. Let M?®"*' be a connected Cla)-space form with 2n+-125.
Then the p-holomorphic sectional curvature 1s globally constant.

Proof. This can be done in exactly the same way as for Sasakian space
forms (see [41).

Co-Kihler space forms, which are C(0)-space forms, are considered in [14] and
Kenmotsu space forms (which are C(—1)-space forms) in [12]. These last ones
are automatically real space forms of constant sectional curvature —I1.

By defining »-Einstein almost C(«)-manifolds pointwise using definition 6.2
we get from corollary 6.5.

THEOREM 6.8. Let M be a Cla)-manifold. Then M s a Cla)-space form 1f
and only 1f M %n-Einstevman and C-Bochner flat.

This theorem can be compared with the well known theorems on conformally
flat Einstein spaces and on Bochner flat Kihler-Einstein manifolds, which are
respectively real and complex space forms.
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Finally we characterize Ci(V).

THEOREM 6.9. LecCy(V) (or L 1s C-Bochner flal) 1f and only 1f L=Cu; 4 «
with A€Hom®*(V) and a, a=R.

Proof. Let LeCy(V). From Lz=0 we obtain L=C, ; , . with

= o +2) (QR(L) 1), a= ;%2'

The converse is obtained by straightforward computation.

7. Norm inequalities.

The decomposition gives rise to some interesting inequalities which can be
used to characterize some special curvature tensors as in the Riemann, Kidhler
and quaternionic case ([17], [2], [7], [307). The use of these inequalities will be
illustrated in a forthcoming paper. See also [35].

THEOREM 7.1. Let LeXo(VEn™) and L= L,4Ly with L,cC(V), Lye
2=1
Cp(V). Then
1L P=2n@n+1)a?,

2{(LY—n@Bn+Da}?
nin+1) ’

Lol
L= I QA D —8ntat— - U(L)—2na)),

3
MLplP= L= 25 I Lall™

Proof. | L,J? follows from (4.1). Further (4.2) implies
8(Cy, 1, Dy=1611L)

for an arbitrary Le CK(V). Using the formulas of example 3.8 and theorem 4.9

we get the foanula for || L%
Next, for LeCK(V) we have

~ 2n ~
gL, Copus, 1):1GZ§1Q1;‘QU ,

where (@,;) and (@”) are the matrices of Qz(L) resp. QR(ZN,) with respect to an
orthonormal ¢-basis. Hence, using the formulas in examples 3.7 and 3.8, we

obtain
1Copcry. 112=16 {2(n+2)(| Qr(L)|*—4n’a®) +((L)—2na)?},

gCopwr. 1, Cr, n=064(n+D((L)—2na).
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Then ||L;|? follows using theorem 4.9. [|Lz|? is obtained by using the ortho-
gonality of the decomposition.

Using theorem 6.1, theorem 6.4 and the relations | L||2= || L, |24+ L.l%, | L,]*=0,
we obtain

THEOREM 7.2. For all LE KXo, (V) we have
20(LY—n(3n+Da)?
2> 2.1

I LI2=2n83n4 e+ MEER)

Equality holds 1f and only 1f L has constant @-holomorphic sectional curvature.

THEOREM 7.3. For all LE KoV we have

(U(L)—2na)?
2n :

Equality holds if and only 1f L 1s n-Einstevman.

1Qr(D)I*z4n’a’+

Since | Lg|*=0, theorem 7.3 and corollary 6.5 imply

THEOREM 7.4. For all L€ Kpe (V) we have

N 4 ., da(B3n—1) .
LI Zm“@fz(L)H +vn+T"’{”(2n+l)a [(L)}.

Equality holds 1f and only 1f L has constant o-holomorphic sectional curvature.

Remark that theorem 7.3 and theorem 7.4 imply theorem 7.2,

8. Proper generalized C(a)-curvature tensor fields on Sasakian manifolds.

DEFINITION 8.1. Let (M, g, ¢, &, ») be an almost co-Hermitian manifold and
L a C* (1, 3)-tensor field on M. L is a (generalized) C-curvature tensor field on
M if for all xeM, L, is a C-curvature tensor on 7.M. If L, has type a for
all x, then L is called a Cla)-curvature tensor field on M.

