ALMOST DISJOINT REFINEMENT OF FAMILIES OF SUBSETS OF N

BOHUSLAV BALCAR AND PETER VOJTÁŚ

Abstract

Without any set-theoretic assumptions, we prove that every uniform ultrafilter on the set N of all natural numbers has a Comfort system, that is, an almost disjoint refinement. Moreover, we describe one type of ideal such that the family of all subsets of N that are not contained in it has an almost disjoint refinement.

1. The problem and the theorems. For a cardinal number $\nu>1$, Hechler has generalized Pierce's notion of a ν-point to a ν-set of a topological space. A nonempty subset S of a topological space X is called a ν-set if there exists a family of ν pairwise disjoint open sets, each of which contains S in its closure. A point $p \in X$ is a ν-point of X if the singleton $\{p\}$ is a ν-set. We concentrate on the space $\beta N-N=N^{*}$ of uniform ultrafilters on the set N of all natural numbers.

The problem whether each point of N^{*} is a 2^{ω}-point or, more generally, whether each nowhere dense subset of N^{*} is a 2^{ω}-set, has a little longer history (cf. Pierce [P], Hindman [H], Comfort [CH], van Douwen [vD], Roitman [R], Kunen [K], Szymanski [Sz], Hechler [H], Frankiewicz [BF] and others). Short historical remarks can be found in $[\mathbf{C H}]$ or [BF].
1.1 Without any additional set-theoretic assumptions, we shall prove that every point of N^{*} is a 2^{ω}-point. This gives an affirmative answer to a problem raised by Comfort and Hindman [CH]. We also describe a type of nowhere dense subsets of N^{*} that are 2^{ω}-sets. The main problem of Hechler's paper [H], whether every nowhere dense subset of N^{*} is a 2^{ω}-set, remains open.
1.2. For a set A let $[A]^{\omega}$ be the set of all denumerable subsets of A; the notation $A \subseteq \subseteq^{*} B$ means that $A-B$ is finite. We say that a family $\left\{A_{\alpha}: \alpha<\nu\right\}$ of subsets of a set X is a tower on X of length ν if $A_{\alpha} \subseteq^{*} A_{\beta}$ for $\alpha>\beta$. We say that a set C is a selector of a family $\left\{q_{n}: n \in \omega\right\}$ if C is infinite, $C \subseteq \cup\left\{q_{n}: n \in \omega\right\}$, and $\left|C \cap q_{n}\right|$ $\leqslant \mathbf{1}$ for $n \in \omega . \mathscr{G}_{F}$ denotes the ideal of all finite subsets of N. In this paper all ideals are assumed to be proper and to contain \mathscr{G}_{F}. Sets from $\mathscr{G}^{+}=\mathscr{P}(N)-\mathscr{G}$ are called large sets with respect to \mathscr{G} for an ideal \mathscr{G}.
1.3. We shall deal with families $\mathbb{Q} \subseteq[N]^{\omega}$ and we look for \mathscr{Q} that have an almost disjoint refinement (ADR) i.e. a family $\left\{C_{X}: X \in \mathcal{Q}\right\}$ such that
(i) $C_{X} \in[X]^{\omega}$,
(ii) for $X \neq Y$ the set $C_{X} \cap C_{Y}$ is finite.

[^0]Recall that $\mathscr{P} \subseteq[N]^{\omega}$ is a MAD family on N if \mathscr{P} is an infinite maximal family of pairwise almost disjoint infinite subsets of N.

The following facts are well known.
(i) A family $\mathbb{Q} \subseteq[N]^{\omega}$ has an ADR iff there is a MADF \mathscr{P} such that for every $A \in \mathbb{Q}$ we have

$$
\mid\{X \in \mathscr{P}: X \cap A \text { is infinite }\} \mid=2^{\omega} .
$$

(ii) Let $थ$ be a uniform ultrafilter on N. Then Q as a point of N^{*} is a 2^{ω}-point of N^{*} iff there is an ADR for $थ$.
1.4. Following Mathias [M] we shall say that an ideal \mathcal{G} on N is tall if for all $X \in[N]^{\omega}$ there is a $Y \in[X]^{\omega}$ with $Y \in \mathscr{G}$. Let \mathscr{P} be a MAD family; then $\mathscr{G}(\mathscr{P})$ denotes the ideal generated by $\mathscr{G}_{F} \cup \mathscr{P}$.

