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ALMOST DISTURBANCE DECOUPLING WITH BOUNDED PEAKING*

HARRY L. TRENTELMAN’

Abstract. This paper is concerned with a generalization of the almost disturbance decoupling problem
by state feedback. Apart from approximate decoupling from the external disturbances to a first to-be-
controlled output, we require a second output to be uniformly bounded with respect to the accuracy of
decoupling. The problem is studied using the geometric approach to linear systems. We introduce some
new almost controlled invariant subspaces and study their geometric structure. Necessary and sufficient
conditions for the solvability of the above problem are formulated in terms of these controlled invariant
subspaces. A conceptual algorithm is introduced to calculate the feedback laws needed to achieve the design
purpose.

Key words, almost disturbance decoupling, almost invariant subspaces, linear systems, geometric
approach, high gain feedback, output stabilization
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1. Introduction. In this paper we are concerned with the problem of almost
disturbance decoupling by state feedback as introduced by Willems [20]. This problem
deals with the situation in which we cannot achieve exact decoupling from the external
disturbances to an exogenous output channel as, for example, in [22], but only
approximate decoupling with any desired degree of accuracy. In general, the feedback
gain necessary to achieve this will increase as the desired degree of accuracy increases.
It may then happen however that some of the state variables tend to peak excessively.
It is of considerable practical interest to know when it is possible to achieve disturbance
decoupling within any desired degree of accuracy, while this peaking phenomenon
will not occur.

The system that we will be considering in this paper is given by the equations

Yc Ax + Bu + Gd,

(1.1) z Hx,

z H2x,

where the control u(t), the state x(t), the disturbance d(t) and the outputs z(t) and
z2(t) are real vectors of finite dimensions. We will assume that the vector z2(t) is an
enlargement of z(t), i.e., there is a matrix M such that H MH2. If for any positive
real number e a feedback matrix F, can be chosen such that in the closed loop system
with zero initial condition, for all disturbances d (.) in the unit ball of Lp[O,) we have

(1.2) IIz ll  <-
then we say that for the system under consideration the Lp-almost disturbance decoup-
ling problem from d to z is solvable. After choosing F to achieve this approximate
decoupling, the output z2(t) of course depends on e and, for certain disturbances d (.),
it may then happen that z=ll ,.o - as e 0, i.e., as the accuracy of decoupling increases.

* Received by the editors April 28, 1983, and in revised form June 1, 1985.
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As an example, consider the system (1.1) with

A= 0 B= G=
0

H1-" (1 0 0), HE 1
0

Define a feedback matrix F by

It can then be verified that the impulse response from the disturbance d to zl is given
by

+3 9
W e(t):’-" nle(’--JF)tG e-3t/e(1-t+-- t2

k e 282 /

and that Wl, e. Hence, for any 1 -< p -< o, the above feedback matrix F achieves
Lp-amost disturbance decoupling from d to Zl. On the other hand, however, the impulse
response from d to z2 is calculated to be

1+3 9 t2t
e +2e 2

W2 (t):= HEeA+a)tG e-3/ 2._7. t2
2e

27 81 t2--- +--and it can be verified that o(1/ e) ->3 as e -> 0, i.e., we have obtained almost
disturbance decoupling from d to z at the cost of highly undesired peaking behaviour
of the output z(t).

The question which we ask in this paper is this: When is it possible to choose F
such that simultaneously (1.2) holds and there exists a constant C (independent of e)
such that for all disturbances d (.) in the unit ball of Lp[0,) we have

1.3) z= <-- c
for all e ? That is, the output z2(t) is bounded uniformly as e tends to zero. If this
behaviour is achieved, we say that we have Lp-bounded peaking from d to z2. Problems
of this kind have been considered before. Francis and Glover [3] considered a bounded
peaking problem in the context of cheap control. More recently, Kimura [9] found
conditions that guarantee bounded peaking in the context of perfect regulation. We
will study the above problem using the by now well known concepts of almost controlled
invariant and almost controllability subspace [19], [20]. We will also use the approach
of frequency domain description of geometric concepts as initiated in Hautus [5].

The outline of this paper is as follows. In 2 we will introduce some notational
conventions used in this paper and state some preliminary results and background.

Section 3 contains a description of the main problem we will be concerned with
in this paper. In 4 we will introduce the disturbance decoupling problem with output
stability. This problem is an extension of the (exact) disturbance decoupling problem
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as treated in [22]. Its solution will be needed to solve our main problem, but is also
important in its own right. In 5 we will derive a necessary condition for the solvability
of (ADDPBP)p. This condition will be in the form of a subspace inclusion involving
an almost controlled invariant subspace. Section 6 contains an investigation of the
geometric structure of the almost controlled invariant subspace that was introduced
in 5. In 7 these structural results will be used to prove that for certain classes of
systems the subspace inclusion derived in 5 in fact constitutes a necessary and
sufficient condition for solvability of (ADDPBP)p. The sequences of state feedback
maps that achieve the design purpose will be constructed explicitly. Section 8 contains
some corollaries of our main result and some extensions. In 9 a numerical example
is worked out to illustrate the computational feasibility of our theory. Finally, the
paper closes with some concluding remarks in 10. Several technical details of proofs
in this paper are deferred to Appendices A, B and C.

2. Preliminaries and background. In this section we will introduce some notation
used in this paper and review some relevant facts on controlled invariant and almost
controlled invariant subspaces. Also some basic facts on the convergence of subspaces
will be given.

2.1. In this paper the following notation will be used: If is a normed vector
space, we will write I1" for the norm on . If l" [0, c), is a measurable function,
then we will denote

[[/(t)ll p dt
?-

|ess sup
k. t>o

lip

if 1 =< p < c,

ifp=.

If II/11 < o, we will say that l Lp[O, oo). If M is a square matrix then tr(M) will
denote its spectrum. If A1 and A: are sets of complex numbers then A1 u) A: will denote
their disjoint union. For any positive integer n, we will denote _n := {1, 2, , n}.

Consider the system (1.1). Let u(t) := ", x(t) := ", d(t) :=q, z(t)
Lrl := Rp, and z(t) Lr2 := Rp2. Let A, B, G, H1 and H2 be real matrices of appropriate
dimensions. We will write ’[i := ker Hi (i 1, 2), := im B and AF := A+ BF. The
reachable subspace will be denoted by (A[ ):= d+A +...+A"-. A collection
of subspaces , 2," ", k will be called a chain in if =: =. = k.
If 0 # b we will denote := span b.