Of course, the Riemann curvature tensor fleld R on an almost Cla)-manifold
M is a natural example of a Cla)-curvature tensor field on A4, Other examples
can be obtained from examples 3.7 and 3.8 by taking X, Yex¥(M) instead of
x, v and a=F(M) (a C™ function on M), A and B C~ tensor fields of type (1, 1)
so that for all xeM, A, and B, are symmetric cocomplex linear maps of T M.
We use for these examples also the same notations Cu 5 4.4» Ca 5 a» Car @S in
these examples 3.7 and 3.8.

For R the second Bianchi identity plays an important role. So we want to
consider C-curvature tensor fields satisfying this identity (see for example [177).
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DEFINITION 8.2. Let V denote the Riemannian connection on M. A C-curva-
ture tensor field L is called a proper field if and only if

VX, Y, ZexM): © (VxIXY, 2)=0.

X

Proper C-curvature fields are special Riemannian double forms on M (see [8]).

We give an example for Sasakian manifolds. We consider the Cla)-curvature
tensor field £ on M given by

EX, Y)=sNX, V)+—a){A(pX, oY) +o(X, Y)+2¢(X, oY)},

where seF(M). Then we have

EXAMPLE. 83. Let M***, n>1, be a connected Sasakian manifold. Then E
15 proper 1f and only 1f s 1s a constant function on M.

Proof. Suppose E is proper. Then the statement is a direct generalization
of Schur’s lemma for the Riemann curvature tensor field on Sasakian manifolds
(see [41).

The converse is a straightforward calculation using

{ (Vxp)Y=g(X, Y)§—7(Y)X,
@1

vXé-: _SDX ;
which are well known relations on Sasakian manifolds (see theorem 2.6).

In what follows we suppose always that M is a Sasakian manifold and we
consider a generalized C(a)-curvature tensor fleld on M. By using pointwise the
decomposition theorem we obtain four C-curvature tensor fields L,, L,, L; and
Lz on M. A natural question arises now: if L is a proper fleld, does then the
same property holds for L, (i=1, 2, 3) and Lz? As we can see from [167, [17],
the Codazzi equation for Qg(L), i.e.

VX, Yex(M): (VxQr(L)Y=(yQr(L)X,

will play an important role. This natural condition (see [9]) has very strong
consequences for C(a)-curvature tensor fields on Sasakian manifolds. We study
this now more in detail.

THEOREM 8.4. Let L be a Cla)-curvature tensor field on a Sasakian manifold
M=+ If the Ricct tensor field Qp(L)=Q satisfies the Codazzi equation, then

Qr(L)=2nal .

To prove this we need a generalization to almost co-Hermitian manifolds of a
theorem of Tanno [23] concerning hybrid tensor fields on Kihler manifolds.
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DEFINITION 8.5. Let M be an almost co-Hermitian manifold. A (0, r)-tensor
field T on M is called C-hybrid with respect to 1 and ; if

VX, o, X2 (M) T(X,, o) Xy o) Xy oo, X0
:T(XI) Ty @Xh Tty @X]y R XT)'

COROLLARY 8.6. Let T be a C-hybrid tensor with vespect to 1 and ;. Then
T(XIJ “')Ey Tty X]) B XT):T(le Y XZ) ”'75; Tty -‘XT):O‘
1 1

i J
THEOREM 8.7. Let T be a (0, v)-tensor field with v=3 and which 1s C-hybrid
with respect to (1, 7), (4, k) and (i, k). Then T=0.

Proof. First we take X,e€X(M) such that »(X,)=0 for all 1=:=<r. Then
we have ¢’X,=—X, and

T(Xy, ) Xoy oy Xy ooy Xy ooy X))
=T(Xy, 5 0Xu =y X5y oy Xiy oy X,)
=T(Xy, -, @Xo, =, 0*X,, o, ©Xpy o, X,)
=T(Xy, -, "Xy, -, @2 X,y =, 0* Xy, o, X,)
=—T(Xy, ) Xy oy Xpy oo, Xiy ooy X0
Next we take X, arbitrary. Then the theorem follows at once using corollary

8.6 and by linearity since (X.),=a,(Y),+b:§, where 5(Y,)=0.

