Almost Derivations on C^{*}-Ternary Rings

Mohammad Sal Moslehian*

Abstract

We establish the generalized Hyers-Ulam-Rassias stability of derivations in C^{*}-ternary rings associated to the Cauchy functional equation. We also show that any so-called almost derivation on a C^{*}-ternary ring is a true derivation.

1 Introduction and Preliminaries

A C^{*}-ternary ring is a Banach space \mathcal{A} equipped with a ternary product $(x, y, z) \mapsto$ [xyz] of $\mathcal{A} \times \mathcal{A} \times \mathcal{A}$ into \mathcal{A} which is linear in the outer variables, conjugate linear in the middle variable, and associative in the sense that $[x y[z t s]]=[x[t z y] s]=$ $\left[\left[\begin{array}{ll}x & y \\ z\end{array}\right] t s\right]$, and satisfies $\left\|\left[\begin{array}{lll}x & y & z\end{array}\right]\right\| \leq\|x\|\|y\|\|z\|$ and $\left\|\left[\begin{array}{ll}x & x\end{array}\right]\right\|=\|x\|^{3} ;$ cf. [24]. For instance, any ternary ring of operators, namely any closed subspace of the space $B(\mathfrak{H}, \mathfrak{K})$ of bounded linear operators between Hilbert spaces \mathfrak{H} and \mathfrak{K} which is closed under the ternary product $[x y z]:=x y^{*} z$ is a C^{*}-ternary ring.

If a C^{*}-ternary $\operatorname{ring}(\mathcal{A},[])$ has an identity, i.e. an element e such that $x=$ $\left[\begin{array}{lll}x & e & e\end{array}\right]=\left[\begin{array}{lll}e & e & x\end{array}\right]$ for all $x \in \mathcal{A}$, then it is routine to verify that \mathcal{A} endowed with $x \odot y:=\left[\begin{array}{lll}x & e & y\end{array}\right]$ and $x^{*}:=\left[\begin{array}{lll}e & x & e\end{array}\right]$ is a unital C^{*}-algebra. The most important thing is the C^{*}-condition. To see this, note that

$$
\begin{aligned}
& =\|\left[\left[\left[\begin{array}{lll}
x & e & e
\end{array} x e\right] \text { e } x\right]\|=\|\left[\left[\begin{array}{lll}
x & x & e
\end{array}\right] \text { e } x\right]\|=\|\left[\begin{array}{llllllll}
{[} & e & x
\end{array}\right] x\right] \| \\
& =\|\left[\begin{array}{lll}
x & x & x] \|
\end{array}\right. \\
& =\|x\|^{3} \text {, }
\end{aligned}
$$

[^0]whence
\[

$$
\begin{aligned}
\left\|x \odot x^{*}\right\|^{3} & =\left\|\left(x \odot x^{*}\right) \odot\left(x \odot x^{*}\right)^{*} \odot\left(x \odot x^{*}\right)\right\|=\left\|\left(x \odot x^{*} \odot x\right) \odot\left(x \odot x^{*} \odot x\right)^{*}\right\| \\
& \leq\left\|\left(x \odot x^{*} \odot x\right)\right\|\left\|\left(x \odot x^{*} \odot x\right)^{*}\right\| \leq\|x\|^{3}\left\|x^{*}\right\|^{3}=\|x\|^{6},
\end{aligned}
$$
\]

by applying $\|x\|=\left\|x^{*}\right\|$ which is followed from $\|x\|^{3}=\left\|\left[x x^{*} x\right]\right\| \leq\|x\|\left\|x^{*}\right\|\|x\|$.
Conversely, if (A, \odot) is a (unital) C^{*}-algebra, then $[x y z]:=x \odot y^{*} \odot z$ makes \mathcal{A} into a C^{*}-ternary ring (with the unit e such that $x \odot y=\left[\begin{array}{lll}x & e & y\end{array}\right]$).

A linear mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is called a derivation if $\delta\left(\left[\begin{array}{lll}x & y & z\end{array}\right]\right)=[\delta(x) y z]+$ $[x \delta(y) z]+[x y \delta(z)]$ for all $x, y, z \in \mathcal{A}$. This notion is a generalization of derivation on a Hilbert C^{*}-module; cf. [11].