If Vc is AF-invariant, the restriction of AF to V will be denoted by AF[
We will write AF I./V or/F for the quotient map induced by AF on the factor space
/V (see [22]). If V and are both AF-invariant and V, then AF[V/ will
denote the map induced by AF[V on the factor space V/ogr. We define the canonical
projection P" /V by Px := x + V: If B := PB, then (AF, B) will be called the system
induced in /V. If H" Lr is a linear map and Vc ker H, then H"/V Lr is
defined by HP H. A distributionf 9’/ (i.e., the space of finite-dimensional valued
distributions with support on [0, oo)) will be called a Bohl distribution if there exist

N0f/t(i) +f-1 Here f-l(t):= KeLtM,vectors f and matrices K, L, M such that f= Y,i-
(o) denotes Dirac’s delta and (i) its ith distributional derivative, f will be called
regular iff 0 (i 0,. , N) and impulsive if f_ 0.

2.2. We will now review some basic facts from geometric control theory. If c g
is a subspace, then V*(’[) will denote the largest (A, B)- or controlled invariant
subspace in Y{ and *(Y0 will denote the largest controllability subspace in Yf [22].
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IfCg is a symmetric subset of the complex plane C (i.e., h Cg:> Cg and Cg contains
at least one point of the real axis), then g*(t) will denote the largest stabilizability
subspace in Y( ([5] or 11 ]).

A subspace //’a c will be called almost controlled invariant if for all Xo l/’a and
for all e >0 there is a state trajectory x(. such that x(0)= Xo and d(,, x,(t))<- e
for all t. A subspace a c will be called an almost controllability subspace if for all
Xo, x Y there is a T> 0 such that for all e > 0 there is a state trajectory x (.) such
that x(O)=xo, x(T)=Xl and d(Ya,x(t))<-e for all t. Basic facts on these classes
of subspaces can be found in [19] or [20] (see also [17]). A subspace a c is almost
controlled invariant if and only if + ,, where is controlled invariant and
a is an almost controllability subspace. A subspace a is an almost controllability

k in such thatsubspace if and only if there is a map F"T 07/ and a chain { i}i=l
=I+AF:+’" "+AkF-k. We will say that is a singly generated almost
controllability subspace if there is a map F" % a vector b and an integer k> 0
such that , d03AFd" "03 AkF-L

Again, for Y’c , T’*(YQ will denote the largest almost controlled invariant
subspace in Y" and *(Y{) the largest almost controllability subspace in ’’. We will
denote Rb*(Y’):= + A*(Y’) and T’b*(Y():= T’*(Yc) + b*(Y{). The subspace //’b*(Y’)
plays an important role in the problem of almost disturbance decoupling. In fact, in
[20] the following result was obtained:

PROPOSITION 2.1. Consider the system Ax + Bu, z Hx. Thenfor all e > 0 there
exists a map F’gT-ll such that IIHexp[t(A+BF,)]GII,<-_e if and only if im Gc
T’b*(ker H).

Let Y{ := ker H. The space Vb*(Y{) will be called the space of distributionally weakly
unobservable states with respect to the output z. b*’(Y’) will be called the space of
strongly controllable states with respect to the output z. For this terminology see [6].

A proof of the following result can be found in [1, Lemma 1].
LEMMA 2.2. Let Y{ . Then the following equalities hold"
(i) b*(Y’) f’l Y’-" *(Y{),
(ii) *(:]’) f’) V*(Y’) *(Y0,
(iii) *(Y() f) *(Y{) *(Y0. [3

This paper will sometimes deal with a new system (A, BW), obtained by del.eting
the part of the input matrix B lying in *(Y{). This system is obtained b.y taking =
such that 0]q( f3 o//.,(y/))= and by letting Wbe a map such that =im BW (see
also [1]). The supremal almost controllability subspace contained in Y{ with respect
to this new system (A, BW) will be denoted by *(Y{). We will correspondingly denote
o + A*,(Y[) by *(Y(). The following result follows from [1, Lemma 2]"

LMMA 2.3.

Assume now that T" is (A, B)-invariant. Let F be such that (A + BF)
Let (AF, B) be the system induced in /T" and P"-/V the canonical projection.
We then have the following result:

LEMMA 2.4. Ift is an almost controllability subspace with respect to (A, B), then
Pt is an almost controllability subspace with respect to (AF, B).

Proof Let Pxo and Px be in Pta, with Xo, Xl a. There is a T> 0 and, for all
e>0, a trajectory x(.) such that x(0)= Xo, x(T)=x and d(a,X(t))<=e for all t.
It can be seen immediately that z (t):= Px,(t) is a trajectory of the system (AF, B).
Moreover, z(0)=Pxo, z(T)=Px and d(Pa,z,(t))=infRllPr--Px(t)ll <-
IIPlld(, x( t)) <-_ ellPII.
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We will also need the following proposition, which is proven in [17, Thm. 2.39]
(see also [15] or [16]).

PROPOSITION 2.5. Consider the system Ax + Bu. Leta be an almost controllabil-
ity subspace. Suppose A is a symmetric set of dim (A g)-dima complex numbers.
Then there is an (A, B)-invariant subspace V and a map F"- such that VO)
(A[) and r(AF]) A.

To conclude this section, we shall recall some facts on left-invertibility of linear
systems. Again consider the system Ax + Bu, z Hx. Assume that the map B is
injective. We will say that the system (A, B, H) is left-invertible if the transfer matrix
H(Is-A)-IB is an injective rational matrix. The following result was proven in [22,
Ex. 4.4] (see also [6, Thm. 3.26]).

LEMMA 2.6. (A, B, H) is a left-invertible system if and only if*(ker H)= 0. [3

2.3. In the following, we will review some basic facts on the frequency domain
approach to the geometric concepts of this paper. We will denote [s] (respectively,
(s), +(s)) for the set of all n-vectors whose components are polynomials (respec-
tively, rational functions, strictly proper rational functions) with coefficients in R. If
c =R", then 5’’[s] (respectively, 5’[(s), r+(s)) will denote the set of all (s) [s]
(respectively, (s), +(s)) with the property that sO(s) 5’[ for all s. Slightly generalizing
a definition by Hautus [5], if for a given x there are rational functions :(s) (s)
and to(s) (s) such that x=(Is-A)(s)+Bto(s) for all s, we will say that x has a, to)-representation.

For a description of (almost) controlled invariant subspaces in terms of (, to)-
representations, we refer to [5], [12], [13] and [17]. We shall need the following fact:

LEMMA 2.7. Let . Then we have" x *b(7[) if and only if x has a (, to)-
representation with (s) ’’[s] and to(s) a//[s]. U

2.4. Finally, we will recall some facts on the convergence of subspaces. In this
paper we will use the common notion of convergence of subspaces in the sense of
Grassmanian topology. Let {%; e > 0) be a sequence of subspaces of of fixed
dimension. It can be proven that % - (e 0) ifand only ifthere is a basis {v, , va}
for V and there are bases {vl(e),’’ ’, Vq(e)} of % such that, for all i, vi(e) vi as
e - 0 (convergence in ). We will need the following lemma, which can be proven by
standard means:

LEMMA 2.8. Suppose Vl, , Vq are independent vectors and v,(e) - vfor all i. Then
for e sufficiently small, vl (e)," ., Vq e) are linearly independent. Consequently, ifV - Vand t’ tV, where V f’) /4/" {0}, then for e sufficiently small % f’) /V {0} and % O)

3. Mathematical problem formulation. Consider the system (1.1). We will assume
that z2(t) is an enlargement of z(t), that is, there is a matrix M such that H1 MH2
or, equivalently,

(3.1) ker H2 =: X2 c ’’ := ker H.
From now on, (3.1) will be a standing assumption. Throughout this paper we will also
assume that B is injective.