Definition. Let $Q=\left\{q_{n}: n \in \omega\right\}$ be a partition on N into infinitely many (finite or infinite) pieces such that for all $k \in \omega$ there are infinitely many q_{n} with at least k elements. Let $\mathscr{Y}(Q)$ be the ideal generated by the union of the sets $\{X \subseteq N$: $\left.(\exists k)(\forall n \in \omega)\left(\left|X \cap q_{n}\right| \leqslant k\right)\right\}$ and $\left\{q_{n}: n \in \Omega\right\}$. In [M] it is shown that the ideals $\mathscr{G}(\mathscr{P})$ and $\mathscr{Y}(Q)$ are both tall. It is easily seen that:
(a) If \mathcal{Q} is a family with an ADR, then for every $X \in[N]^{\omega}$ there is $Y \in[X]^{\omega}$ such that $[Y]^{\omega} \cap \mathcal{Q}=\varnothing$.
(b) If \mathbb{Q} is a family with an ADR then there is a MAD family \mathscr{P} such that $\mathcal{Q} \subseteq \mathscr{G}^{+}(\mathscr{P})$.
(c) Tall ideals correspond to open dense subsets of N^{*} that are not the whole space. If \mathscr{G} is a tall ideal then \mathscr{G}^{+}has an ADR iff the complement of the open set corresponding to \mathscr{G} is a 2^{ω}-set.
(d) The extremal problem whether for every MADF \mathscr{P} there exists an ADR for $\mathscr{G}^{+}(\mathscr{P})$ is equivalent to the above-mentioned problem of Hechler.
1.5. Theorem A. Let Q be a partition of N as in Definition 1.4. Then the family $\mathcal{O}^{+}(Q)$ has an ADR.

As a straightforward corollary we obtain that every nonselective uniform ultrafilter on N has an ADR. For ultrafilters however we shall prove a little more.
1.6. Theorem B. Let \mathscr{F} be a uniform ultrafilter on N and \mathscr{P} a MAD family of N with $\mathscr{P} \cap \mathscr{F}=\varnothing$. Then there is an ADR for \mathscr{F} which consists of large sets with respect to the ideal $\mathscr{G}(\mathscr{P})$.
1.7. Corollary. Since the ideal \mathscr{F}^{*} dual to a uniform ultrafilter \mathscr{F} is tall, there is a MADF $\mathscr{P} \subseteq \mathscr{F}^{*}$. Thus every uniform ultrafilter \mathscr{F} has an ADR.

Acknowledgement. The authors would like to express their gratitude to M . Dušek, whose support and understanding made this research possible, and to P. Simon for stimulating discussions.
2. Proofs of the theorems. We begin with some cardinal characteristics.
2.1. For functions from N to N consider the preordering $f<^{*} g$ iff $\{n$: $f(n)>g(n)\}$ is finite. The least cardinal of a family of functions that is unbounded under $<^{*}$ is denoted by λ. Obviously there is a family of functions $\left\{f_{\alpha}: \alpha \in \lambda\right\}$
unbounded under $<{ }^{*}$ such that f_{α} 's are increasing and $\alpha<\beta$ implies $f_{\alpha}<{ }^{*} f_{\beta}$. Note that every set of functions with cardinality less than λ has an $<^{*}$-upper bound. Due to this fact, for every partition $\left\{X_{n}: n \in \omega\right\}$ of N whose members are infinite, there is a tower $\left\{A_{\alpha}: \alpha \in \lambda\right\}$ such that
(i) $X_{n}-A_{\alpha}$ is finite for every n, α;
(ii) for any $X \in[N\}^{\omega}$, if $\left\{n:\left|X_{n} \cap X\right|=\kappa_{0}\right\}$ is infinite, then $(\exists \alpha \in \lambda)\left(X, \underline{Z}^{*} A_{\alpha}\right)$.
2.2. The following is defined in [BPS]. Let κ denote the least cardinal such that the Boolean algebra $\mathscr{P}(\omega) / \mathcal{G}_{F}$ of all subsets of ω modulo finite sets is not (κ, ∞)-distributive. The "Base matrix theorem" proved in [BPS] says: There is a system $\left\{\mathscr{P}_{\alpha}: \alpha \in \kappa\right\}$ of MAD families such that for $\alpha>\beta, \mathscr{P}_{\alpha}{ }^{*}$-refines \mathscr{P}_{β} and for every $A \in[\omega]^{\omega}$ there is a $B \in \cup\left\{\mathscr{9}_{\alpha}: \alpha \in \kappa\right\}$ such that $B \subseteq A$.
2.3. Let d denote the minimal cardinal such that there is a MADF 9 on N with $|\mathscr{P}|=d$.