We say a functional equation (\mathcal{E}) is stable if any function g satisfying the equation (\mathcal{E}) "approximately" is near to a true solution of (\mathcal{E}). The equation (\mathcal{E}) is called superstable if every approximate solution of (\mathcal{E}) is an exact solution (see [3] for another notion of superstability namely superstability modulo the bounded functions)

The stability problem of functional equations originated from a question of Ulam [23], posed in 1940, concerning the stability of group homomorphisms:

Let $\left(\mathcal{G}_{1}, *\right)$ be a group and let $\left(\mathcal{G}_{2}, \diamond, d\right)$ be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon>0$, does there exist a $\delta>0$ such that if a mapping $h: \mathcal{G}_{1} \rightarrow \mathcal{G}_{2}$ satisfies the inequality $d(h(x * y), h(x) \diamond h(y))<\delta$ for all $x, y \in \mathcal{G}_{1}$, then there is a homomorphism $H: \mathcal{G}_{1} \rightarrow \mathcal{G}_{2}$ with $d(h(x), H(x))<\varepsilon$ for all $x \in \mathcal{G}_{1}$?

In the next year, Hyers [6] gave a partial affirmative answer to the question of Ulam in the context of Banach spaces. In 1978, Rassias [21] extended the theorem of Hyers by considering the unbounded Cauchy difference $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\right.$ $\left.\|y\|^{p}\right),(\varepsilon>0, p \in[0,1))$. The result of Th. M. Rassias has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations. In 1994, a generalization of Rassias' theorem, the so-called generalized Hyers-Ulam-Rassias stability, was obtained by Găvruta [5]. During the last decades several stability problems of functional equations have been investigated in the spirit of Hyers-Ulam-Rassias. See $[4,7,8,22]$ for more detailed information on stability of functional equations. Some results on stability of mappings on other ternary structures may be found in $[1,16]$.

Recently, the stability of various types of derivations has been extensively investigated by some mathematicians; see $[10,12,13,14,15,17,18,19]$. In this paper, using some strategies from [2, 17], we establish the generalized Hyers-Ulam-Rassias stability of derivations associated to the Cauchy equations. Because of the interrelation between unital C^{*}-algebras and unital C^{*}-ternary rings our approach may be applied to study of stability of derivations in unital C^{*}-algebras; see [17]. Introducing the notion of almost derivation on a C^{*}-ternary ring and using some ideas from [12] we prove that every almost derivation is a true derivation.

Throughout this paper, \mathcal{A} denotes a C^{*}-ternary ring.

2 Generalized Hyers-Ulam-Rassias Stability

In this section, we are going to establish the generalized Hyers-Ulam-Rassias stability of derivations in C^{*}-ternary rings associated with the Cauchy functional equation. See [1] for a fixed point approach in the framework of Hilbert C^{*}-modules.

Theorem 2.1. Suppose $f: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping with $f(0)=0$ for which there exists a function $\varphi: \mathcal{A}^{5} \rightarrow[0, \infty)$ such that

$$
\widetilde{\varphi}(x, y, u, v, w):=\frac{1}{2} \sum_{n=0}^{\infty} 2^{-n} \varphi\left(2^{n} x, 2^{n} y, 2^{n} u, 2^{n} v, 2^{n} w\right)<\infty
$$

and

$$
\begin{align*}
& \| f(\mu x+\mu y+[u v w])-\mu f(x)-\mu f(y)-[f(u) v w]-[u f(v) w]-[u v f(w)] \| \\
& \leq \varphi(x, y, u, v, w), \tag{2.1}
\end{align*}
$$

for all $\mu \in T^{1}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and all $x, y, u, v, w \in \mathcal{A}$. Then there exists a unique derivation $\delta: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\|f(x)-\delta(x)\| \leq \widetilde{\varphi}(x, x, 0,0,0)
$$

for all $x \in \mathcal{A}$.
Proof. Set $u=v=w=0, \mu=1, y=x$ in (2.1) to get

$$
\|f(2 x)-2 f(x)\| \leq \varphi(x, x, 0,0,0)
$$

for all $x \in \mathcal{A}$. Using the induction, one can show that

$$
\begin{equation*}
\left\|2^{-n} f\left(2^{n} x\right)-f(x)\right\| \leq \frac{1}{2} \sum_{k=0}^{n-1} 2^{-k} \varphi\left(2^{k} x, 2^{k} x, 0,0,0\right) \tag{2.2}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and for all positive integers n, and

