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ALMOST DISJOINT REFINEMENT OF FAMILIES

OF SUBSETS OF N

BOHUSLAV BALCAR AND PETER VOJTÁS

Abstract. Without any set-theoretic assumptions, we prove that every uniform

ultrafilter on the set N of all natural numbers has a Comfort system, that is, an

almost disjoint refinement. Moreover, we describe one type of ideal such that the

family of all subsets of N that are not contained in it has an almost disjoint

refinement.

1. The problem and the theorems. For a cardinal number v > 1, Hechler has

generalized Pierce's notion of a »»-point to a p-set of a topological space. A

nonempty subset S of a topological space X is called a »»-set if there exists a family

of v pairwise disjoint open sets, each of which contains S in its closure. A point

p E X is a »»-point of X if the singleton {p} is a »»-set. We concentrate on the space

ßN — N = N* of uniform ultrafilters on the set N of all natural numbers.

The problem whether each point of N* is a 2w-point or, more generally, whether

each nowhere dense subset of N* is a 2<"-set, has a little longer history (cf. Pierce

[P], Hindman [H], Comfort [CH], van Douwen [vD], Roitman [R], Kunen [K], Szy-

manski [Sz], Hechler [H], Frankiewicz [BF] and others). Short historical remarks

can be found in [CH] or [BF].

1.1 Without any additional set-theoretic assumptions, we shall prove that every

point of N* is a 2w-point. This gives an affirmative answer to a problem raised by

Comfort and Hindman [CH]. We also describe a type of nowhere dense subsets of

N* that are 2w-sets. The main problem of Hechler's paper [H], whether every

nowhere dense subset of N* is a 2w-set, remains open.

1.2. For a set A let [A f be the set of all denumerable subsets of A ; the notation

A Q*B means that A — B is finite. We say that a family {Aa: a < v) of subsets of

a set X is a tower on X of length v if Aa E *Aa for a > ß. We say that a set C is a

selector of a family [qn: n E «} if C is infinite, CÇ U [q„: n E w}, and \C n q„\

< 1 for « £ w. §F denotes the ideal of all finite subsets of N. In this paper all ideals

are assumed to be proper and to contain $F. Sets from i+ = 9(N) — í are called

large sets with respect to á for an ideal í.

1.3. We shall deal with families â E [TV]" and we look for & that have an almost

disjoint refinement (ADR) i.e. a family [Cx: X E ($,} such that

(i) cx e [xr,
(ii) for X ¥" Y the set Cx n CY is finite.
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Recall that 9 G [Nf is a MAD family on N if 6* is an infinite maximal family of

pairwise almost disjoint infinite subsets of N.

The following facts are well known.

(i) A family & G [Nf has an ADR iff there is a MADF 6> such that for every

A G & we have

|{X G 6> : X n A is infinite}| = 2U.

(ii) Let <?!. be a uniform ultrafilter on N. Then % as a point of N* is a 2"-point

of N* iff there is an ADR for %.

1.4. Following Mathias [M] we shall say that an ideal 5 on N is tall if for all

X G [A/]" there is a Y G [AT with Y G í. Let 9 be a MAD family; then 3(9)

denotes the ideal generated by 3F u 9.

Definition. Let Q = [qn: n G u) be a partition on N into infinitely many (finite

or infinite) pieces such that for all k G u there are infinitely many qn with at least k

elements. Let ^(Q) be the ideal generated by the union of the sets {A" G N:

(3/t)(Vn G u)(\X n q„\ < k)} and {qn: n G fi}. In [M] it is shown that the ideals

Sf (61) and <?) (Q) are both tall. It is easily seen that:

(a) If & is a family with an ADR, then for every X G [A/f there is Y G [A"f

such that [YT n & = 0.
(b) If <£ is a family with an ADR then there is a MAD family 9 such that

& G í+(6>).
(c) Tall ideals correspond to open dense subsets of N* that are not the whole

space. If $ is a tall ideal then i+ has an ADR iff the complement of the open set

corresponding to í is a 2"-set.

(d) The extremal problem whether for every MADF 9 there exists an ADR for

á + (6)) is equivalent to the above-mentioned problem of Hechler.

1.5. Theorem A. Let Q be a partition of N as in Definition 1.4. Then the family

% + (Q) has an ADR.

As a straightforward corollary we obtain that every nonselective uniform ultra-

filter on N has an ADR. For ultrafilters however we shall prove a little more.

1.6. Theorem B. Let 'S be a uniform ultrafilter on N and 9 a MAD family of N

with 9 D 'S — 0. Then there is an ADR for 'S which consists of large sets with

respect to the ideal i(6)).

1.7. Corollary. Since the ideal 'S* dual to a uniform ultrafilter 'S is tall, there is

a MADF 9 G 'S*. Thus every uniform ultrafilter 'S has an ADR.

Acknowledgement. The authors would like to express their gratitude to M.

Dusek, whose support and understanding made this research possible, and to P.
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2. Proofs of the theorems. We begin with some cardinal characteristics.

