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Abstract

We establish the generalized Hyers–Ulam–Rassias stability of derivations
in C∗-ternary rings associated to the Cauchy functional equation. We also
show that any so-called almost derivation on a C∗-ternary ring is a true deriva-
tion.

1 Introduction and Preliminaries

A C*-ternary ring is a Banach space A equipped with a ternary product (x, y, z) 7→
[x y z] of A×A×A into A which is linear in the outer variables, conjugate linear
in the middle variable, and associative in the sense that [x y [z t s]] = [x [t z y] s] =
[[x y z] t s], and satisfies ‖[x y z]‖ ≤ ‖x‖ ‖y‖ ‖z‖ and ‖[x x x]‖ = ‖x‖3; cf. [24].
For instance, any ternary ring of operators, namely any closed subspace of the space
B(H, K) of bounded linear operators between Hilbert spaces H and K which is closed
under the ternary product [x y z] := xy∗z is a C*-ternary ring.

If a C∗-ternary ring (A, [ ]) has an identity, i.e. an element e such that x =
[x e e] = [e e x] for all x ∈ A, then it is routine to verify that A endowed with
x� y := [x e y] and x∗ := [e x e] is a unital C∗-algebra. The most important thing
is the C∗-condition. To see this, note that

‖x� x∗ � x‖ = ‖[x e x∗]� x‖ = ‖[x e x∗] e x]‖ = ‖[[x e [e x e]] e x]‖
= ‖[[[x e e] x e] e x]‖ = ‖[[x x e] e x]‖ = ‖[x [e e x] x]‖
= ‖[x x x]‖
= ‖x‖3,
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whence

‖x� x∗‖3 = ‖(x� x∗)� (x� x∗)∗ � (x� x∗)‖ = ‖(x� x∗ � x)� (x� x∗ � x)∗‖
≤ ‖(x� x∗ � x)‖ ‖(x� x∗ � x)∗‖ ≤ ‖x‖3 ‖x∗‖3 = ‖x‖6,

by applying ‖x‖ = ‖x∗‖ which is followed from ‖x‖3 = ‖[x x∗ x]‖ ≤ ‖x‖ ‖x∗‖ ‖x‖.
Conversely, if (A,�) is a (unital) C∗-algebra, then [x y z] := x � y∗ � z makes

A into a C∗-ternary ring (with the unit e such that x� y = [x e y]).

A linear mapping δ : A → A is called a derivation if δ([x y z]) = [δ(x) y z] +
[x δ(y) z]+ [x y δ(z)] for all x, y, z ∈ A. This notion is a generalization of derivation
on a Hilbert C∗-module; cf. [11].

We say a functional equation (E) is stable if any function g satisfying the equation
(E) “approximately” is near to a true solution of (E). The equation (E) is called
superstable if every approximate solution of (E) is an exact solution (see [3] for
another notion of superstability namely superstability modulo the bounded functions)

The stability problem of functional equations originated from a question of Ulam
[23], posed in 1940, concerning the stability of group homomorphisms:

Let (G1, ∗) be a group and let (G2, �, d) be a metric group with the metric d(·, ·). Given
ε > 0, does there exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality
d(h(x ∗ y), h(x) � h(y)) < δ for all x, y ∈ G1, then there is a homomorphism H : G1 → G2

with d(h(x),H(x)) < ε for all x ∈ G1?
In the next year, Hyers [6] gave a partial affirmative answer to the question of Ulam

in the context of Banach spaces. In 1978, Rassias [21] extended the theorem of Hyers
by considering the unbounded Cauchy difference ‖f(x + y) − f(x) − f(y)‖ ≤ ε(‖x‖p +
‖y‖p), (ε > 0, p ∈ [0, 1)). The result of Th. M. Rassias has provided a lot of influence in the
development of what we now call Hyers–Ulam–Rassias stability of functional equations. In
1994, a generalization of Rassias’ theorem, the so-called generalized Hyers–Ulam–Rassias
stability, was obtained by Găvruta [5]. During the last decades several stability problems
of functional equations have been investigated in the spirit of Hyers–Ulam–Rassias. See
[4, 7, 8, 22] for more detailed information on stability of functional equations. Some results
on stability of mappings on other ternary structures may be found in [1, 16].