$$
\left\|2^{-n} f\left(2^{n} x\right)-2^{-m} f\left(2^{m} x\right)\right\| \leq \frac{1}{2} \sum_{k=m}^{n-1} 2^{-k} \varphi\left(2^{k} x, 2^{k} x, 0,0,0\right)
$$

for all $x \in \mathcal{A}$ and for all non-negative integers m, n with $m<n$. Hence $\left\{2^{-n} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence in \mathcal{A}. Due to the completeness of \mathcal{A} we conclude that this sequence is convergent. Set

$$
\delta(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right), \quad x \in \mathcal{A} .
$$

If $n \rightarrow \infty$ in inequality (2.2), we obtain

$$
\|f(x)-\delta(x)\| \leq \widetilde{\varphi}(x, x, 0,0,0)
$$

for all $x \in \mathcal{A}$.
Putting $u=v=w=0, y=2^{n-1} x$ and replacing x by $2^{n-1} x$ in (2.1) we obtain

$$
\left\|f\left(2^{n} \mu x\right)-2 \mu f\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x, 0,0,0\right)
$$

for all $x \in \mathcal{A}, \mu \in \mathbb{T}^{1}$. Then

$$
\begin{aligned}
\left\|\mu f\left(2^{n} x\right)-2 \mu f\left(2^{n-1} x\right)\right\| & \leq|\mu| \cdot\left\|f\left(2^{n} x\right)-2 f\left(2^{n-1} x\right)\right\| \\
& \leq \varphi\left(2^{n-1} x, 2^{n-1} x, 0,0,0\right)
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{A}$. So

$$
\begin{aligned}
\left\|2^{-n} f\left(2^{n} \mu x\right)-2^{-n} \mu f\left(2^{n} x\right)\right\| \leq & 2^{-n}\left\|f\left(2^{n} \mu x\right)-2 \mu f\left(2^{n-1} x\right)\right\| \\
& +2^{-n}\left\|2 \mu f\left(2^{n-1} x\right)-\mu f\left(2^{n} x\right)\right\| \\
\leq & 2^{-n+1} \varphi\left(2^{n-1} x, 2^{n-1} x, 0,0,0\right),
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{A}$. Since the right hand side tends to zero as $n \rightarrow \infty$, we have

$$
\delta(\mu x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} \mu x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{\mu f\left(2^{n} x\right)}{2^{n}}=\mu \delta(x),
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{A}$. Obviously, $\delta(0 x)=0=0 \delta(x)$.
Next, let $\lambda \in \mathbb{C}(\lambda \neq 0)$ and let M be a natural number greater than $4|\lambda|$. Then $\left|\frac{\lambda}{M}\right|<\frac{1}{4}<1-\frac{2}{3}=1 / 3$. By Theorem 1 of [9], there exist three numbers $\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{T}^{1}$ such that $3 \frac{\lambda}{M}=\mu_{1}+\mu_{2}+\mu_{3}$. By the additivity of δ we get $\delta\left(\frac{1}{3} x\right)=\frac{1}{3} \delta(x)$ for all $x \in \mathcal{A}$. Therefore,

$$
\begin{aligned}
\delta(\lambda x) & =\delta\left(\frac{M}{3} \cdot 3 \cdot \frac{\lambda}{M} x\right)=M \delta\left(\frac{1}{3} \cdot 3 \cdot \frac{\lambda}{M} x\right)=\frac{M}{3} \delta\left(3 \cdot \frac{\lambda}{M} x\right) \\
& =\frac{M}{3} \delta\left(\mu_{1} x+\mu_{2} x+\mu_{3} x\right)=\frac{M}{3}\left(\delta\left(\mu_{1} x\right)+\delta\left(\mu_{2} x\right)+\delta\left(\mu_{3} x\right)\right) \\
& =\frac{M}{3}\left(\mu_{1}+\mu_{2}+\mu_{3}\right) \delta(x)=\frac{M}{3} \cdot 3 \cdot \frac{\lambda}{M} \\
& =\lambda \delta(x),
\end{aligned}
$$

for all $x \in \mathcal{A}$. So that δ is \mathbb{C}-linear.
Set $x=y=0$ and replace u, v, w by $2^{n} u, 2^{n} v, 2^{n} w$, respectively, in (2.1). Then