2.1. For functions from N to N consider the preordering f <* g iff {n:

fin) > g(n)) is finite. The least cardinal of a family of functions that is unbounded

under <* is denoted by X. Obviously there is a family of functions (/,: a G X)
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unbounded under < * such that /a's are increasing and a < ß implies /„ < * fp.

Note that every set of functions with cardinality less than X has an <*-upper

bound. Due to this fact, for every partition {XH: n £ w} of N whose members are

infinite, there is a tower [Aa: a £ X) such that

(i) X„ — Aa is finite for every n, a;

(ii) for any X E [N]*, if [n: \X„ n X\ = «„} is infinite, then (3a £ X)(X Z*Aa).

2.2. The following is defined in [BPS]. Let k denote the least cardinal such that

the Boolean algebra 9(u)/$F of all subsets of w modulo finite sets is not

(k, oo)-distributive. The "Base matrix theorem" proved in [BPS] says: There is a

system {9a : a E k) of MAD families such that for a> ß,^a *-refines 9 B and for

every A E [u]a there is a B E U {9a: a E k) such that BEA.

2.3. Let d denote the minimal cardinal such that there is a MADF ty on N with

\9\-d.

Lemma. o>, < k < d.

Proof. In [BPS] the inequalities w, < k < X are proved. The proof is finished by

adding the known inequality X < d; see [So].

Remember that under the assumption d = 2" Hechler's conjecture is known to

be true [R], [H].

2.4. The following lemma plays a key role in our proofs.

Lemma. There is a family % E [wf such that the following conditions hold for any

u, v e %.
(i) u n v=* ,0 or u E* v or v E* u;

(ii)|{w £ ® : u E* w}\ <k;

(iii) for any X E [uf there is a w E B such that w E X.

Proof. Let {9a: a < k} be the base matrix mentioned in 2.2. Then $ =

U {9a: a < k} has the desired properties.

2.5. Lemma. Assume % is as in Lemma 2.4, <S0 Ç % such that \%0\ < 2". Then

far every C E [wf there is a u £ $ - % such that u E C and (Vu £ <$0)(ü n u

= * 0 or u E* v).

Proof. As there is a MAD family on w of cardinality 2", by (iii) of Lemma 2.4

we have \{v E <$> : v E * u)\ = 2" for every « £ <S. This fact with (i) of 2.4

finishes the proof.

2.6. Proof of Theorem A. Let Q = [q„: n £ <o} be a partition of # as in

Definition 1.4. Put [Aa: a < 2"} = ^(Q). For Aa we shall now pick a set c(a) as

follows. If X = {/ £ to: \q¡ n Aa\ = K0} is infinite then we put c(a) = X. Other-

wise we pick c(a) £ [w - A-]" such that i <j implies \Aa n q,\ < \Aa n fy| for

i,j £ c(a). Let % be the Base family from Lemma 2.4. In the sequel % is used on

a as indexes of [q¡: i E u). By transfinite recursion through a < 2" we shall define

F(a) £ [AaY and 1(a) E c(a) such that

(i) 1(a) E $ ;

(ii) F(a) is a selector for Ra = {q¡ n Aa: i £ 1(a)) i.e. F(a) E U Ra and

\F(a) D q¡ fi Aa\ < 1 for any i E 1(a);
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(iii) F(a) is almost disjoint with all F(ß), and 1(a) ¥=* I(ß) for ß < a.

For a < 2U we put Da = U Ra.

Step 0. There is 1(0) G <$> such that 1(0) G c(0). As F(0) take an (infinite)

selector of R0.

Step a < 2". For ß, y < a we have F(ß), I(ß) such that I(ß) ¥= * I(y) and

F(ß) n F(y) is finite for ß ¥=y. Choose 1(a) using 2.5 with respect to % = {I(ß):

ß < a] and «-different from all I(ß). Put T = {F(ß) n Da: ß < a and 1(a)

G* I(ß) and \F(ß) n Z>J = N0} U (*„ n [AT]").

Members of T are pairwise almost disjoint. According to the choice of c(a) and

since F(ß)'s are selectors, Z)0 cannot be = * to the union of any finite part of T.

By (ii) of Lemma 2.4 we have |T| < k < d. Hence there is F(a) G Da, an infinite

selector of Ra that is almost disjoint with all members of "V. We note that

1(a) n I(ß) = * 0 implies F(a) n F(ß) =* 0. Hence [F(a): a < 2"} is an ADR

for <ty + (Q). The proof of Theorem A is complete.

2.7. Our starting point for the proof of Theorem B is the notion of an ultrafilter's

tower.

Definition. A tower 91 = {A(a): a G j»} is a tower of a uniform ultrafilter 'S if

(i) v is uncountable and regular;

(ii) SI ç <S;
(iii) for any X G 'S there is a G v such that X \T* A(a).

2.8. Lemma. Assume 'S is a uniform ultrafilter on N. Then there is a tower of S (of

uncountable length).

Proof. It is clear that such a tower exists for F-ultrafilters. In the case of

non-F-ultrafilters we can take a tower of the length X from 2.1, where the partition

is the one exemplifying the non-F-property.