Consider the following synthesis problem. Fix 1-<_ p <_-. We will say that the
Lp-almost disturbance decoupling problem with boundedpeaking (ADDPBP)p is solvable
if there is a constant C and for all e > 0 there is a feedback map F" such that,
with the feedback law u Fx in the closed loop system for x(0) 0 for all d Lp[O, ),
the following inequalities hold:

(3.2) zl IIt.,, -<- e d I1,,
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(3.3) IIz=ll CIIdll,
Note that if we take H H, we obtain the original L-almost disturbance decoupling
problem, (ADDP)p, without the requirement of bounded peaking (see [20] or [17]).
Another interesting special case is to takeH =/, which corresponds to the requirement
of bounded peaking of the entire state vector.

In the present paper, necessary and sufficient geometric conditions for the solvabil-
ity of the above problem will be derived for the cases p 1, p 2 and p oo. We will
first show how the solvability of (ADDPBP) can be expressed in terms of the closed
loop impulse response matrices from the disturbance d to the outputs z and z,
respectively. IfF" q/is a state feedback map, then denote the closed loop transition
matrix by

(3.4) T( t) := e(’+)’

and let

(3.5) ’(s) := (Is-A- BF)-’
denote its Laplace transform. We then have the following:

LEMMA 3.1. Fix p {1, oO}. Then (ADDPBP)p is solvable if and only if there is a
constant C and for all e > 0 a feedback map F" all such that IIn LOlls,-<-e and

IIH=TOII, <= C.
(ADDPBP) is solvable and only if there is a constant C and for all e >0 a

feedback map F such thatHT(s)O andH’(s)O are asymptotically stable and such
thatsup IIH, L(i,o)Oll <-- and sup IIU=L(i)OII-<- C.

Proof. The proof follows immediately from the fact that for p 1 and for p oo
the L-included norm of the closed loop convolution operator from d to z equals
exactly the L-norm of its kernel, i.e., IIHTGIIL,. The second statement follows from
the fact that the L.-induced norm of the convolution operator from d to z equals the
H-norm supa IlU,(i,o)Oll (see, for example, [23). [3

4. Disturbance fleeoupling with stability constraints. Prior to considerations involv-
ing the peaking behaviour of the enlarged output z2, we should make sure that the
output z2 is in Lv[O, oo) at all. Hence, an important part of the solution of the problem
posed in 3 is to construct the required feedback maps F in such a way that, for any
d L[0, ), in the closed loop system with x(0)= 0 we have z2 Lv[0, co). Therefore,
in this section the following variation on the well known (exact) disturbance decoupling
problem [22] will be considered. Again, consider the system given by (1.1). The usual
disturbance decoupling problem is concerned with the determination of a feedback
map F" 0// such that in the closed loop system the external disturbance d does
not influence a specified output Zl. We will consider the more general situation in
which simultaneously we demand stability of the second, larger, output z2.

In this section, C g, the stability set, will be a given subset of the complex plane
C which is symmetric. Asymptotic stability is thus obtained by taking Cg=
{h c C" Re h < 0}. A rational matrix or rational vector is called stable if all its poles
are in Cg. We will consider the following problem" (DDPOS) the disturbance decoupling
problem with output stabilization is said to be solvable if there is a feedback map F
such that H(Is-AF)-G=O and H2(Is-A)-IG is stable.

In order to be able to formulate conditions for the solvability ofthe above problem,
introduce the following subspace:

DEFINITION 4.1. *Vg(ff’l, ’2) will denote the subspace of all points x c1 for
which there is a (:, to)-representation with (s)c l,+(s), to(s)c q/+(s) and H2:(s) is
stable.
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Thus, interpreted in the time domain, Vg(Y(, ’{2) is the subspace consisting of all
points in which a regular Bohl state trajectory starts that lies entirely in Y{. The
components of this trajectory modulo ’2 are stable. It follows immediately from the
definition that Vg(Y{1, ’{2) is contained in V*(Y{). By the assumption (3.1), if a
trajectory lies in ’{2, the same is true for ’{1. Consequently we also have the inclusion
ff’*({2 (22 c/’g(’{l {2)

We note that Definition 4.1 is a generalization of a definition by Hautus [5]. His
space S (see [5, p. 706]) coincides with Vg(Y{1, ’{2) if ’r is taken to be . The
following theorem can be proven to be completely analogous to [5, Thm. 4.3]:

THEOREM 4.2.

(,,)= *(c,)+ *(). D

Note that it follows from the above theorem that Vg({1, ff2) is controlled invariant.
The next theorem provides the key step in the solution of DDPOS. The result states
that what can be done in Definition 4.1 by open loop control can in fact be done by
state feedback"

THEOREM 4.3. ere exists a map F" such that

(4.1) AFg(Y, Y2) C g(Y,

(4.2) AF*(Y2) *(Y2),

(4.3) (AF g(Y[, Y2)/*(Y2)) c Cg.

Proof During this proof, denote g := g(Y, Y2). Since *(Y2) g and since
both spaces are controlled invariant, they are compatible (see [22, Ex. 9.1]). Hence,
there is a map Fo’ such that Ao*(Y2) *(Y2) and AFog c g. Let @:=
@ g and let V be any matrix such that @ im BE

Consider the controllability subspace (AFo[). By the facts that g and
AFog g, this controllability subspace is contained in Y. Since any controllability
subspace is also a stabilizability subspace, it must be contained in the largest stabilizabil-
ity subspace (Y) in Y1. It then follows that (Y), so

(4.4) (Y{)= .
Next, we claim that (E{1) is AFo-invariant. First, since it is (A, B)-invariant,

we have Ao(C,) (C,)+. On the other hand, Ao(C,)Ao,
Hence, again using (K1)g, we obtain AFo(E{,)((E{1)+)g
(E{1) +( g)= (E{1). The last equality follows from (4.4).

Using (4.4) and [5, Prop. 2.16], we deduce that the pair (AFol (E{1), BV) is
stabilizable.