$$
\begin{gathered}
\frac{1}{2^{3 n}}\left\|f\left(2^{3 n}[u v w]\right)-\left[f\left(2^{n} u\right) 2^{n} v 2^{n} w\right]-\left[2^{n} u f\left(2^{n} v\right) 2^{n} w\right]-\left[2^{n} u 2^{n} v f\left(2^{n} w\right)\right]\right\| \\
\leq \frac{1}{2^{3 n}} \varphi\left(0,0,2^{n} u, 2^{n} v, 2^{n} w\right),
\end{gathered}
$$

for all $u, v, w \in \mathcal{A}$. It follows from the continuity of the mapping $\mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ given by $(x, y, z) \mapsto[x y z]$ that

$$
\begin{aligned}
\delta([u v w]) & =\lim _{n \rightarrow \infty} \frac{f\left(2^{3 n}[u v w]\right)}{2^{3 n}} \\
& =\lim _{n \rightarrow \infty}\left[\frac{f\left(2^{n} u\right)}{2^{n}} v w\right]+\left[u \frac{f\left(2^{n} v\right)}{2^{n}} w\right]+\left[u v \frac{f\left(2^{n} w\right)}{2^{n}}\right] \\
& =[\delta(u) v w]+[u \delta(v) w]+[u v \delta(w)],
\end{aligned}
$$

for all $u, v, w \in \mathcal{A}$. Thus δ is a derivation satisfying the required inequality.
Theorem 2.2. Suppose that $f: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping with $f(0)=0$ and there exists a function $\varphi: \mathcal{A}^{5} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\varphi}(x, y, u, v, w):=\frac{1}{2} \sum_{n=0}^{\infty} 2^{-n} \varphi\left(2^{n} x, 2^{n} y, 2^{n} u, 2^{n} v, 2^{n} w\right)<\infty, \\
\|f(\mu x+\mu y+[u v w])-\mu f(x)-\mu f(y)-[f(u) v w]-[u f(v) w]-[u v f(w)]\| \\
\leq \varphi(x, y, u, v, w), \tag{2.3}
\end{gather*}
$$

for $\mu=1, \mathbf{i}$ and all $x, y, u, v, w \in \mathcal{A}$. If for each fixed $x \in \mathcal{A}$ the function $t \mapsto f(t x)$ is continuous on \mathbb{R}, then there exists a unique derivation $\delta: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\|f(x)-\delta(x)\| \leq \widetilde{\varphi}(x, x, 0,0,0)
$$

for all $x \in \mathcal{A}$.

Proof. By the same arguing as in the proof of Theorem 2.1 we can appropriately approximate f by a unique additive mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ given by $\delta(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}, \quad(x \in \mathcal{A})$.

By the same reasoning as in the proof of the main theorem of [21], the mapping δ is \mathbb{R}-linear.

Assuming $y=u=v=w=0$ and $\mu=\mathbf{i}$, it follows from (2.3) that

$$
\|f(\mathbf{i} x)-\mathbf{i} f(x)\| \leq \varphi(x, 0,0,0,0)
$$

for all $x \in \mathcal{A}$. Hence

$$
2^{-n}\left\|f\left(2^{n} \mathbf{i} x\right)-\mathbf{i} f\left(2^{n} x\right)\right\| \leq 2^{-n} \varphi\left(2^{n} x, 0,0,0,0\right),
$$

for all $x \in \mathcal{A}$. The right hand side tends to zero as $n \rightarrow \infty$, hence

$$
\delta(\mathbf{i} x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} \mathbf{i} x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{\mathbf{i} f\left(2^{n} x\right)}{2^{n}}=\mathbf{i} \delta(x),
$$

for all $x \in \mathcal{A}$. For every $\lambda \in \mathbb{C}, \lambda=s+\mathbf{i} t$ in which $s, t \in \mathbb{R}$ we have

$$
\delta(\lambda x)=\delta(s x+\mathbf{i} t x)=s \delta(x)+t \delta(\mathbf{i} x)=s \delta(X)+\mathbf{i} t \delta(x)=(s+\mathbf{i} t) \delta(x)=\lambda \delta(x),
$$

for all $x \in \mathcal{A}$. Thus δ is \mathbb{C}-linear. The rest of the proof is similar to the last part of the proof of Theorem 2.1.