Recently, the stability of various types of derivations has been extensively investi-
gated by some mathematicians; see [10, 12, 13, 14, 15, 17, 18, 19]. In this paper, using
some strategies from [2, 17], we establish the generalized Hyers–Ulam–Rassias stability
of derivations associated to the Cauchy equations. Because of the interrelation between
unital C∗-algebras and unital C∗-ternary rings our approach may be applied to study of
stability of derivations in unital C∗-algebras; see [17]. Introducing the notion of almost
derivation on a C∗-ternary ring and using some ideas from [12] we prove that every almost
derivation is a true derivation.

Throughout this paper, A denotes a C∗-ternary ring.

2 Generalized Hyers–Ulam–Rassias Stability

In this section, we are going to establish the generalized Hyers–Ulam–Rassias stability of
derivations in C∗-ternary rings associated with the Cauchy functional equation. See [1]
for a fixed point approach in the framework of Hilbert C∗-modules.
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Theorem 2.1. Suppose f : A → A is a mapping with f(0) = 0 for which there exists a
function ϕ : A5 → [0,∞) such that

ϕ̃(x, y, u, v, w) :=
1
2

∞∑
n=0

2−nϕ(2nx, 2ny, 2nu, 2nv, 2nw) < ∞,

and

‖f(µx + µy + [u v w])− µf(x)− µf(y)− [f(u) v w]− [u f(v) w]− [u v f(w)]‖
≤ ϕ(x, y, u, v, w), (2.1)

for all µ ∈ T 1 = {λ ∈ C : |λ| = 1} and all x, y, u, v, w ∈ A. Then there exists a unique
derivation δ : A → A such that

‖f(x)− δ(x)‖ ≤ ϕ̃(x, x, 0, 0, 0),

for all x ∈ A.

Proof. Set u = v = w = 0, µ = 1, y = x in (2.1) to get

‖f(2x)− 2f(x)‖ ≤ ϕ(x, x, 0, 0, 0)

for all x ∈ A. Using the induction, one can show that

‖2−nf(2nx)− f(x)‖ ≤ 1
2

n−1∑
k=0

2−kϕ(2kx, 2kx, 0, 0, 0), (2.2)

for all x ∈ A and for all positive integers n, and

‖2−nf(2nx)− 2−mf(2mx)‖ ≤ 1
2

n−1∑
k=m

2−kϕ(2kx, 2kx, 0, 0, 0),

for all x ∈ A and for all non-negative integers m,n with m < n. Hence {2−nf(2nx)} is a
Cauchy sequence in A. Due to the completeness of A we conclude that this sequence is
convergent. Set

δ(x) = lim
n→∞

2−nf(2nx), x ∈ A.

If n →∞ in inequality (2.2), we obtain

‖f(x)− δ(x)‖ ≤ ϕ̃(x, x, 0, 0, 0),

for all x ∈ A.
Putting u = v = w = 0, y = 2n−1x and replacing x by 2n−1x in (2.1) we obtain

‖f(2nµx)− 2µf(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x, 0, 0, 0),

for all x ∈ A, µ ∈ T1. Then

‖µf(2nx)− 2µf(2n−1x)‖ ≤ |µ| · ‖f(2nx)− 2f(2n−1x)‖
≤ ϕ(2n−1x, 2n−1x, 0, 0, 0),
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for all µ ∈ T1 and all x ∈ A. So

‖2−nf(2nµx)− 2−nµf(2nx)‖ ≤ 2−n‖f(2nµx)− 2µf(2n−1x)‖
+2−n‖2µf(2n−1x)− µf(2nx)‖

≤ 2−n+1ϕ(2n−1x, 2n−1x, 0, 0, 0),

for all µ ∈ T1 and all x ∈ A. Since the right hand side tends to zero as n →∞, we have

δ(µx) = lim
n→∞

f(2nµx)
2n

= lim
n→∞

µf(2nx)
2n

= µδ(x),

for all µ ∈ T1 and all x ∈ A. Obviously, δ(0x) = 0 = 0δ(x).
Next, let λ ∈ C (λ 6= 0) and let M be a natural number greater than 4|λ|. Then

| λ
M | < 1

4 < 1 − 2
3 = 1/3. By Theorem 1 of [9], there exist three numbers µ1, µ2, µ3 ∈ T1

such that 3 λ
M = µ1 + µ2 + µ3. By the additivity of δ we get δ(1

3x) = 1
3δ(x) for all x ∈ A.