Lemma. $\omega_{1} \leqslant \kappa \leqslant d$.
Proof. In [BPS] the inequalities $\omega_{1} \leqslant \kappa \leqslant \lambda$ are proved. The proof is finished by adding the known inequality $\lambda \leqslant d$; see [So].

Remember that under the assumption $d=2^{\omega}$ Hechler's conjecture is known to be true $[\mathbf{R}],[\mathbf{H}]$.
2.4. The following lemma plays a key role in our proofs.

Lemma. There is a family $\mathscr{B} \subseteq[\omega]^{\omega}$ such that the following conditions hold for any $u, v \in \mathscr{B}$.
(i) $u \cap v={ }^{*} \varnothing$ or $u \subseteq^{*} v$ or $v \subseteq^{*} u$;
(ii) $\left|\left\{w \in \mathscr{B}: u \subseteq^{*} w\right\}\right|<\kappa$;
(iii) for any $X \in[\omega]^{\omega}$ there is $a w \in B$ such that $w \subseteq X$.

Proof. Let $\left\{\mathscr{P}_{\alpha}: \alpha<\kappa\right\}$ be the base matrix mentioned in 2.2. Then $\mathscr{B}=$ $\cup\left\{\mathscr{P}_{\alpha}: \alpha<\kappa\right\}$ has the desired properties.
2.5. Lemma. Assume \mathscr{B}_{B} is as in Lemma $2.4, \mathscr{B}_{0} \subseteq \mathscr{B}$ such that $\left|\mathscr{B}_{0}\right|<2^{\omega}$. Then for every $C \in[\omega]^{\omega}$ there is a $u \in \mathscr{B}-\mathscr{B}_{0}$ such that $u \subseteq C$ and $\left(\forall v \in \mathscr{B}_{0}\right)(v \cap u$ $={ }^{*} \varnothing$ or $u \subseteq^{*} v$).

Proof. As there is a MAD family on ω of cardinality 2^{ω}, by (iii) of Lemma 2.4 we have $\left|\left\{v \in \mathscr{B}: v \subseteq^{*} u\right\}\right|=2^{\omega}$ for every $u \in \mathscr{B}$. This fact with (i) of 2.4 finishes the proof.
2.6. Proof of Theorem A. Let $Q=\left\{q_{n}: n \in \omega\right\}$ be a partition of N as in Definition 1.4. Put $\left\{A_{\alpha}: \alpha<2^{\omega}\right\}=\mathscr{Y}^{+}(Q)$. For A_{α} we shall now pick a set $c(\alpha)$ as follows. If $X=\left\{i \in \omega:\left|q_{i} \cap A_{\alpha}\right|=\kappa_{0}\right\}$ is infinite then we put $c(\alpha)=X$. Otherwise we pick $c(\alpha) \in[\omega-X]^{\omega}$ such that $i<j$ implies $\left|A_{\alpha} \cap q_{i}\right|<\left|A_{\alpha} \cap q_{j}\right|$ for $i, j \in c(\alpha)$. Let \mathfrak{B} be the Base family from Lemma 2.4. In the sequel \mathscr{B} is used on ω as indexes of $\left\{q_{i}: i \in \omega\right\}$. By transfinite recursion through $\alpha<2^{\omega}$ we shall define $F(\alpha) \in\left[A_{\alpha}\right]^{\omega}$ and $I(\alpha) \subseteq c(\alpha)$ such that
(i) $I(\alpha) \in \mathscr{B}$;
(ii) $F(\alpha)$ is a selector for $R_{\alpha}=\left\{q_{i} \cap A_{\alpha}: i \in I(\alpha)\right\}$ i.e. $F(\alpha) \subseteq \cup R_{\alpha}$ and $\left|F(\alpha) \cap q_{i} \cap A_{\alpha}\right| \leqslant 1$ for any $i \in I(\alpha) ;$
(iii) $F(\alpha)$ is almost disjoint with all $F(\beta)$, and $I(\alpha) \not \boldsymbol{f}^{*} I(\beta)$ for $\beta<\alpha$.

For $\alpha<2^{\omega}$ we put $D_{\alpha}=\cup R_{\alpha}$.
Step 0 . There is $I(0) \in \mathscr{B}$ such that $I(0) \subseteq c(0)$. As $F(0)$ take an (infinite) selector of R_{0}.