THEOREM 8.8. Let L be a Cla)-curvature tensor field on a Sasakian manifold.
If Qa(L)=Q satisfies the Codazzi equation, then Q 1s parallel, 1.e. VQ=0.

Proof. Let S denote the Ricci tensor field of type (0, 2) associated with L,
i.e. S(X, V)=g(QX, Y). First the Codazzi equation implies

8.2) VX, Y, Zex(M): (VxSUY, 2)=(ySXX, Z).

Further, since @ is cocomplex linear we have, using theorem 3.6, for all X, Y&
X (M)

SleX, Y)=g(QoX, ¢Y)=g(eQX, ¢Y)
8.3 =g(QX, YV)—n(Q@X)n(Y)

=S(X, ¥)—2nan(X)p(¥).
In particular we get
S¢, §H=2na.

Next we show that the (0, 3)-tensor field VS is C-hybrid in the last two
arguments, i.e. (VxS)(Y, Z)=(NxSXeY, ¢Z). Using (8.2) it follows then at once
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that VS is completely C-hybrid and hence, by theorem 8.7, we obtain the required
result.
We start the proof by taking Y, Ze {£}+. Then

(VxSXeY, 2)=X{S(pY, ¢Z)} =S(Vx(eY), 2)=S(¢Y, Vx(¢Z))
=X{5(Y, 2)} =S(g(X, Y)E+¢VxY, 0Z)
—=S(pY, g(X, 2)§+¢VxZ)

by (8.1) and (8.3). Since Q¢=2naé (theorem 3.6) we have S¢, ¢Z)=S(¢, ¢V )=0
and hence

(VxSXNeY, oZ)=X{S(Y, 2} =S(eVxY, 02)—S(eY, ¢VxZ)=(VxS)Y, Z),

using again (8.3).
Further, let X, Y1 £ Then with (8.1) we get

(Ve SUY, §)=S{Y, oX)—2nag(VyY, &).
But (8.2) implies
(VxSUY, §)=S(X, oY)—2nag(Vy X, &)

and, since £ is Killing, we get by adding the two relations

(VxS)Y, §)=0,
Next
(VxS)¥E, £)=0 for all Xex(M),

since we have Vyé=-—¢X and S{pX, §)=0 (theorem 3.6). The theorem follows
now at once using the Codazzi equation since

(VxS)(Y, §)=0=(VxS)X¢Y, ¢&) for X, Yex(M).

THEOREM 8.9. Let L be a Cla)-curvature tensor field on M with parallel
Riccr tensor Q=Qgr(L). Then
Qr(L)=2nal .

Proof. Since @ is parallel and cocomplex linear we get from (VyQ)p¥Y=0:

Vx(pQY)—pQVx Y=0(Vrp)Y
=Q{g(X, Y)§—n(¥Y)X}

=2nag(X, V)E—p(Y)QX.
On the other hand

Vx(pQY)—oQV Y =(Tx0)QV=g(X, QY)§—Z2nan(¥Y)X.
Combining the two relations and putting Y=¢& we obtain the required result.

Remark that theorem 8.9 is proved in a different way for the Riemann tensor
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in [18]. The result above follows also from the fact that a Sasakian manifold is
irreducible [23'] and from S(, §)=2na.

Proof of theorem 84. Combine theorems 8.8 and 8.9.

Further we have from theorem 8.4 (or from the fact that a Sasakian manifold
is irreducible)

COROLLARY 8.10. Let M be a Sasakian manifold wilh parallel Riccr lensor.
Then M 1s Einsteinian.

This corollary is important in view of the classes studied in [9].
Combining theorem 8.4 and example 8.3 we obtain

THROREM 8.11. Let M®**, n>1, be a connected Sasakian manijold and L a
Cla)-curvature tensor field on M whose Riccr tensor Qr(L) satisfies the Codazzi
equatwon. Then Couan. 1 15 a proper Cla)-curvature tensor field.

Now we return to our main problem. First we remark that by example 8.3
and because « is constant, the component L, 1s always proper.

