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Almost Difference Sets and Their Sequences With
Optimal Autocorrelation

K. T. Arasu, Cunsheng Ding, Member, IEEE, Tor Helleseth, Fellow, IEEE, P. Vijay Kumar, Senior Member, IEEE,
and Halvard M. Martinsen

Abstract—Almost difference sets have interesting applications
in cryptography and coding theory. In this paper, we give a well-
rounded treatment of known families of almost difference sets, es-
tablish relations between some difference sets and some almost dif-
ference sets, and determine the numerical multiplier group of some
families of almost difference sets. We also construct six new classes
of almost difference sets, and four classes of binary sequences of
period 0 (mod 4) with optimal autocorrelation. We have
also obtained two classes of relative difference sets and four classes
of divisible difference sets (DDSs). We also point out that a result
due to Jungnickel can be used to construct almost difference sets
and sequences of period4 with optimal autocorrelation.

Index Terms—Almost difference sets, correlation, cyclotomy,
difference sets, divisible difference sets (DDSs), relative difference
sets, sequence.

I. INTRODUCTION

L ET be an Abelian group of order. Let be a
-subset of . The set is an almost differ-

ence set of if takes on the value altogether times
and the value altogether times when ranges
over all the nonzero elements of, where is thediffer-
ence functiondefined by

and

Let be a group of order and a subgroup
of of order . If is a -subset of , then is called an

divisible difference set (DDS) provided that
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the list of differences contain
every nonidentity element of exactly times and every ele-
ment of exactly times. If , is called arelative
difference set, and is called theforbidden subgroup.

Davis [3] called a DDS an almost difference set if and
differ by . Hence, the almost difference sets defined by

Davis are a special class of the almost difference
sets above. Davis defined this special class of almost difference
sets due to its relationship to symmetric difference sets [3].

Another kind of almost difference sets were defined by Ding
[6]–[8] (see also [2, p. 140]) for the study of cryptographic func-
tions with optimal nonlinearity. Ding, Helleseth, and Lam have
considered this special class of almost difference sets for con-
structing binary sequences with three-level autocorrelation [9].
In fact, the special class of almost difference sets defined by
Ding are actually almost difference sets, which
are only defined for odd .

Ding, Helleseth, and Martinsen [10] have generalized the two
kinds of almost difference sets by defining the al-
most difference sets, for the purpose of obtaining binary se-
quences with optimal autocorrelation. This broader class of al-
most difference sets was studied independently by Mertens and
Bessenrodt for the Bernasconi model in physics [21]. It is nice
that the current almost difference sets unify the two
different kinds of almost difference sets introduced by Davis
and Ding, respectively. Clearly, the special class of almost dif-
ference sets introduced by Davis are a subclass of DDSs, while
there are almost difference sets that are not DDSs.

Almost difference sets are closely related to cryptography [2],
coding theory, and sequences [9], [10]. They can be used to
construct cryptographic functions with optimal nonlinearity, se-
quences with optimal autocorrelation, and good constant-weight
codes. So far only a small number of classes of al-
most difference sets have been discovered.

In this paper, we give a well-rounded treatment of known fam-
ilies of almost difference sets, establish relations
between some difference sets and some almost difference sets,
and determine the numerical multiplier group of some families
of almost difference sets. We also construct six new classes of
almost difference sets, and four classes of binary sequences of
period with optimal autocorrelation. We have
also obtained two classes of relative difference sets and four
classes of DDSs. We also point out that a result due to Jung-
nickel can be used to construct almost difference sets and se-
quences of period with optimal autocorrelation.

0018–9448/01$10.00 © 2001 IEEE
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II. K NOWN FAMILIES AND THEIR MULTIPLIER GROUPS

We first present two basic properties of almost difference sets.
For almost difference sets of we have the fol-
lowing basic relation:

(1)

Similar to difference sets, we have the following basic result.

Theorem 1: is an almost difference set of an
Abelian group if and only if the complement

is an almost difference set.
Proof: It can be shown that .

The conclusion then follows.