Step $\alpha<2^{\omega}$. For $\beta, \gamma<\alpha$ we have $F(\beta), I(\beta)$ such that $I(\beta) \neq{ }^{*} I(\gamma)$ and $F(\beta) \cap F(\gamma)$ is finite for $\beta \neq \gamma$. Choose $I(\alpha)$ using 2.5 with respect to $\mathscr{B}_{0}=\{I(\beta)$: $\beta<\alpha\}$ and ${ }^{*}$-different from all $I(\beta)$. Put $\mathscr{V}=\left\{F(\beta) \cap D_{\alpha}: \beta<\alpha\right.$ and $I(\alpha)$ $\subseteq^{*} I(\beta)$ and $\left.\left|F(\beta) \cap D_{\alpha}\right|=\kappa_{0}\right\} \cup\left(R_{\alpha} \cap[N]^{\omega}\right)$.

Members of \mathscr{V} are pairwise almost disjoint. According to the choice of $c(\alpha)$ and since $F(\beta)$'s are selectors, D_{α} cannot be $=^{*}$ to the union of any finite part of \mathfrak{V}. By (ii) of Lemma 2.4 we have $|\mathscr{V}|<\kappa \leqslant d$. Hence there is $F(\alpha) \subseteq D_{\alpha}$, an infinite selector of R_{α} that is almost disjoint with all members of \mathbb{V}. We note that $I(\alpha) \cap I(\beta)=* \varnothing$ implies $F(\alpha) \cap F(\beta)={ }^{*} \varnothing$. Hence $\left\{F(\alpha): \alpha<2^{\omega}\right\}$ is an ADR for $\mathscr{Y}^{+}(Q)$. The proof of Theorem A is complete.
2.7. Our starting point for the proof of Theorem B is the notion of an ultrafilter's tower.

Definition. A tower $\mathfrak{A}=\{A(\alpha): \alpha \in \nu\}$ is a tower of a uniform ultrafilter \mathscr{F} if
(i) ν is uncountable and regular;
(ii) $\mathfrak{U} \subseteq \mathscr{F}$;
(iii) for any $X \in \mathscr{F}$ there is $\alpha \in \nu$ such that $X \ell^{*} A(\alpha)$.
2.8. Lemma. Assume \mathscr{F} is a uniform ultrafilter on N. Then there is a tower of \mathscr{F} (of uncountable length).

Proof. It is clear that such a tower exists for P-ultrafilters. In the case of non- P-ultrafilters we can take a tower of the length λ from 2.1 , where the partition is the one exemplifying the non- P-property.
2.9. Lemma. Assume $\{A(\alpha): \alpha \in \nu\}$ is a tower of \mathscr{F} and \mathscr{P} is a MAD family such that $\mathscr{F} \cap \mathscr{P}=\varnothing$. Then
(iv) $(\forall \alpha \in \nu)(\exists \beta>\alpha)\left(A(\alpha)-A(\beta) \in \mathscr{G}^{+}(\mathscr{P})\right)$.

Proof. By induction we can choose an increasing sequence $\left\{\alpha_{n}: n \in \omega\right\}$ and a family $\left\{u_{n}: n \in \omega\right\}$ of different elements of \mathscr{P} such that $\left(A\left(\alpha_{i}\right)-A\left(\alpha_{i+1}\right)\right) \cap u_{i}$ is infinite. For $n \in \omega$ we have $A\left(\alpha_{n}\right)-\cup\left\{u_{i}: 0 \leqslant i \leqslant n-1\right\} \in \mathscr{F}$. Hence by (iii) of Definition 2.7 there are $\alpha_{n+1}>\alpha_{n}$ and $u_{n} \in \mathscr{P}-\left\{u_{0}, \ldots, u_{n-1}\right\}$ such that $\left(A\left(\alpha_{n}\right)\right.$ $\left.-A\left(\alpha_{n+1}\right)\right) \cap u_{n}$ is infinite. Put $\beta=\sup \left\{\alpha_{n}: n \in \omega\right\}$.
2.10. Proof of Theorem B. Let \mathscr{F} be a uniform ultrafilter and \mathscr{P} a MADF with $\mathscr{P} \cap \mathscr{F}=\varnothing$. Assume $\{A(\alpha): \alpha<\nu\}$ is a tower of \mathscr{F} with $A(\alpha)-A(\beta) \in \mathscr{G}^{+}(\mathscr{P})$ for $\alpha<\beta$. We put $\nu(\omega)=\{\alpha \in \nu: \operatorname{cf}(\alpha)=\omega\}$. For every $\alpha \in \nu(\omega)$ we fix an increasing sequence $\left\{\alpha_{n}: n \in \omega\right\}$ such that $\alpha=\sup \left\{\alpha_{n}: n \in \omega\right\}$. We define $q(\alpha, n)$ $=\cap\left\{A\left(\alpha_{i}\right): 0 \leqslant i \leqslant n\right\}-\left(A\left(\alpha_{n+1}\right) \cup A(\alpha)\right)$. Note that $q(\alpha, n) \in \mathscr{G}^{+}(\mathscr{P})$ and $q(\alpha, n) \cap q(\alpha, m)=\varnothing$ for all $\alpha, n \neq m$. It is easy to see by Lemma 2.9 that for every $X \in \mathscr{F}$ there is $\alpha \in \nu(\omega)$ such that the set $\left\{n: X \cap q(\alpha, n) \in \mathscr{q}^{+}(\mathscr{P})\right\}$ is infinite.