Let PI" g g/*(E{2) be.the canonical projection. Let (AFo, BV) be the system
induced in g/*(E{2). It can easily be seen, for example, by using a rank test (see
[4] or [5, Thm. 2.13]), that the latter system is stabilizable. Hence, there is a map F1
on the factor space such that (AFo+ BVF1) Cg. Now, let F1 be any map on g such
that F FP and define F1 arbitrary on a complement of g. Define F := Fo+ VF1.
Since FI *(C:)= Fol *(C=) (" I" denotes "restriction to"), we then have AF*(E{=)
*(E{) and it can be verified that Fig. 1 commutes.

We are now in a position to prove the main result of this section.
THEOREM 4.4. DDPOS is solvable iff imG g(E{1, E{2).
Proo () Choose F as in eorem 4.3. Then (AFlim G) E{1, which yields the

decoupling from d to z.
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FIG.

Let /2 be as in the Fig. 1 and let tF’.’-AFlt/’g(ff{1,{2)/ff’*(ff{2). Then HE(IS-
AF)-IG I2(Is--,F)-IP1G, which is stable since tr(AF) c Cg.

(==>) IfF is such that HI(IS-AF)-IG-O and H2(Is-AF)-IG is stable then for
d let :(s) := (Is- AF)-iGd and to(s) := F(s). Then clearly Gd
(Is-A)(s)+Bto(s) and H_(s) is stable. [3

Remark 4.5. If in the above problem we take HI HE H, DDPOS reduces to
the ordinary disturbance decoupling problem DDP (see [22]). In this case we have,
denoting if{:= ker H, Vg(7{1, ’{2) Vg*(20 + V*(20 V*(2{) If we take HI =0 and
HE--H, we arrive at OSDP as studied in Hautus [5]. The solvability of this problem
requires the existence of a state feedback F such that H(Is-AF)-IG is stable.
Necessary and sufficient conditions can be found by noting that Vg(2{,ff’2)=
Vg*()+ V*(20. As also noted in [5], if we take HI =0, HE H and im G= , the
above theorem provides necessary and sufficient conditions for the solvability of the
output stabilization problem, OSP.

5. A necessary geometric condition for the solvability of(ADDPBP)p. In this section
we shall establish a necessary condition for the solvability of (ADDPBP)p. This
condition will be in the form of a subspace inclusion. The proof is rather technical
and some of the details are deferred to Appendix A. In the rest of this paper, the
stability set will be taken to be C g {A C IRe h < 0}.

Consider the system = Ax+ Bu, z HlX, z2 H2x and assume that (3.1) is
satisfied. The following subspace will play an important role in the sequel:

DEFINITION 5.1. //’b(ff{1, ’{2) will denote the subspace of all x X that have a
(sc, to)-representation with so(to) ’{(s), to(s) (s) and H2(s) is proper and stable.

Interpreted in the time domain, Vb(ff{, ffQ) consists exactly of those points in
that can serve as an initial condition for some Bohl distributional trajectory that lies
entirely in :7{1, while the vector of components of the trajectory modulo 2 is the sum
of a stable regular Bohl function and a Dirac delta.

It follows immediately from the definition and [12, Thm. 4.1] that //’b(’{, ’tr2) is
contained in Vb*(ff{), the subspace of distributionally weakly unobservable states with
respect to the output Zl. It is also immediate that Vg (ff{, :7{2) is contained in Vb (’{, TQ).
We are now in a position to state the main result of this section:

THEOREM 5.2. Fix p {1, 2, oo}. Then the following holds:

{(ADDPBP)p is solvable}:=>{im Oc T’b(’{1, ’{2)}.

In the remainder of this section we will establish a proof of the above theorem.
Again, consider the system Ax + Bu, Zl HlX, z2 H2x. Assume that for e > 0, u(t)
is a regular Bohl input. Let Xo X. Let zl.(t) and z2.(t) be the outputs corresponding
to the above input and initial condition x(0) Xo. Denote i.(s) for the corresponding
Laplace transforms of zi,(t). We then have the following lemma:

LEMMA 5.3. Suppose that either of the following conditions is satisfied:
(i) [[ZI,eIILI"->O as e -->0 and there exists a constant C such that Ilz2, II,--< Cfor all e.
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(ii) l,e(S) and J2,e(s) are stable for all e, sup,oa II  ,.(fo)ll- 0 -0 ad there
exists a constant C such that supo,en z,e (ito)]] <- C for all e.
Then Xo e Vb (Y{1, Y{2). 71

A detailed proof of Lemma 5.3 can be found in Appendix A. The idea of the
proof is the following. First we note that the initial condition Xo above has for each
e>0 a (, to)-rcpresentation Xo=(Is-A)e(s)+Btoe(s). Here toe(s) is the (rational)
Laplace transform of ue(t). Using the asymptotic behaviour as described by the
condition (i) or (ii) above, we then analyse the limiting behaviour for e-> 0 of the
sequences of rational vectors e(s) and toe(s). This will lead to a (:, to)-represcntation
for Xo with the properties described in Definition 5.1. To conclude this section we
apply Lemma 5.3 to obtain the following:

Proof of Theorem 5.2. Assume that (ADDPBP)p is solvable. Let Xoe im G. Let Fe
be as in Lemma 3.1 and define ue(t):= FeTe(t)Xo. Then, depending on p, one of the
conditions (i) or (ii) in Lemma 5.3 is satisfied. It follows that Xoe Vb(X1, Y{2). D

6. The geometric structure of Sra(f’l, ;/’2). In the sequel, it will turn out that under
certain assumptions on the system (1.1) the subspace inclusion in Theorem 5.2 is also
a sufficient condition for the solvability of (ADDPBP)p. In order to prove this and to
be able to construct the required feedback maps, we need more detailed information
on the geometric structure of the subspace ]’/’b(Y{1, Y{2) as introduced in the previous
section. In the present section, we will first show that the subspace //’b(Y{, Y{2) can
always be written as the sum of the subspace g(Y{, X2) (see 4) together with an
almost controllability subspace depending on Y{ and 3’{2. Using this result, we will
show that if either *(Y{1)- {0} or Y{2 {0}, then T’b(Y{1, X2) admits a decomposition
into the direct sum of Wg(X1, Y{2) together with a number of singly generated almost
controllability subspaces, with a particular position with respect to the subspaces Y{
and Y{2. The main result of this section will be the following theorem:

THEOREM 6.1. Assume that ]*(Y{1) {0} or that 3’{2 {0}. Then there is an integer
m’, there are integers rl, , r,,,,M and vectors bl, , b,,, and there is a map
F" -> all such that

(6.1) //’b(Y{1, Y{E) o//.g(y{, Y{2)@ () ’i,
i=1

where

with

j=l

(6.2)

and

--2

(6.3) @ AJF-1/i c Y{2.
j=l

If in the statement of the above theorem one of the integers ri is such that ri- 1 < 1
or ri- 2 < 1, then the corresponding sums in (6.2) or (6.3) are understood to be equal
to {0}. It will turn out in the proof of Theorem 6.1 that in the case that *(Y{1)= {0}
the integer m’ may be chosen to be equal to m (=dim ). In the case that Y{2 {0} it
will appear that m’ may be chosen to be equal to m dim V*(Y{1) and also that