We now give a brief summary of known almost difference
sets, and determine the numerical multiplier group of some of
them. To this end, we need cyclotomy. Let be a power
of a prime, and let be a fixed primitive element of GF .
Define , where denotes the multiplicative
group generated by . The cosets are called theindex
classesor cyclotomic classesof order with respect to GF .
Clearly

GF

Define

These constants are calledcyclotomic numbersof order
with respect to GF .

Theorem 2: The known families of cyclotomic almost differ-
ence sets are the following:

1) with parameters , where
. It is also called Paley partial difference set.

2) with parameters , where
or (see Ding [8] and also [2]).

3) with parameters , where
or (see Ding, Helleseth, and

Lam [9]).

4) with parameters , where
and for some integer

and or and
for some integer and (see Ding [8] and also [2]).

5) for all with parameters
, where and (see Ding,

Helleseth, and Lam [9]).

Similar to difference sets, we can define multipliers for al-
most difference sets. Let be an almost difference set of an
Abelian group . An automorphism of is called amulti-
plier of , if there is an with . If is a
multiplier of the form : for some integer ,
where is the exponent of , then is called anumerical mul-
tiplier. In this case, we also call a numerical multiplier.

Theorem 3: Let be a prime. Consider the almost difference
sets of Theorem 2.

a) The numerical multiplier group of the almost difference
set is itself.

b) The numerical multiplier group of the almost difference
set is itself.

c) The numerical multiplier group of the almost difference
set is .

d) The numerical multiplier group of the almost difference
set is for each if .

e) The numerical multiplier group of the almost difference
set is itself.

Proof: We first prove a). Note that the set of
quadratic residues is a multiplicative subgroup of GF .
By definition, any element of is a numerical multiplier.
We now prove that any element cannot be a multi-
plier. Suppose that is a numerical multiplier, then

for some GF . This is equivalent to
. Here cannot be zero. Let be an element

of , where is or . Then is
equivalent to . But this is impossible
according to the cyclotomic numbers of ordergiven in [26].
This completes the proof of part a).

To prove part b), we need cyclotomic numbers of order. Let
with . Obviously, we

have

(2)

When is even, there are five possible different cyclotomic
numbers [26]; i.e.,

When is odd, there are also five possible different cyclotomic
numbers [26]; i.e.,
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Note that is a subgroup of GF . Every element
of is a numerical multiplier of this almost difference set.
We now prove that any element cannot be a numerical
multiplier for each with . If is a multiplier, then
there should be an element GF such that

(3)

Let . Then (3) is true if and only if

(4)

Recall that the condition for to be an almost difference
set is that or . Hence . With the
help of (2), we can prove that each cyclotomic number
of order

This shows that (4) cannot be true. Hence the elements of
are the only numerical multipliers. This completes the proof of
part b).

Part c) can be similarly proved as part b). We now prove part
d). It is easy to see that has the same numerical
multiplier group for each. So we need only to consider the case

. Clearly, every element of is a numerical multiplier.
Let , where . We now prove that cannot
be a numerical multiplier. On the contrary, suppose thatis a
numerical multiplier. Then there would exist asuch that

(5)

Since , cannot be the zero element of GF. So
we assume that . It then follows from (5) that

Hence

Define

By making using of cyclotomic numbers of order[26], it can
be shown that when ranges over and ranges over

, takes on only each of the following:

(6)

TABLE I
THE CYCLOTOMIC NUMBERS OFORDER8 IN SUBCASE I

if , and takes on only each of the following:

(7)

if . Note that and as these
are the conditions for to be an almost difference
set, where . Also as shown above,

. Since , it can be checked that none of the values in
(6) and (7) equals . This is contrary to . This
completes the proof of part d).

Finally, we prove part e). For this purpose, we need cyclo-
tomic numbers of order. When is prime, the
64 cyclotomic numbers have at most 15 different values. These
values are expressible in terms of, , , , and in

There are two subcases: the cases and
. The possible values for the cyclotomic numbers of

order are given in Tables I and II [2, pp. 387–388].
Recall that the condition for to be an almost difference

set is that , where
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TABLE II
THE CYCLOTOMIC NUMBERS OFORDER8 IN SUBCASE II

or . This means that . It follows from
Tables I and II that

Suppose that is a numerical multiplier, where
. Then there is a such that

Since , . We assume that . Then we
obtain that . Hence

This is contrary to the inequality above. Hencecannot be a
numerical multiplier.