Therefore,

δ(λx) = δ(
M

3
· 3 · λ

M
x) = Mδ(

1
3
· 3 · λ

M
x) =

M

3
δ(3 · λ

M
x)

=
M

3
δ(µ1x + µ2x + µ3x) =

M

3
(δ(µ1x) + δ(µ2x) + δ(µ3x))

=
M

3
(µ1 + µ2 + µ3)δ(x) =

M

3
· 3 · λ

M
= λδ(x),

for all x ∈ A. So that δ is C-linear.
Set x = y = 0 and replace u, v, w by 2nu, 2nv, 2nw, respectively, in (2.1). Then

1
23n ‖f(23n[u v w])− [f(2nu) 2nv 2nw]− [2nu f(2nv) 2nw]− [2nu 2nv f(2nw)]‖

≤ 1
23n ϕ(0, 0, 2nu, 2nv, 2nw),

for all u, v, w ∈ A. It follows from the continuity of the mapping A × A × A → A given
by (x, y, z) 7→ [x y z] that

δ([u v w]) = lim
n→∞

f(23n[u v w])
23n

= lim
n→∞

[
f(2nu)

2n
v w] + [u

f(2nv)
2n

w] + [u v
f(2nw)

2n
]

= [δ(u) v w] + [u δ(v) w] + [u v δ(w)],

for all u, v, w ∈ A. Thus δ is a derivation satisfying the required inequality. �

Theorem 2.2. Suppose that f : A → A is a mapping with f(0) = 0 and there exists a
function ϕ : A5 → [0,∞) such that

ϕ̃(x, y, u, v, w) :=
1
2

∞∑
n=0

2−nϕ(2nx, 2ny, 2nu, 2nv, 2nw) < ∞,

‖f(µx + µy + [u v w])− µf(x)− µf(y)− [f(u) v w]− [u f(v) w]− [u v f(w)]‖
≤ ϕ(x, y, u, v, w), (2.3)

for µ = 1, i and all x, y, u, v, w ∈ A. If for each fixed x ∈ A the function t 7→ f(tx) is
continuous on R, then there exists a unique derivation δ : A → A such that

‖f(x)− δ(x)‖ ≤ ϕ̃(x, x, 0, 0, 0),

for all x ∈ A.
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Proof. By the same arguing as in the proof of Theorem 2.1 we can appropriately approxi-
mate f by a unique additive mapping δ : A → A given by δ(x) = limn→∞

f(2nx)
2n , (x ∈ A).

By the same reasoning as in the proof of the main theorem of [21], the mapping δ is
R-linear.

Assuming y = u = v = w = 0 and µ = i, it follows from (2.3) that

‖f(ix)− if(x)‖ ≤ ϕ(x, 0, 0, 0, 0),

for all x ∈ A. Hence

2−n‖f(2nix)− if(2nx)‖ ≤ 2−nϕ(2nx, 0, 0, 0, 0),

for all x ∈ A. The right hand side tends to zero as n →∞, hence

δ(ix) = lim
n→∞

f(2nix)
2n

= lim
n→∞

if(2nx)
2n

= iδ(x),

for all x ∈ A. For every λ ∈ C, λ = s + it in which s, t ∈ R we have

δ(λx) = δ(sx + itx) = sδ(x) + tδ(ix) = sδ(X) + itδ(x) = (s + it)δ(x) = λδ(x),

for all x ∈ A. Thus δ is C-linear. The rest of the proof is similar to the last part of the
proof of Theorem 2.1. �

3 Superstability

In this section, we aim to prove the superstability of derivations on C∗-ternary rings. We
start our work with following result in which we give some sufficient conditions in order
an approximate derivation to be an exact one.

Proposition 3.1. Let r > 1, and let δ : A → A be a mapping satisfying δ(rx) = rδ(x)
for all x ∈ A and let there exist a function ϕ : A5 → [0,∞) such that

lim
n→∞

r−nϕ(rnx, rny, rnu, rnv, rnw) = 0,

and

‖δ(λx + λy + [u v w])− λδ(x)− λδ(y)− [δ(u) v w]− [u δ(v) w]− [u v δ(w)]‖
≤ ϕ(x, y, u, v, w), (3.1)

for all λ ∈ C and all x, y, u, v, w ∈ A. Then δ is a derivation.