3 Superstability

In this section, we aim to prove the superstability of derivations on C^{*}-ternary rings. We start our work with following result in which we give some sufficient conditions in order an approximate derivation to be an exact one.

Proposition 3.1. Let $r>1$, and let $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a mapping satisfying $\delta(r x)=r \delta(x)$ for all $x \in \mathcal{A}$ and let there exist a function $\varphi: \mathcal{A}^{5} \rightarrow[0, \infty)$ such that

$$
\lim _{n \rightarrow \infty} r^{-n} \varphi\left(r^{n} x, r^{n} y, r^{n} u, r^{n} v, r^{n} w\right)=0
$$

and

$$
\begin{align*}
& \| \delta(\lambda x+\lambda y+[u v w])-\lambda \delta(x)-\lambda \delta(y)-[\delta(u) v w]-[u \delta(v) w]-[u v \delta(w)] \| \\
& \leq \varphi(x, y, u, v, w), \tag{3.1}
\end{align*}
$$

for all $\lambda \in \mathbb{C}$ and all $x, y, u, v, w \in \mathcal{A}$. Then δ is a derivation.
Proof. $\delta(0)=0$, since $\delta(0)=r \delta(0)$. Set $x=y=0$ in (3.1). Then

$$
\begin{aligned}
& \| \delta([u v w])-[\delta(u) v w]-[u \delta(v) w]-[u v \delta(w)]] \| \\
= & \frac{1}{r^{3 n}} \| \delta\left(\left[r^{n} u r^{n} v r^{n} w\right]\right)-\left[\delta\left(r^{n} u\right) r^{n} v r^{n} w\right] \\
& -\left[r^{n} u \delta\left(r^{n} v\right) r^{n} w\right]-\left[r^{n} u r^{n} v \delta\left(r^{n} w\right)\right] \| \\
\leq & \frac{1}{r^{3 n}} \varphi\left(r^{n} u, r^{n} v, r^{n} w\right) \\
\leq & \frac{1}{r^{n}} \varphi\left(r^{n} u, r^{n} v, r^{n} w\right),
\end{aligned}
$$

for all $u, v, w \in \mathcal{A}$. The right hand side tends to zero as $n \rightarrow \infty$. So that $\delta([u v w])=$ $[\delta(u) v w]+[u \delta(v) w]+[u v \delta(w)]$ for all $u, v, w \in \mathcal{A}$.

Similarly, one can shows that $\delta(\lambda x+y)=\lambda \delta(x)+\delta(y)$ for all $x, y \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$.

Now we introduce an appropriate definition of almost derivation regarding to Rassias's inequality (see the introduction).

Definition 3.2. Given numbers $\varepsilon>0$ and $0 \leq p<1$, a mapping $f: \mathcal{A} \rightarrow \mathcal{A}$ is called an (ε, p)-almost derivation if $f(0)=0$ and

$$
\begin{gathered}
\left\|f\left(\mu x+\mu y+\left[\begin{array}{ll}
u & v \\
w
\end{array}\right]\right)-\mu f(x)-\mu f(y)-[f(u) v w]-[u f(v) w]-[u v f(w)]\right\| \\
\leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}+\|u\|^{p}+\|v\|^{p}+\|w\|^{p}\right),
\end{gathered}
$$

for all $x, y, u, v, w \in \mathcal{A}$ and all $\mu \in \mathbb{T}^{1}=\{\lambda \in \mathbb{C}:|\lambda|=1\}$.
The following theorem is our main result.
Theorem 3.3. Let $f: \mathcal{A} \rightarrow \mathcal{A}$ be an (ε, p)-almost derivation. Then f is a derivation.
Proof. Put $\varphi(x, y, u, v, w)=\varepsilon\left(\|x\|^{p}+\|y\|^{p}+\|u\|^{p}+\|v\|^{p}+\|w\|^{p}\right)$ in Theorem 2.1. Then we get a derivation δ defined by $\delta(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ such that