Note that all the almost difference sets above are of an
Abelian group with odd order. There are several classes of
almost difference sets of Abelian groups with even order.

Let be a power of an odd prime, and let be a primi-
tive element of GF that is used to define the cyclotomic

classes of order . Define a function from
to GF as

if

otherwise.
Let denote the support of.

Theorem 4: The set is a almost
difference set if , and a
almost difference set if .

Some binary sequences with optimal autocorrelation give al-
most difference sets, andvice versa[9], [10]. The almost dif-
ference sets of Theorem 4 come from two classes of binary se-
quences with optimal autocorrelation constructed by Lempel,
Cohn, and Eastman [19].1 It is straightforward to prove The-
orem 4 by making use of cyclotomic numbers of order.

By definition, . So is a numerical
multiplier of if and only if there is a such that

The determination of the numerical multiplier group of the al-
most difference set above is still open.

In addition to the almost difference sets derived directly
from cyclotomy, there are several other classes of almost
difference sets that are related to cyclotomy. Consider the finite
field GF , where . It is known that has a
quadratic partition , with [26].
Let be the cyclotomic classes of order.

Theorem 5: Let be three pairwise dis-
tinct integers, and define

Then is an almost difference set of
GF GF if

1) and or , or

2) and or .

Theorem 6: Let be three pairwise dis-
tinct integers and define

Then is an almost difference set of
GF GF if

1) and

or

2) and

The classes of almost difference sets described in Theorems 5
and 6 are due to Ding, Helleseth, and Martinsen [10]. They were

1One of the referees pointed out that the sequences of [19] were already de-
scribed in [24] by Sidelnikov. However, we have been unable to get a copy of
[24].
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used to construct binary sequences with optimal autocorrelation
when is prime [10].

Theorem 7: All the almost difference sets given in Theorem
5 have the numerical multiplier group when

is prime, where : is the isomor-
phism from to .

Proof: Clearly, each element of is a numer-
ical multiplier. On the other hand, if is a numerical mul-
tiplier, then and there is a such that

(8)

where for some . Similar to the proof of
Theorem 3, we can prove that there are noand such that (8)
holds. This completes the proof of this theorem.

Theorem 8: All the almost difference sets given in Theorem
6 have the numerical multiplier group when

is prime, where : is the isomor-
phism from to .

Proof: This can be proved similarly as Theorem 7.

There are two classes of binary sequences of period
with optimal autocorrelation constructed by No, Chung, Song,
Yang, Lee, and Helleseth [22]. These sequences give two classes
of cyclic almost difference sets.

Some DDSs are almost difference sets. Davis has given sev-
eral classes of such almost difference sets. As it takes much
space to describe them, we only summarize the parameters of
these almost difference sets in the following theorem.

Theorem 9 (Davis [3]): There are almost difference sets with
the following parameters:

1) in ,
where is a group of order 4;

2) in , where
denotes the additive groupGF and

is a group of order .

There are also other almost difference sets that are also DDSs.
We shall deal with them in later sections.

III. D IFFERENCESETS AND ALMOST DIFFERENCESETS

Let be a -subset of an Abelian group of order
. If the difference function equals for all nonzero

elements of , then is called an difference set.
In this section, we establish some connections between some
difference sets and almost difference sets. We shall show that it
is possible to construct almost difference sets from difference
sets andvice versa. Throughout this section, we assume that

, and let be an Abelian group of order.

Lemma 1: Let be an difference set of and let
. If is an almost difference

set of , then

Proof: This is similarly proved as Lemma 2.

Theorem 10:Let be an difference set of
, and let be an element of . If cannot be written as

the sum of two distinct elements of , then is an
almost difference set of .

Proof: Let . If cannot
be written as a sum of two distinct elements of, then

are pairwise distinct elements. Sinceis an
difference set, is an almost

difference set of .

Theorem 10 shows how to construct an almost difference set
from a difference set by removing one element.

Theorem 11:Let be an
almost difference set of . Let and

be two subsets of such that and
takes on each element of times and each element of

times when ranges over with . Let
. If

1) is not a sum of any two distinct elements of

2) and for all
then is an difference set of .