2.9. Lemma. Assume {A(a): a G v) is a tower of 'S and 9 is a MAD family such

that ffl?=0. Then

(iv) (Va G v)(3ß > a)(A(a) - A(ß) G 3+(6>)).

Proof. By induction we can choose an increasing sequence {an: n G w} and a

family {«„: n G «} of different elements of 6* such that (A(a¡) — A(aj+X)) n «, is

infinite. For n G u we have A(a„) — (J {«,: 0 < / < n — 1} G 'S. Hence by (iii) of

Definition 2.7 there are an+x > a„ and u„ G 9 - {u0, . . . ,un_x} such that (A(a„)

— A(an+X)) n «„ is infinite. Put ß = sup{a„: n G w}.

2.10. Proof of Theorem B. Let 'S be a uniform ultrafilter and 9 a MADF with

6> n 'S = 0. Assume {A(a): a < v) is a tower of f with A(a) - A(ß) G í+(9)

for a < ß. We put v(u>) = [a G v: cf(a) = u). For every a G v(a>) we fix an

increasing sequence {an: n G oi) such that a = sup{oL,: n G u}. We define q(a, n)

= n {A(a¡): 0 < j < n) - (A(an+X) u .4(a)). Note that q(a, n) G $+(9) and

q(a, n) n q(a, m) = 0 for all a, n ¥= m. It is easy to see by Lemma 2.9 that for

every X G 'S there is a G v(ui) such that the set {n: X n q(a, n) G í+(6>)} is

infinite.
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We define Q„ = {q(a, n): n £ w} for a £ »>(«). If Ka, KB are selectors of Qa, Qa

respectively and a ¥= ß then Ka n Kß is finite. Hence for the proof of Theorem B it

suffices to show that the family S(ö„) = {X E N: \{n: q(a, n) n X E i+(9)}\ =

N0} has an ADR consisting of selectors of Qa which are large sets. The argument is

now similar to the one used in 2.6. Let Q = [qn: n £ w} = Qa for a E v(w) and let

[D(a): a<2"} be a numbering of S(g). We put c(a) = [i: D(a) n q¡ E

i+(9)}. By transfinite recursion we define sets 1(a), F(a) such that

(i) 1(a) E $, where ® is the Base family from Lemma 2.4 and 1(a) E c(a);

(ii) F(a) is a selector for {q¡ n Da: i E 1(a)) and F(a) E i+(<3>);

(iii) for ß < a, F(a) n F(ß) is finite and I(ß) n 1(a) =* 0 or (1(a) E* I(ß)

and 1(a) ^* I(ß)).

In the step a < 2a we choose 1(a) E % using Lemma 2.5. The F(ß)'s are

selectors and hence they determine partial functions fß on w. We set "V = [fB n

(1(a) X D(a)): ß < a,and 1(a) E* I(ß)). As \°V\ < k < X there is a function /:

1(a) -> N that is an < *-upper bound for T. We note that for any infinite family of

pairwise disjoint large sets there is a large selector. Hence we may take F(a) as a

large selector of the family {Da n q, — {n: n < fit)}: i £ 1(a)}. It is obvious that

F(a) n F(ß) is finite for ß < a.

This completes the proof.

3. Remarks and problems.

3.1. We do not know if the following observation is known. Let us consider a

MAD family on the set Q of all rational numbers in the unit interval [0, 1] of the

real line. Then there is a MAD family 9 on Q such that for any set A E Q that

has infinitely many accumulation points in the space [0, 1] there exists B E *$ with

B E A. This fact follows from Theorem A.

3.2. Let s = {an: n E N} be a sequence of positive reals with lim a„ = 0 and

Sa„ = oo. Let us consider the ideal ®l(s) = {X E N: 1{an: n E X} < oo}. This

type of ideal seems to be similar to the ideal of type ^(Q) from Definition 1.4,

where Q is partition of N consisting of finite sets. But we do not know whether

^ + (j)hasanADR.

3.3. Does the assumption "every < *-cofinal subset of functions from N to N has

cardinality 2"" imply Hechler's conjecture?

3.4. Consider the Boolean algebra B = 9(N)/$F. Corollary 1.7 is equivalent to

the statement "every filter base on B of cardinality at most 2" has a disjoint

refinement". This statement cannot be strenghtened to the completion B of the

algebra B. Using a result of Kunen, van Mill and Mills [KvMM] in [BSV] have

proved the following.

If T < 2" for all t < 2" then there is an ultrafilter on B with a base of

cardinality 2". Then there is no disjoint refinement on B for any base of this

ultrafilter.

3.5. K. Kunen, using an observation from [BF], proved the following generaliza-

tion of a result in [BF]. If X is any compact space in which nonempty Gs sets have

nonempty interior, then very nonisolated point in X is an w,-point. He also has

remarked that for the above class of spaces we cannot replace w, by 2".
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Let us consider only spaces that moreover have no isolated point. Are there any

simple conditions on such spaces that imply "every point is a 2"-point"? We note

that for arbitrary t > w, every point of the space ß(r) — t is a 2w-point.
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