Proof. δ(0) = 0, since δ(0) = rδ(0). Set x = y = 0 in (3.1). Then

‖δ([u v w])− [δ(u) v w]− [u δ(v) w]− [u v δ(w)]‖

=
1

r3n
‖δ([rnu rnv rnw])− [δ(rnu) rnv rnw]

−[rnu δ(rnv) rnw]− [rnu rnv δ(rnw)]‖

≤ 1
r3n

ϕ(rnu, rnv, rnw)

≤ 1
rn

ϕ(rnu, rnv, rnw),

for all u, v, w ∈ A. The right hand side tends to zero as n → ∞. So that δ([u v w]) =
[δ(u) v w] + [u δ(v) w] + [u v δ(w)] for all u, v, w ∈ A.

Similarly, one can shows that δ(λx + y) = λδ(x) + δ(y) for all x, y ∈ A and all λ ∈ C.
�
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Now we introduce an appropriate definition of almost derivation regarding to Rassias’s
inequality (see the introduction).

Definition 3.2. Given numbers ε > 0 and 0 ≤ p < 1, a mapping f : A → A is called an
(ε, p)-almost derivation if f(0) = 0 and

‖f(µx + µy + [u v w])− µf(x)− µf(y)− [f(u) v w]− [u f(v) w]− [u v f(w)]‖
≤ ε(‖x‖p + ‖y‖p + ‖u‖p + ‖v‖p + ‖w‖p),

for all x, y, u, v, w ∈ A and all µ ∈ T1 = {λ ∈ C : |λ| = 1}.
The following theorem is our main result.

Theorem 3.3. Let f : A → A be an (ε, p)-almost derivation. Then f is a derivation.

Proof. Put ϕ(x, y, u, v, w) = ε(‖x‖p + ‖y‖p + ‖u‖p + ‖v‖p + ‖w‖p) in Theorem 2.1. Then

we get a derivation δ defined by δ(x) := lim
n→∞

f(2nx)
2n

such that

‖δ(x)− f(x)‖ ≤ ε‖x‖p

1− 2p−1
,

for all x ∈ A. We have

‖2n([u v f(2mw)]− [u v 2mf(w)])‖
≤ ‖f([2nu v 2mw])− [f(2nu) v 2mw]− [2nu f(v) 2mw]− [2nu v f(2mw)]‖

+‖f([2nu v 2mw])− [f(2nu) v 2mw]− [2nu f(v) 2mw]− [2nu v 2mf(w)]‖
≤ ε(‖2nu‖p + ‖v‖p + ‖2mw‖p)

+‖f([2nu v 2mw])− [f(2nu) v 2mw]− [2nu f(v) 2mw]− [2nu v 2mf(w)]‖
≤ ε(‖2nu‖p + ‖v‖p + ‖2mw‖p) + ‖f([2nu v 2mw])− δ([2nu v 2mw])‖

+‖δ([2nu v 2mw])− [f(2nu) v 2mw]− [2nu f(v) 2mw]− [2nu v 2mf(w)]‖

≤ ε(‖2nu‖p + ‖v‖p + ‖2mw‖p) +
ε

1− 2p−1
‖[2nu v 2mw]‖p

+2m‖δ([2nu v w])− [f(2nu) v w]− [2nu f(v) w]− [2nu v f(w)]‖

≤ ε(‖2nu‖p + ‖v‖p + ‖2mw‖p) +
ε

1− 2p−1
‖[2nu v 2mw]‖p

+2m‖f([2nu v w])− δ([2nu v w])‖
+2m‖f([2nu v w])− [f(2nu) v w]− [2nu f(v) w]− [2nu v f(w)]‖

≤ ε(‖2nu‖p + ‖v‖p + ‖2mw‖p) +
ε

1− 2p−1
‖[2nu v 2mw]‖p

+
2mε

1− 2p−1
‖[2nu v 2mw]‖p + 2mε(‖2nu‖p + ‖v‖p + ‖w‖p),

for all nonnegative integers m,n and all u, v, w ∈ A. Fix m, divide the both sides of the
last inequality by 2n and let n tend to ∞ to obtain

‖[u v f(2mw)]− [u v 2mf(w)]‖ ≤ 0,

for all m and all u, v, w ∈ A. Therefore ‖[u v (f(2mw)
2m − f(w))]‖ = 0 for all m and all

u, v, w ∈ A. Letting m to ∞ we get ‖[u v (δ(w)−f(w))]‖ = 0 for all u, v, w ∈ A. Putting
u = v = δ(w)− f(w) we obtain

‖δ(w)− f(w)‖3 = ‖[(δ(w)− f(w)) (δ(w)− f(w)) (δ(w)− f(w))]‖ = 0,

and so δ(w) = f(w) for all w ∈ A. �
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