We define $Q_{\alpha}=\{q(\alpha, n): n \in \omega\}$ for $\alpha \in \nu(\omega)$. If K_{α}, K_{β} are selectors of Q_{α}, Q_{β} respectively and $\alpha \neq \beta$ then $K_{\alpha} \cap K_{\beta}$ is finite. Hence for the proof of Theorem B it suffices to show that the family $\delta\left(Q_{\alpha}\right)=\left\{X \subseteq N:\left|\left\{n: q(\alpha, n) \cap X \in \mathscr{G}^{+}(\mathscr{P})\right\}\right|=\right.$ $\left.\aleph_{0}\right\}$ has an ADR consisting of selectors of Q_{α} which are large sets. The argument is now similar to the one used in 2.6. Let $Q=\left\{q_{n}: n \in \omega\right\}=Q_{\alpha}$ for $\alpha \in \nu(\omega)$ and let $\left\{D(\alpha): \alpha<2^{\omega}\right\}$ be a numbering of $\delta(Q)$. We put $c(\alpha)=\left\{i: D(\alpha) \cap q_{i} \in\right.$ $\left.g^{+}(\mathscr{P})\right\}$. By transfinite recursion we define sets $I(\alpha), F(\alpha)$ such that
(i) $I(\alpha) \in \mathscr{B}$, where \mathscr{B} is the Base family from Lemma 2.4 and $I(\alpha) \subseteq c(\alpha)$;
(ii) $F(\alpha)$ is a selector for $\left\{q_{i} \cap D_{\alpha}: i \in I(\alpha)\right\}$ and $F(\alpha) \in \mathscr{G}^{+}(\mathscr{P})$;
(iii) for $\beta<\alpha, F(\alpha) \cap F(\beta)$ is finite and $I(\beta) \cap I(\alpha)={ }^{*} \varnothing$ or $\left(I(\alpha) \subseteq{ }^{*} I(\beta)\right.$ and $I(\alpha) \neq{ }^{*} I(\beta)$).

In the step $\alpha<2^{\omega}$ we choose $I(\alpha) \in \mathscr{B}$ using Lemma 2.5. The $F(\beta)$'s are selectors and hence they determine partial functions f_{β} on ω. We set $\mathbb{V}=\left\{f_{\beta} \cap\right.$ $(I(\alpha) \times D(\alpha)): \beta<\alpha$, and $\left.I(\alpha) \subseteq^{*} I(\beta)\right\}$. As $|\mathscr{V}|<\kappa<\lambda$ there is a function f : $I(\alpha) \rightarrow N$ that is an \leqslant^{*}-upper bound for \mathfrak{V}. We note that for any infinite family of pairwise disjoint large sets there is a large selector. Hence we may take $F(\alpha)$ as a large selector of the family $\left\{D_{\alpha} \cap q_{i}-\{n: n \leqslant f(i)\}: i \in I(\alpha)\right\}$. It is obvious that $F(\alpha) \cap F(\beta)$ is finite for $\beta<\alpha$.

This completes the proof.