ALMOST DECOUPLING WITH BOUNDED PEAKING 1159

in this case the integers ri may be taken to be either 1 or 2. Since ]/’g(ffl, {0})--
(see Theorem 4.2) the theorem thus states that T’b(Y[I, {0}) is equal to the direct sum
of T’*(Y[I) together with a number of singly generated almost controllability subspaces
which are equal to either span {hi} (with 0 # bi ) or span {hi, AFb}, with {b, Av-b}
linearly independent and b /’1 Q

The result of Theorem 6.1 will be instrumental in the next section, where we will
consider the sufficiency of the subspace inclusion im G c b(Y(l, Y{2) for solvability of
(ADDPBP)p and propose a "scheme" for calculation of the required feedback maps.
In the remainder of the present section we will establish a proof of Theorem 6.1.

We introduce the following subspace:
DEFINITION 6.2. ?b(Yfl, if{2) will denote the subspace of all x that have a

(:, to)-representation with (S)fffl[S], (.O(S) 0[S] and H2(S) is constant (i.e., if
,(s)=Y’,oX,S’ then HExi=O for i->1).

Interpreted in the time domain, b(Y’l, Y’2) consists exactly of those points in
that can be driven to 0 along a purely distributional Bohl trajectory that lies entirely
in Y(, while the vector of components of this trajectory modulo X2 is a Dirac delta.

It follows immediately from the definition and Lemma 2.7 that every point in
b(X, Y2) is strongly controllable with respect to the output z. Moreover, it is also
immediate that every point x that is strongly controllable with respect to the output
Z2, is an element of b(fffl, if{E). Hence, the inclusion / b*(fff2)c b(fffl, Yf)C b*(Y()
holds. In fact, we have the following nice result:

THEOREM 6.3.
(i) b(ff/,, Y[2) + A(b*(Y/2) f-) Yfl),
(ii) T’b([1, if/2) T’g([, Y[2)+b(Y[, Y/2).
Proof. (i) Suppose that x=(Is-A)s(s)+ Bto(s), with (s) [l[S], w(s) ll[s]

Nand H2:(s) is constant. Let s(s)=Y.,=oX,S and w(s)=YN+--o uis. Obviously, :(s)=
Xo+S(s) and w(s)=uo+stoi(s), where sl(s)X2[s] and Wl(S) q/Is]. Hence, x=
Buo-Axo+ SXo+ s2(s)-As(s)+ BSWl(S) and by equating powers it follows that

(6.4) x -Axo+ Buo,
(6.5) -Xo (Is-A)l(S)+ Btol(S).
Therefore, Xob*(X2) (see Lemma 2.7). Since also XoY{, we obtain x
3+A(b*(’{2)f’iY/’). Conversely, if x=Buo-Axo with Xob*(ff/’2)fqY{1, there is
s(s)X2[s] and tol(S)e ?/Is] such that-Xo=(Is-A)s(s)+Bto(s). Defining then
:(s) := Xo+ s(s) and to(s):= Uo+ sto(s), we obtain a (:, to)-representation of x with
s(s) Y{[s], to(s) //Is] and H2(s) H2xo is constant.

(ii) Assume that x T’b(Y{, Y{2). There is a (:, to)-representation for x with s(s)
Y((s), to(s) //(s) and H2:(s) proper and stable. Decompose s(s) :l(s)+ :2(s) and
to(s) tol(s) + to2(s), where :l(s) and to(s) are polynomial vectors and s2(s) and to2(s)
are strictly proper. Obviously, s(s) fffl[s], s2(s) ff/’.+(s), toi(s) a//[s] and to2(s)
+(s). Moreover, H2s(s) is constant and H2:2(s) is strictly proper and stable.
Now, since the left-hand side of this equation is proper and the right-hand side is a poly-
nomial vector, both sides must, in fact, be constant. Thus, there is a vector x
such that x=(Is-A)l(S)+Bto(s)=x-(Is-A)2(s)-Bto2(s). It follows that
X G ?b(Ytrl, ’f2) and x xl 7/’g(Yfl, r2). Since x xa + (x x), we obtain that x
Fg(Yf, Yf2)+b(Yf, Yt’2). The converse inclusion follows immediately from the
definitions.

The importance of the above theorem is that it shows, together with Theorem 4.2,
that

(6.6) b(ffffl, ffLr2) P"(ffffl)+ P"*(ffLr2)"- B + A(*b(,9’{2)



1160 HARRY L. TRENTELMAN

Thus, the space Vb(’(a, ’(2) can, in principle, be calculated using existing algorithms.
The stabilizability subspace and the controlled invariant subspace appearing in (6.6)
can be calculated using the invariant subspace algorithm ISA [22, p. 91] and a
construction as in [22, p. 114]. The almost controllability subspace b*(Y’2) can be
calculated using the almost controllability subspace algorithm (ACSA)’ [20]. For any
fixed subspace ’’c , this algorithm is defined by

(6.7) ’+1(’/) +A(’(’) ’/); ff(’r) {0}.
It is well known, see [20], that (6.7) defines a nondecreasing sequence of subspaces
which reaches a limit after a finite number of iterations. Moreover, this limit equals
ff"(ff’) b*(ff{). In the sequel, denote

(6.8) i(ffCl, ffLr2):-’- ffi(ffLr2) f’) ffLrl
Using the properties of the sequence -i(ff.) stated above, together with Theorem 6.3,
the following result is immediate:

.LEMMA 6.4. i(’’1, ’’2)is a nondecreasing sequence which reaches a limit after a

finite number of iterations. This limit equals "(Y{, Y{2)= Rb*(Y{2) Y{1. Consequently,

(6.9) b(27{, Yff2) ? "" A"(?7{, YLr2). [

Other properties of the sequence ff(3’{, ’2) are proven in Lemma B.1, Appendix
B. Using these properties, we obtain the following lemma:

LEMMA 6.5. Assume that *(71)= {0}. Then there is a chain {i}’= in and a
map F all such that

(6.10) b(’{, 72) AF’" "AF,,

(6.11) - AF-’iC Xl,
i=l

(6.12) ) i-AF,
i=2

(6.13) dim i-dimA- dim (7[, 7’)/-1(’c, 3’c2) ].