$$
\|\delta(x)-f(x)\| \leq \frac{\varepsilon\|x\|^{p}}{1-2^{p-1}}
$$

for all $x \in \mathcal{A}$. We have

$$
\begin{aligned}
& \left\|2^{n}\left(\left[\begin{array}{lll}
u & v & f\left(2^{m} w\right)
\end{array}\right]-\left[\begin{array}{lll}
u & v & 2^{m} f(w)
\end{array}\right]\right)\right\| \\
& \leq \| f\left(\left[2^{n} u \text { v } 2^{m} w\right]\right)-\left[\begin{array}{llll}
f\left(2^{n} u\right) & v & 2^{m} w
\end{array}\right]-\left[\begin{array}{llll}
2^{n} u & f(v) & 2^{m} w
\end{array}\right]-\left[2^{n} u v f\left(2^{m} w\right)\right] \| \\
& +\left\|f\left(\left[2^{n} u \quad v \quad 2^{m} w\right]\right)-\left[\begin{array}{llll}
f\left(2^{n} u\right) & v & 2^{m} w
\end{array}\right]-\left[\begin{array}{lll}
2^{n} u & f(v) & 2^{m} w
\end{array}\right]-\left[\begin{array}{lll}
2^{n} u & v & 2^{m} f(w)
\end{array}\right]\right\| \\
& \leq \varepsilon\left(\left\|2^{n} u\right\|^{p}+\|v\|^{p}+\left\|2^{m} w\right\|^{p}\right) \\
& +\| f\left(\left[2^{n} u \quad v \quad 2^{m} w\right]\right)-\left[\begin{array}{llll}
f\left(2^{n} u\right) & v & \left.2^{m} w\right]-\left[\begin{array}{llll}
2^{n} u & f(v) & 2^{m} w
\end{array}\right]-\left[\begin{array}{llll}
2^{n} u & v & 2^{m} f(w)
\end{array}\right] \|
\end{array}\right. \\
& \leq \varepsilon\left(\left\|2^{n} u\right\|^{p}+\|v\|^{p}+\left\|2^{m} w\right\|^{p}\right)+\left\|f\left(\left[2^{n} u \quad v 2^{m} w\right]\right)-\delta\left(\left[2^{n} u \quad v \quad 2^{m} w\right]\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \varepsilon\left(\left\|2^{n} u\right\|^{p}+\|v\|^{p}+\left\|2^{m} w\right\|^{p}\right)+\frac{\varepsilon}{1-2^{p-1}}\left\|\left[2^{n} u \quad v \quad 2^{m} w\right]\right\|^{p} \\
& +2^{m}\left\|\delta\left(\left[2^{n} u \quad v \quad w\right]\right)-\left[\begin{array}{llll}
f\left(2^{n} u\right) & v & w
\end{array}\right]-\left[\begin{array}{llll}
2^{n} u & f(v) & w
\end{array}\right]-\left[\begin{array}{llll}
2^{n} u & v & f(w)
\end{array}\right]\right\| \\
& \leq \varepsilon\left(\left\|2^{n} u\right\|^{p}+\|v\|^{p}+\left\|2^{m} w\right\|^{p}\right)+\frac{\varepsilon}{1-2^{p-1}}\left\|\left[2^{n} u \quad v \quad 2^{m} w\right]\right\|^{p} \\
& +2^{m}\left\|f\left(\left[2^{n} u \quad v \quad w\right]\right)-\delta\left(\left[2^{n} u \quad v \quad w\right]\right)\right\| \\
& +2^{m}\left\|f\left(\left[2^{n} u \quad v \quad w\right]\right)-\left[\begin{array}{llll}
f\left(2^{n} u\right) & v & w
\end{array}\right]-\left[\begin{array}{llll}
2^{n} u & f(v) & w
\end{array}\right]-\left[2^{n} u \quad v \quad f(w)\right]\right\| \\
& \leq \varepsilon\left(\left\|2^{n} u\right\|^{p}+\|v\|^{p}+\left\|2^{m} w\right\|^{p}\right)+\frac{\varepsilon}{1-2^{p-1}}\left\|\left[2^{n} u \quad v \quad 2^{m} w\right]\right\|^{p} \\
& +\frac{2^{m} \varepsilon}{1-2^{p-1}}\left\|\left[2^{n} u \quad v \quad 2^{m} w\right]\right\|^{p}+2^{m} \varepsilon\left(\left\|2^{n} u\right\|^{p}+\|v\|^{p}+\|w\|^{p}\right),
\end{aligned}
$$

for all nonnegative integers m, n and all $u, v, w \in \mathcal{A}$. Fix m, divide the both sides of the last inequality by 2^{n} and let n tend to ∞ to obtain