Proof: If cannot be written as the sum of two distinct
elements of , then

are pairwise distinct elements, and form by the
second condition. Since is an almost
difference set, by the definition of and , is an

difference set of .

Theorem 11 shows how to construct a difference set from an
almost difference set by adding one element.

Example 1: The set is a difference
set of , while is a almost difference
set of . This example shows the two constructions described
in Theorems 10 and 11.

Lemma 2: Let be an difference set of and let
. If is an almost different

set, then

Proof: By the necessary conditions of difference sets and
almost difference sets, we have, respectively

The conclusion above is proved by solving this set of
equations.

Theorem 12:Let be an difference set of
, and let . If cannot be written as the sum of two

distinct elements of , then is an
almost difference set of .
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Proof: This can be proved similarly as Theorem 10.

Theorem 12 shows how to construct an almost difference set
from a difference set by adding one element.

Theorem 13:Let be an
almost difference set of . Let and

be two subsets of such that and
takes on each element of times and each element of

times when ranges over with . If

1) is not the sum of any two distinct elements of,

2) and for all ,
then is an difference set of .

Proof: This can be proved similarly as Theorem 11.

Theorem 13 shows how to construct a difference set from an
almost difference set by removing one element.

Example 2: The set is a
almost difference set of . By removing we obtain

that is a difference set of .
This example illustrates the constructions of Theorems 12 and
13.

IV. TWO NEW FAMILIES OF ALMOST DIFFERENCESETS

Let and be Abelian groups of order and ,
respectively, and let be a function from to . One measure
of nonlinearity of is defined by

(9)

where denotes the probability of the occurrence of even
. Functions with high nonlinearity have important applications

in cryptography and coding theory [2].

Lemma 3: Let be a function from to . Then

Proof: Note that

and

The conclusion then follows.

It is easy to see that

It then follows from Lemma 3 and the equation above that

(10)

This is the lower bound for the nonlinearity of a function from
to . The smaller the value of , the higher the nonlinearity of

. For applications in coding theory and cryptography we wish
to find functions with the smallest possible . We say that
has perfect nonlinearity if .

Lemma 4 [1], [15]: The power function from GF to
GF , where is odd, has perfect nonlinearity for
the following :

• .

• , where is odd.

• , where , is odd, and .

We now use functions with perfect nonlinearity to construct
almost difference sets.

Theorem 14:Let be a function from an Abelian group
of order to another Abelian group of order

with perfect nonlinearity . Define

and

Then is an almost difference set of .
Proof: Recall the difference function . Since has

perfect nonlinearity , it follows from Lemma 3 that

if

if

otherwise

where and . Hence is an
almost difference set of .

Theorem 15:Let be a function from GF to
GF , where is odd. Define GF
for each GF and

GF GF

If

• , or

• , where is odd, or

• , where , is odd, and .
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Then is a almost difference set of
GF GF .

Proof: This follows from Lemma 4 and Theorem 14.

Theorem 15 gives three classes of almost difference sets of
GF GF , which are not cyclic. The first class given by the
perfect nonlinear function is not new (see Pott [23, Theorem
2.2.9]. The remaining two classes of almost difference sets given
by the other two perfect nonlinear functions are new.

The three classes of almost difference sets are also relative
difference sets with parameters , , with for-
bidden set GF .

V. NEW CLASSES OFBINARY SEQUENCESWITH OPTIMAL

AUTOCORRELATION AND ALMOST DIFFERENCESETS

Given a binary sequence of period , the autocorrela-
tion of the sequence at shift is defined by

An important problem in sequence design is to find sequences
with optimal autocorrelation, i.e., where

1) for all if ;
2) for all if

;
3) for all if

;
4) or for all

if .

A sequence of period is said to haveideal autocorre-
lation if for all , where

. For applications of sequences with good correlation,
we refer to [2], [12], [14], and [25].