3. Remarks and problems.

3.1. We do not know if the following observation is known. Let us consider a MAD family on the set Q of all rational numbers in the unit interval $[0,1]$ of the real line. Then there is a MAD family \mathscr{P} on Q such that for any set $A \subseteq Q$ that has infinitely many accumulation points in the space $[0,1]$ there exists $B \in \mathscr{P}$ with $B \subseteq A$. This fact follows from Theorem \mathbf{A}.
3.2. Let $s=\left\{a_{n}: n \in N\right\}$ be a sequence of positive reals with $\lim a_{n}=0$ and $\Sigma a_{n}=\infty$. Let us consider the ideal $\mathscr{Y}(s)=\left\{X \subseteq N: \Sigma\left\{a_{n}: n \in X\right\}<\infty\right\}$. This type of ideal seems to be similar to the ideal of type $\mathscr{Y}(Q)$ from Definition 1.4, where Q is partition of N consisting of finite sets. But we do not know whether $\mathcal{Y}^{+}(s)$ has an ADR.
3.3. Does the assumption "every <*-cofinal subset of functions from N to N has cardinality $2^{\omega "}$ imply Hechler's conjecture?
3.4. Consider the Boolean algebra $B=\mathscr{P}(N) / \mathscr{G}_{F}$. Corollary 1.7 is equivalent to the statement "every filter base on B of cardinality at most 2^{ω} has a disjoint refinement". This statement cannot be strenghtened to the completion \bar{B} of the algebra B. Using a result of Kunen, van Mill and Mills [KvMM] in [BSV] have proved the following.

If $2^{\tau} \leqslant 2^{\omega}$ for all $\tau<2^{\omega}$ then there is an ultrafilter on \bar{B} with a base of cardinality 2^{ω}. Then there is no disjoint refinement on \bar{B} for any base of this ultrafilter.
3.5. K. Kunen, using an observation from [BF], proved the following generalization of a result in [BF]. If X is any compact space in which nonempty G_{δ} sets have nonempty interior, then very nonisolated point in X is an ω_{1}-point. He also has remarked that for the above class of spaces we cannot replace ω_{1} by 2^{ω}.

Let us consider only spaces that moreover have no isolated point. Are there any simple conditions on such spaces that imply "every point is a 2^{ω}-point"? We note that for arbitrary $\tau \geqslant \omega$, every point of the space $\beta(\tau)-\tau$ is a 2^{ω}-point.

References

[BF] B. Balcar and R. Frankiewicz, Ultrafilters and ω_{1}-points in $\beta N-N$ (to appear).
[BSV] B. Balcar, P. Simon and P. Vojtás, Refinement properties and extending of filters in Boolean algebras (to appear).
[BPS] B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. (to appear).
[CH] W. W. Comfort and N. B. Hindman, Refining families for ultrafilters, Math. Z. 149 (1976), 189-199.
[vD] E. K. van Douwen, Martin's axiom and pathological points in $\beta X-X$ (manuscript).
[H] S. H. Hechler, Generalization of almast disjointness, c-sets, and the Baire number of $\beta N-N$, General Topology and Appl. 8 (1978), 93-110.
[Hd] N. B. Hindman, On the existence of c-point in βN - N, Proc. Amer. Math. Soc. 21 (1969), 277-280.
[J] T. J. Jech, Set theory, Academic Press, New York, 1978.
[K] K. Kunen, Letter to the author, Sept. 14, 1978.
[KvMM] K. Kunen, J. van Mill and Ch. F. Mills, On nowhere dense closed P-sets (to appear).
[M] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), 59-111.
[P] R. C. Pierce, Modules over commutative regular rings, Mem. Amer. Math. Soc. no. 70, 1967.
[R] J. Roitman, Almost disjoint strong refinements, Notices Amer. Math. Soc. 22 (1975), A 328.
[So] R. C. Solomon, Families of sets and functions, Czechoslovak Math. J. 27 (102) (1977), 556-559.
[Sz] A. Szymanski, On the existence of \mathcal{N}_{0}-points, Proc. Amer. Math. Soc. 66 (1977), 128-130.
[T] A. D. Taylor, Regularity properties of ideals and ultrafilters, Ann. Math. Logic 16 (1979), 33-55.
ČKD-Polovodiče, 14003 Prague, Czechoslovakia
Mathematical Institute of Slovac Academy of Sciences, Komenského 14, 04154 Košice, Czechoslovakia

[^0]: Received by the editors February 9, 1979 and, in revised form, July 16, 1979. AMS (MOS) subject classifications (1970). Primary 04A20; Secondary 54D35.
 Key words and phrases. Ultrafilter, almost disjoint family, 2^{ω}-point, refinement.