Proof. See Appendix B.
We are now in a position to establish a proof of Theorem 6.1 for the case

*(C,) {0}"
Proof of Theorem 6.1 (Case 1" *(’/’)= {0}). During this proof we will denote

(7’, [:) by , V (J’, J2) by V and Vg (7’1, ’’) by Vg. According to Theorem
6.5 we have that V Vg +. We claim that the latter sum is a direct sum. Indeed,
this follows immediately from the facts that V c V*(’[) and c *(J), while
V*(’’) *(’)= *(’[1)= {0) (see Lemma 2.2). By Lemma 6.5 there is a chain
{@)’=1 in @ and a map F such that (6.10) to (6.13) hold. Let @ be the first subspace
in the chain which is not zero, i.e., @ {0) and @ {0} for j- 14-1,-.., n. Choose
a basis for @ as follows. First choose a basis {b,..., b,} for @. Extend this to a
basis {b, , b,, b, , b,_) for@_ (here, d := dim @i). Continue this procedure
until we have a basis for @.

AFJi, V, the following vectors form a basis forbBy the fact that dim dim

AFbl, Arba,
AF-1 bd_,AtF-b, AF-1 bd, AF- bdrl,

AFbl,’", AFbd, AFbdr+l,’’’, AFbd,_,’’’,’’’,AFbal,
b, , ba,, bar, , ba,_,, ," , ba,, ,
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It may immediately be verified that the above list of vectors can be rearranged to
At’-1 hi}, withobtain m subspaces i := span {b, Afl,

r,-2b,} cspan {b, AFbi, AF
and

Ar-3hspan {b, A,. ,-- ,
This completes the proof of Theorem 6.1 for the case that *(ff{1)= {0}.

In the remainder of this section, we will set up a proof of Theorem 6.1, the case
that if{2 {0}. In the following, let be a subspace of such that[ *(ff{1)]. Let W be a map such that =im BW and let (Y{1): +A({), where
(Y{) denotes the supremal almost controllability subspace contained in ff{ with
respect to the system (A, BW) (see also Lemma 2.3). Define

(6.14) (Y{) := +A( if{l).

We will show that if {2 {0}, then b(Y{, Y{2) has a decomposition into the direct
sum of g(Y{1, Y{2) (which, in that case, is equal to (Y{)) and the subspace (Y{)"
LA 6.6. Let { be a subspace of. en

(6.15) V(C,, {0})= (C, {0) (C).
Proo In this proof, denote g := g(Y{, {0}). Also, let := *({). Since

({0}) , it follows from Theorem 6.3 that

(c, (0) + +A[
++A[() C]

++A[+( C)].

Now, note that 1 *(Y{) (see [22, Thm. 5.5]). Consequently,A *({)+
g +. Hence we.find

(c, {0)= + +A(
g +1 + +A( {).

Again, by the fact that *(Y{1) c g, we have

(c,, {0})= + +A( C).

Finally, since g *(Y{) and (Y{1) ({), it follows from Lemma 2.3 that the
sum in (6.15) is direct.

Using the above lemma we may now obtain the following proof of Theorem 6.1,
the case that Y{2 {0};

oofofeorem 6.1 (Case 2:{2 {0}). We claim that (Y{)=A( {).
To rove this, assume that there is a vector 0 x such that x A, with a vector
in Y{. Define := span {}. SinceA +, is controlled invariant. Since
also {, we find that *({). It follows that *({) {0} and hence
that x=0. This yields a contradiction. Next, we claim that dim
dimA( {1). Assume the contrary. Then we may find a vector 0 x Y{ such
that Ax =0. It follows that span {x} is a controlled invariant subspace contained in
{ and hence that x *(ff{) {0}. Again, this is a contradiction. Now, choose
a basis for (ff{1) as follows" first choose a basis b,..., b of {1. Extend this
to a basis {b,..., b, b+,..., bm,} of . By the above, the vectors {b,..., b,
Abe,..., Abe, b+,..., b,} form a basis for (Y{). These vectors can be rearranged
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into one- and two-dimensional singly generated almost controllability subspaces with
the properties (6.2) and (6.3). This completes the proof of Theorem 6.1. 1

7. The main result. In the present section we will combine our results of the
previous sections to show that if the system (1.1) is such that it satisfies at least one
of the following two properties:

(7.1) the system (A, B, HI) is left-invertible,

(7.2) the mapping H2 is injective,

then the subspace inclusion im G c b(’, X2) is both a necessary and sufficient
condition for solvability of the Lp-almost disturbance decoupling problem with
bounded peaking (ADDPBP)p for the values p 1, p 2 and p

Recall from 5 that for these values ofp the latter subspace inclusion was already
shown to be a necessary condition without the extra assumptions (7.1), (7.2). Here we
shall, in fact, prove that if either (7.1) or (7.2) holds then im Gc //’b(/’, ffLr2) is a
sufficient condition for solvability of (ADDPBP)p for all 1

The following result is the main result of this paper:
THEOREM 7.1. Assume that at least one ofthe two conditions (7.1), (7.2) is satisfied.

Let p{1, 2, oo}. Then (ADDPBP)p is solvable if and only if im
In order to obtain a proof of the latter statement, we will prove the following"
LEMMA 7.2. Assume that at least one of the two conditions (7.1), (7.2) is satisfied.

Let T(t) and "(s) be defined by (3.4) and (3.5). Then the following statements are
equivalent"

(i) There exigts a constant C and a sequence {F; e > 0} such that IIHTII,- 0
(e O) and H2TG L, --< C V e.

(ii) There exists a constant C and a sequence {F; e >0} such that, for all e, HG
and are stable and supllnZ(i,o)ll-O (-0) and
sup II/-/=L(i,o)ll-<- C,.

(iii) imG //’b(ff, 2).
Note that the implications (i)(iii) and (ii)(iii) follow immediately from

Lemma 5.3. Also note that once we have proven the above lemma, a proof of our main
result Theorem 7.1 may be obtained by combining Theorem 5.2 and Lemma 3.1. We
stress that the implications (iii)=>(i) in the above, in fact, yields sufficiency of the
subspace inclusion imG b(’’l, ffLr2) for solvability of (ADDPBP)pfor all 1 <-_p <__oo.

The idea of the proof of the implication (iii) :=> (i) of Lemma 7.2 is as follows.
First we note that left-invertibility of the system (A, B, HI) is equivalent to the condition
*(:) {0} (Lemma 2.6), while injectivity of the map HE is equivalent to ’2 {0}.
Thus, under the assumptions of Lemma 7.2, //’b (’’1, 2) may be decomposed according
to (6.1), (6.2) and (6.3). Each of the singly generated almost controllability subspaces
Li appearing in this decomposition will then be approximated by sequences of con-
trolled invariant subspaces {; e>0}. If we then define := //’g0))’l L, the
sequence {o//.; e >0} will converge to //’b(’l, ’2). In this sense, im G is "almost
contained" in the controlled invariant subspace . The subspace o//. in turn is "almost
contained" in ffr (where the latter "almost" should be interpreted in the Ll-sense, see
also [20]), while its distance from ’/’2 is uniformly bounded with respect to e. Using
the structure of the above, we will construct a particular sequence of feedback
maps {F; e > 0} such that (A / BF)F F. Finally it will be shown that this sequence
has the properties required by (i) and (ii) in Lemma 7.2. To start with, we will show
how a singly generated almost controllability subspace can be approximated by control-
led invariant subspaces. Let be and let :=g0)’. "0)AkF-g. For i _k and e >0,
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define vectors in by

(7.3) xl(e):=(I+eav)-lb, x,(e):=(I+eav)-Iavx,_(e).
Note that the matrix inversions in the above expressions are defined for e sufficiently
small. Moreover, it can be seen immediately that x,(e) A- b(e 0). Thus it follows
from Lemma 2.8 that for e sufficiently small, the vectors {xi(e), _k} are linearly
independent. For each e, define a subspace e by

(7.4) e := span {x(e), ., Xk(e)}.