$$
\left\|\left[\begin{array}{lll}
u & v & f\left(2^{m} w\right)
\end{array}\right]-\left[\begin{array}{lll}
u & v & 2^{m} f(w)
\end{array}\right]\right\| \leq 0
$$

for all m and all $u, v, w \in \mathcal{A}$. Therefore $\left\|\left[u \quad v \quad\left(\frac{f\left(2^{m} w\right)}{2^{m}}-f(w)\right)\right]\right\|=0$ for all m and all $u, v, w \in \mathcal{A}$. Letting m to ∞ we get $\|[u \quad v(\delta(w)-f(w))]\|=0$ for all $u, v, w \in \mathcal{A}$. Putting $u=v=\delta(w)-f(w)$ we obtain

$$
\|\delta(w)-f(w)\|^{3}=\|[(\delta(w)-f(w))(\delta(w)-f(w))(\delta(w)-f(w))]\|=0
$$

and so $\delta(w)=f(w)$ for all $w \in \mathcal{A}$.
Acknowledgement. The author would like to sincerely thank the referee for his/her useful comments.

References

[1] M. Amyari and M. S. Moslehian, Hyers-Ulam-Rassias stability of derivations on Hilbert C^{*}-modules, Contemporary Math. (to appear).
[2] C. Baak and M. S. Moslehian, Stability of J^{*}-homomorphisms, Nonlinear AnalysisTMA 63 (2005), 42-48.
[3] J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 74 (1979), 242-246.
[4] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
[5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[7] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[8] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc. Palm Harbor, Florida, 2001.
[9] R. V. Kadison and G. K. Pedersen, Means and convex combinations of unitary operators, Math. Scan. 57 (1985), 249-266.
[10] Y. W. Lee, The stability of derivations on Banach algebras, Bull. Inst. Math. Acad. Sinica 28 (2000), 113-116.
[11] X. Liu and T. Z. Xu, Automatic continuity of derivations of Hilbert C*-modules, J. Baoji College Arts Sci. Nat. Sci. no. 2 (1995), 14-17.
[12] T. Miura, G. Hirasawa and S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math Anal. Appl. (to appear).
[13] M. S. Moslehian, Approximate $(\sigma-\tau)$-contractibility, Nonlinear Funct. Anal. Appl. (to appear).
[14] M. S. Moslehian, Hyers-Ulam-Rassias stability of generalized derivations, Internat J. Math. Math. Sci. 2006 (2006), Art. ID 93942, 1-8.
[15] M. S. Moslehian, Approximately vanishing of topological cohomology groups, J. Math. Anal. Appl. 318 (2006), 758-771.
[16] M. S. Moslehian and L. Székelyhidi, Stability of ternary homomorphisms via generalized Jensen equation, Results in Math., 49 (2006), 289-300.
[17] C.-G. Park, Linear derivations on C^{*}-algebras, Rev. Bull. Calcutta Math. Soc., 11 (2003), 83-88.
[18] C.-G. Park Linear *-derivations on JB*-algebras, Acta Math. Sci. Ser. B Engl. Ed. 25 (2005), 449-454.
[19] C.-G. Park and J. Hou Homomorphisms between C ${ }^{*}$-algebras associated with the Trif functional equation and linear derivations on C^{*}-algebras, J. Korean Math. Soc. 41 (2004), 461-477.
[20] T. Popoviciu, Sur certaines inégalités qui caractérisent les fonctions convexes, An. Ştiinţ. Univ. "Al. I. Cuza" Iaşi Secţ. I a Mat. 11 (1965) 155-164.
[21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[22] Th. M. Rassias (ed.), Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003., 2003.
[23] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
[24] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117-143.

Department of Mathematics
Ferdowsi University
P. O. Box 1159

Mashhad 91775
Iran
email:moslehian@ferdowsi.um.ac.ir

[^0]: *This research was supported by Iran National Science Foundation (ISFN) (No. 84053) Received by the editors January 2006-In revised form in April 2006. Communicated by F. Bastin. 2000 Mathematics Subject Classification : Primary 39B52; Secondary 39B82, 46L05.
 Key words and phrases : Generalized Hyers-Ulam-Rassias stability, C^{*}-ternary ring, derivation, Cauchy functional equation.