THEOREM 8.12. Let L be a (generalized) Cla)-curvature tensor jield on «
connected Sasakian manifold M*™*, n>1, and let

L= i Li+L,

be the natural decomposition. If L 1s proper and Qg(L) satisfies the Codazzi
equation, then L, Ly and Ly ave also proper. Conversely, 1f Li, Ly and Ly are
proper, then Qr(L) satisfies the Codazzi equation.

Proof. 1f L is proper, the theorem follows at once from example 8.3, theo-
rem 8.4 and theorem 4.9 since theorem 8.4 implies that the scalar curvature [(L)

is constant.
Conversely, since L, is proper, k and so /(L) is constant by example 8.3.

Further, since L; is proper, Cgpc, 1 has to be proper and so
X,§Z<VXCQR(L)» Y, 2)U=0.

Using
(Vx(pQN Y= Q)oY +2nag(X, Y)i—n(Y)QX,

{(Vx QY —(VyQ) X} =2g(X, oY) —2na{n(Vy V) — 5V X}}
=2g(pX, oY)—dnag(l, ¢X),
which are easily verified, we compute the cyclic sum over X, vV, Z of

g VxCorry, XY, 2HU, &) for X, Y, Z, ULE.
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This gives the condition
g, o2)S(X, Y)—2nag(U, ¢Z)g(X, Y)+g(U, oX)S(Y, Z)
—2nag(U, oX)g(Z, Y)+gU, oY )S(X, Z)—2nag(U, ¢Y)g(X, Z)
—2nag(X, U)g(Z, oY)—2nag(Y, U)g(X, ¢Z)—2nag(Z, U)gleX, ¥)=0.

For X=Y=Z7 and g(X, X)=1 this reduces to
g, o X)S(X, X)—2nag(U, ¢X)=0
and, since U1 & is arbitrary, we get
S(X, XypX=2napX.

Hence S(X, X)=2na. This implies with Q&=[naf that @=2nal and for Sasakian
manifolds this is equivalent with the Codazzi equation.

COROLLARY 8.13. Let M*™*' n>1, be a connected Sasakian manifold and L
a proper Cla)-curvature tlensor field with constant scalar curvature [{L). Then
Lz 1s proper 1f and only iof Qr(L) satisfies the Codazzit equation.

These theorems are analogous with those for the Weyl and Bochner tensor
proved in [16], [17]. This is also true for the following considerations.

Let Ue(M) be the vector space of all C™ tensor fields 4 of type (1, 1) on a
Sasakian manifold M?2"*!, satisfying the following properties:

(i) A is symmetric in each point;

(ii) A is cocomplex linear in each point with A§=p5%, where S is constant

on M;
(iii) A satisfies the Codazzi equation (V;A)Y={,A4)X,;
{iv) Trace A is constant on M.

Just as in theorem 8.4 one proves that on a Sasakian manifold
Ue={AI| 1= R}.

On the other hand, let £4(M) be the vector space of all proper generalized
C-curvature tensor fields of constant type on M such that their Ricci tensor

satisfies the Codazzi equation. Then the map

A UeMY— Le(MYy; A— L,
defined by
1 k

LiX, V)= o—+Cy (X, V)~ m_}fzy

2(71_]\_2) CIYI(X) Y)

— S (2N, VIR RX, oY) HIX, V)+2g(X, oY o)
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tr A+2ne

T2t
Qr(L)=A and (L ,)p=0. Further, the map £ is injective since L,= L, implies
Qr(LA)=Qr(L4) or A=A".

THEOREM 8.14. Let M3®*"** be a (2n+1)-dimensional Sasakian manifold. If
n=1, A s an 1somorphism. Otherwise A 1s an isomorphism on the subspace

{LE fc(M)‘ LBZO}.

where k= and Af§=2naé, is a linear map. L,& £ (M) because

Proof. For n=1 we obtain
LX, V)=(Lit L)X, V)= AN V)= ApX, V) =s(X, V)=28(X, oV)g}.

So L£¢(M) is 1-dimensional. If n=2 we have for L& (M) with Lz=0:

1 k

L(X, Y):Y(EZ—) CQR<L>, (X, V)— m

CriX Y)

=g F2A Vo n(A(pX, oY)+5(X, Y)+28(X, 9T )g)
and this implies L=1Lg,,. So the map is surjective on this subspace.
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