Assume u q/ is such that b Bu and define a map Fe "*e U by

(7.5) Fex,(e) := e-’u, (i_k).

The main properties of the sequences {e; e > 0} and {Fe; e > 0} are summarized in
the following lemma:

LEMMA 7.3. For _k we have x( e --> Ai- as e --> O. Consequently, e ->. Each
e is controlled invariant and, with Fe defined by (7.5), (AI + BFe)&e e. Moreover,
a matrix of (A + BEe)le is given by

(7.6) Me:

Finally, for each e, e c (A]), the reachable subspace of (A, B).
Proof. The claim x(e) A-Ib is immediate. Since the vectors A-b are a basis

for , it follows from 2 and 4 that e . Using (7.3) and (7.5), it may be verified
by straightforward calculation that (Av + BFe)x(e)=-=1 eJ-’-xj(e). It follows that
e is indeed AF + BFe-invariant and that a matrix of the map restricted to we is given
by (7.6). Finally, to prove that e is contained in the reachable subspace, make a
Taylor expansion to find that (I + eAF) -1 m=0 (-e)mArfl It then follows immediately
that xl(e)E(AFI) for all e. The same follows for X2(e), X3(e) etc.

We note that a slightly ditterent construction leading to an approximating sequence
for a singly generated controllability subspace was described in [13]. The construction
described by us however exhibits an important property which will be formulated in
the following lemma. The proof of this result is straightforward but rather technical
and will be deferred to Appendix C.

LEMMA 7.4. Let := )/k= A-it be such that ) k=2 i--2AF rl and )/k= A-3/
772. Let x(e) and Fe be as defined above. Then the following holds" there is constant C
such that for all _k:

(7.7) ]]H eA+")’x,(e)llL,O as eO,

(7.8) IIH_ e’+)’x,(e)ll, <- C for all e. [3

Now, in order to complete a proof of Lemma 7.2, we need one more preliminary
result. Up to now we have constructed a sequence of controlled invariant subspaces
converging to a singly generated almost controllability subspace and defined a feedback
map on each of these controlled invariant subspaces. By applying the decomposition
theorem, Theorem 6.1, and applying the above construction to each appearing in
(6.1), we can find a sequence of controlled invariant subspaces e converging to
)__m’. In the obvious way we can define a map Fe on e. Now the question is, can
we define Fe appropriately on a subspace complementary toe ? The next construction
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theorem states that, indeed, we can. It is here that we will use the results on exact
disturbance decoupling with stability constraints from 4. In the following, Vb :=
Vb(:7/.1, :7/.2), Vg := Vg(:7/.1, :7/.2) and b := b(:7/.1, :7/’2) are denoted:

THEOREM 7.5. Consider the system (1.1). Let A be a symmetric set ofdim [((A )+
Vg)/Fb ] complex numbers. Then there is a map FI" --> 71 and a subspace c such
that the following conditions are satisfied"
(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(A+ BF1) T’g c T’g,
A+ BF1) V*(:7/.2) V*(:7/.2),

tr(A+ BFI / *(’C2)) C,

(A+ BF)(T’g))

tr(A+ BF, O)/) A.

Proof. Let Fo"-> q/ be a map that satisfies the conditions (4.1), (4.2) and (4.3)
of Theorem 4.3. Let P" -> /Vg be the canonical projection. Let (AFo, B) be the
system induced by (AFo, B) in the factor space /Vg. Since Vb Vg +b and ker P
Vg, we have PVb Pb. By Lemma 2.4 and the fact thatb is an almost controllability
subspace, it follows that P’b is an almost controllability subspace with respect to the
system (/Fo, /)" By [22, Prop. 1.2], P(A[)=(.Folim ). Let A be as above. It can
easily be verified that #A= dim [(,Folim B)/tb]. Thus, we may apply Proposition
2.5 to find an (gFo,/)-invariant subspace c /Vg and a map/" /Vg such that

(7.15) P@ (olim
(7.16) (AFo+BF) Z,
(7.17) tr(fiFo+// ) A.

Now let c be any subspace such that po and Lr fq Vg {0}. Define a map
FI" -> 0-// by F1 := Fo/ FP. We contend that the subspace and the map F1 satisfy
the claims of the theorem. To prove (7.9) to (7.11), note that F11 Vg Fol Vg. The claim
(7.12) can be proven as follows: From (7.15) we have P(Vb+)= P(AI3). Hence,
since Vg c Vb, t/’b W-- t/’g W(Al tJ ). Assume x e Vb c. Then PxePVbf’={0}.
Thus, x ker P f) Vg [-1 {0}. It follows that Vb + Vb .

To prove (7.13), note by using (7.16) that P(A+BF)(Vg)=
P(AFo+ BFP)( Vg) Z) (AFo+ BF1) c Lr P( Vg 09). Finally, (7.14) follows
immediately from (7.17).

We are now in a position to complete the proof of Lemma 7.2:
Proof of Lemma 7.2. (i) =:> (ii). This follows immediately from the fact that the

L2-induced norm of a convolution operator is bounded from above by the Ll-norm
of its kernel (see, for example, [2]).

(iii) => (i). In this part we will construct a sequence of feedback maps {F; e > 0}
such that, for each x Vb, Lx 0 and H=Lx -<- c for all e, for some constant
C. The construction is divided into five steps"

1. Decomposition. Apply Theorem 6.1 to find a decomposition
i--1with =)5__ AF , such that (6.2) and (6.3) hold.

2. Approximation of singly generated controllability subspaces. For each , apply
the construction (7.3) to (7.6). Thus we find vectors x(e) (i ), subspaces :=
span {x(e); } and maps F"& 0// such that

(7.18) x)(e)-- A-lbi; --->(e 0).
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Moreover, by applying Lemma 7.4, there are constants Cj such that

(7.19) [[H1 e(av+BFS)txJ)(e)iiL,’-’>O(e ---> 0),

(7.20) [IH2 e(Av+BFs’)txJ)(e)IIL, <= C for all e.