There are only two known constructions of binary sequences
of period with optimal autocorrelation values

. The first construction was given by Lempel, Cohn, and
Eastman [19]. The second one was given by No, Chung, Song,
Yang, Lee, and Helleseth [22]. In this section, we shall present
a construction that gives several classes of binary sequences of
period with optimal autocorrelation values,

. These binary sequences with optimal autocorrelation give
several classes of cyclic almost difference sets with parameters

or . We also point
out that a result due to Jungnickel gives similar binary sequences
and almost difference sets.

The following result is well known and straightforward to
prove.

Lemma 5 [2, p. 143]:Let be a binary sequence of
period . Then

where is thesupportor characteristic
setof , , and is the difference function
defined earlier.

The following theorem follows from Lemma 5.

Theorem 16:Let be a binary sequence of period
, and let be its support with elements. Then is an

almost difference set of if and only if the auto-
correlation function takes on altogether
times and altogether times when
ranges over all nonzero elements of.

Theorem 16 serves as a bridge between some binary se-
quences with three-level autocorrelation and cyclic almost
difference sets. We shall make use of this bridge in the sequel.

Let be a sequence of period. Define the matrix
, , , as

(11)

where is the complement of , and
is any fixed integer.

The following theorem describes our construction of binary
sequences of period with optimal autocorrelation.

Theorem 17:Let be of period with ideal autocorre-
lation and let be defined as in (11). Let be a sequence
of period defined by

where

(12)

Then has optimal autocorrelation, given by

times
times

once.

Proof: The proof is divided into two parts by considering
the values of , when , and when

. For , we have the following general
situations of the comparison in the autocorrelation:

compare

compare

compare

compare

For all , each row will have correlation values
, such that

for all

For , we typically have for one shift

compare

compare

compare

compare
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It is easy to see that two of the comparisons, the two on the top,
give value , and the other two give value , such that

for all

For other it will be similar. From this, the
correlation distribution follows.

Theorem 18:Let be the support (also called characteristic
set) of the sequence of Theorem 17, and let be the
support of the underlying sequence . Then

(13)

where and denote the complement of and
in , respectively. Furthermore,

(14)

where is the isomorphism from
to .
Proof: It is well known that has ideal autocor-

relation if and only if its support is an or
difference set of , where .

So we assume that for some integer . Note that
. By the Chinese remainder algorithm [11],

(12) holds if and only if

The conclusions then follow from the definition of the matrix
of (11) and the definition of the sequence .

The following result follows from Theorem 18.

Theorem 19:Let be the sequence in Theorem 17. If
the support of the underlying sequence has cardinality

, then

where is the support of the sequence .

From now on, we will call the sequence the base
sequenceof this construction. By Theorem 19, the sequence

is almost balanced.

Theorem 20:Let be the sequence in Theorem 17, and
let be its support. Then is a or

almost difference set of .
Proof: This follows from Theorems 19, 17, and 16.

The construction of binary sequences of periodwith op-
timal autocorrelation of Theorem 17 and the construction of al-
most difference sets of in Theorem 20 are quite general and
flexible, as different classes of base sequences give different

classes of sequences with optimal autocorrelation and almost
difference sets.

As made clear earlier, a binary sequence of period
has ideal autocorrelation if and only if its support

is an or difference set of . Dif-
ference sets of this type are calledPaley–Hadamard difference
sets.

Cyclic Paley–Hadamard difference sets include the following
classes:

A) with parameters , where
is prime, and the difference set just consists

of all the quadratic residues in ;

B) with parameters , for de-
scription of difference sets with these parameters see
Dillon [4], Dillon and Dobbertin [5], Gordon, Mills,
and Welch [13], Pott [23], Xiang [27];

C) with parameters , where and
both and are primes. These are the twin-prime
difference sets, and may be defined as

and

where if is a nonzero square in the cor-
responding field, and otherwise [18];

D) with parameters , where is a prime of
the form . They are cyclotomic difference
sets and can be described as [17]

where denotes the multiplicative group gener-
ated by , denotes the cosets, and

is a primitive element of .

Theorem 21:The construction of Theorem 17 gives the fol-
lowing families of binary sequences of periodwith optimal
autocorrelation for the following :

1) , where is any prime;

2) , for any integer ;

3) , where and are any twin primes;

4) , where is any prime.
Proof: Note that the sequences with support being the dif-

ference sets with parameters of A), B), C), and D) have ideal
autocorrelation. With these base sequences, the construction of
Theorem 17 gives the four classes of binary sequences of period

described above.

Theorem 22:The support of (13) of the four classes of
binary sequences with optimal autocorrelation in Theorem 21
gives four families of cyclic almost difference sets with the fol-
lowing parameters:

1) , where is any
prime;

2) , for any integer ;

3) ,
where and are any twin primes;
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4) , where is any
prime.

Proof: This follows from Theorems 21 and 20.

The construction of Theorem 17 is based on interleaving four
closely related sequences with ideal autocorrelation. It is quite
general, and gives more classes of binary sequences of period

with optimal autocorrelation if new families
of binary sequences with ideal autocorrelation are discovered.
The expression of (13) shows clearly that the four classes of al-
most difference sets with parameters of Theorem 22 are based
on Paley–Hadamard difference sets. When , the construc-
tion of Theorem 17 is equivalent to the so-called product method
[20]. The sequence constructed is theEXCLUSIVE–ORof a binary
sequence of periodwith ideal autocorrelation and the binary
sequence . Hence, the construction of Theorem 17
is a generalization of the product method.

In the remainder of this section, we show that a result due
to Jungnickel can also be used to construct almost difference
sets with the same parameters as those of Theorem 22 and thus
binary sequences of period with optimal autocorrelation.

Theorem 23 (Jungnickel [16]):Let be an ordinary
difference set in a group , and let be an differ-

ence set with parameters in a group .
Then

is a DDS in relative to , with parameters
, where

and denotes the complement of .

As a corollary of Theorem 23, we have the following conclu-
sion.

Corollary 1: Let be an ordinary (respec-
tively, ) difference set in , let be a trivial dif-
ference set in with parameters . Then

is (respectively, )
almost difference set of . Thus, the binary sequence with
support has period and optimal autocorrelation.

By choosing to be any Paley–Hadamard difference set,
Corollary 1 gives an almost difference set and binary sequence
with optimal autocorrelation. This is similar to the construction
given by Theorem 17. Now one basic question is whether the
two constructions are the same or “equivalent,” as the param-
eters of the almost difference sets obtained with the two con-
structions are the same.

To answer the above question, we introduce equivalences for
sequences and almost difference sets. Two binary sequences

and of period are said to be equivalent if
and only if there are two integers and in such that

and

for all . Similarly, two almost difference sets and of
with the same parameters are said to be equivalent if and only if
there are two integersand in such that
and

Theorem 24:The binary sequences and almost difference
sets obtained by Theorem 17 and Corollary 1 are not equiva-
lent.

Proof: Let be an ordinary (respectively,
) difference set of . Then the almost difference

set obtained in Corollary 1 is of the form

where . Let and be two elements of
with and . Then we

have

(15)

where is a difference set with the same param-
eters as . Hence the expression of (15) cannot be of the form
of (14), as in (14) the list

no three elements are identical while in (15) three elements in
the list

are the same. This proves the conclusion of this theorem.

The discussions above proves the following.

Theorem 25:The set of (14) is a DDS of with
parameters

or

relative to .

Theorem 24 means that the DDSs in Theorem 25 are
not equivalent to those of Theorem 23. Hence we have also de-
scribed several classes of DDSs in this paper.

VI. CONCLUDING REMARKS

Our contribution of this paper includes the determination of
the numerical multiplier group for several classes of almost dif-
ference sets given in Section II, the establishment of some rela-
tions between some almost difference sets and some difference
sets in Section III, the construction of six new classes of almost
difference sets in Sections IV and V, and the four classes of bi-
nary sequences of period with optimal auto-
correlation in Section V. Some of the new almost difference sets
obtained in this paper are also DDSs.

It is interesting to note that most of the families of almost dif-
ference sets known so far are related to cyclotomy. So far only
a small number of classes of almost difference sets are found.
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Numerical results show that there should be more families of al-
most difference sets that remain to be discovered. For example,
the set

is a almost difference set of , which does
not belong to any known class of almost difference sets. Another
example is the following almost difference set of with pa-
rameters :

It is an open question whether almost difference
sets exist for all odd. It is very likely that the answer is positive.
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