3. Composition. Since the Z#s are independent, it follows from Lemma 2.8 that for
e sufficiently small the Z#s (J _m’) are independent. Define := Z#l"" "m’-It
follows that - . Define now F - by defining FI := (F+ Fs
(j _m’).

4. Construction offeedback outside t. To define a map on a complement of,
let Ac Cg be a symmetric set of dim [((A[)+ o//,,)/o//,] complex numbers and apply
the construction theorem Theorem 7.5 to find a subspace c and a map FI"
such that (7.9) to (7.14) are satisfied. In the remainder of this proof, denote
by . We may then prove the following:

LEMMA 7.6. For all e sufficiently small the following holds"

(7.21) T’gb
Proof By Lemma 6.6, T’b3=T’gY. Since, for each e,

(Lemma 7.3), it follows from (7.12) that c T’gY. Since -->, we obtain
from Lemma 2.8 that VI (T’gY)= {0} for e sufficiently small. The equality,(7.21)
now follows immediately by noting that for e sufficiently small dim dim.

5. Definition of the sequence {F; e > 0}. Let W be an arbitrary subspace of
such that =T’gY /4/’. In this (e-dependent) decomposition of define
F" --> by F]T’gY:=FIlT’gY, FI=FI and F arbitrary on

We contend that the sequence {F; e > 0} defined in this way satisfies the condition
(i) of Lemma 7.2. To prove this, first let x T’g. Since F T’g F1 T’g, we have by (7.9)
and the fact that T’g c Y(1 that x(AvlT’g)= Y(1 for all e. Thus, for all e, H1T(t)x=O
for all t. Let Av, and H2 be defined by the following commutative diagram (Fig. 2),
in which P is the canonical projection:

AF

P P

,/*(yc) AF ’,/ (yc)

FIG. 2

We then have H2T(t)x= fflzeAF, tX for all e. It follows from (7.11) that H2Tx is
in LI[0, oo) with, obviously, Ll-norm independent of e. To complete the proof it now
suffices to show that for all x e ,, Nrx ,-, 0 and N.rx , is uniformly bounded
with respect to e. Sinceb is spanned by the vectorsA-1 b, it suffices to tgke x A--1 b.
By (7.21), we have b c@N. Thus, there are vectors v(e)e and
coecients z0(e) e such that

(7.22) A-lb, v(e)+ Y, E ’o(e)xS)(e)
j=l i=1

Since x}S(e) - Ai-1 b, it can be proven by standard means that v(e) 0, to(e) 0
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(i, j) # (s, l) and that ’st(e) 1 (e 0). Now, for a 1, 2 we have

7.23)
m’

j=l i=1

By (7.19), note that for a 1 the last term converges to 0 as e 0. Using (7.20), it
follows that for a 2 the last term is bounded from above, independent of e.

Finally, we will show that for both a 1, 2 the first term on the right in (7.23)
tends to 0 as e 0. For this, let A, and H be defined by the commutative diagram
(Fig. 3) (P is the canonical projection):

AFt

FIG. 3

By (7.14), note that o’(AF,)= A c Cg. Moreover,

Since v(e) --> 0, this^ expression tends to 0 as (e --> 0).
Let A, and H: be defined by the commutative diagram (Fig. 4) (P3 is the canonical

AFt
projection)"

FIG. 4

It can be verified that tr(.F,)=tr(.F,)Wcr(AF, lt/’g/*(?7[2)), which, by (7.11) and
(7.14) is contained in Cg. It follows that

which again converges to 0 as e 0. This completes the proof of Lemma 7.2.
Remark 7.7. It is worthwhile to point out which freedom in the spectrum assign-

ment we have in A+BF when we use the construction of the sequence {F; e > 0} as
in the proof of Lemma 7.2.

The lattice diagram (Fig. 5) shows the hierarchy of the relevant subspaces in
combination with the freedom in the spectrum of A+ BF.

Denote o//. := g (fill, fir2))
Note by Lemma 7.3 that the spectrum of the map A+BFI consists of an eigenvalue
in -e -1 with multiplicity equal to dim [l/’b/t/’g].
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fixed, independent of e

assignable, independent of e

tends to -oo as eO

stabilizable, independent of e

fixed, independent of e

FIG. 5

8. Some special cases and extensions. In this section we will consider some special
cases of the main theorem, Theorem 7.1, and spend a few words on some extensions
of this result. One interesting special case of (ADDPBP)p is the situation that we take
H1 H and H2 I. This corresponds to the almost disturbance decoupling problem
with bounded peaking of the entire state vector. Denote r := ker/-/. Since, by Theorem
4.2, g(:][, {0})= o//g,([) + *({0})= o//.g,(y[) and since, by Theorem 6.3, b(Y[, {0})=
3 +A( b*({0}) f3) 3 +A( fq ff), we have the following corollary of Theorem 7.1"

COROLLARY 8.1. Fix p { 1, 2, }. Then the Lp-almost disturbance decoupling prob-
lem with bounded peaking of the entire state vector is solvable if and only if im G
*(C + +A n c).

Next, we will spend some words on possible extensions of the results of this paper.
First we would like to point out that, while (ADDPBP)p is a nontrivial extension

of (ADDP)p, we might also consider an extension of the Lp-Lq almost disturbance
decoupling problem (ADDP)’, see [20] or [17]. This would lead to the following
synthesis problem"

We will say that the Lp- Lq almost disturbance decoupling problem with bounded
peaking (ADDPBP)’ is solvable if there is a constant C and, for all e > 0, a feedback
map F #/such that with the feedback law u Fx, in the closed loop system for
x(0) 0 there holds, for all 1 <= p <- q <- oo, for all d Lq[0,)

It may be shown that the solvability of the above problem is equivalent to the existence
of a sequence of feedback maps {F,; e > 0} and a constant C such that for both p 1
and p=oo IIHTGII,-O(-O) and IIH=LGII=,-<- C for all e.

A theory analogous to the one above may be developed around this problem. It
can be shown that, again under the assumption that either (A, B, H) is left-invertible
or that H2 is injective, a necessary and sufficient condition for the solvability of this
problem is that

im Gc V(’tc,, ff[2) + (9*(fftc2) f"l ’[1).

For more details, the reader is referred to 17].
A final extension of the results of the present paper is the situation in which we

require internal stability of the closed loop system. This would lead to the following
synthesis problem: We will say that the Lp-almost disturbance decoupling problem with
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bounded peaking and strong stabilization (ADDPBPSS)p is solvable if the following is
true. There is a constant C and for all e > 0 and all real numbers S a feedback map
F,s:- such that, with the feedback law u F,sX, in the closed loop system for
x(0) =0 for all d Lp[0, c) the inequalities (3.2) and (3.3) hold and such that Re tr(A+
BF,s) <= S.

Thus, we require that the spectrum of the closed loop matrix can be located to
the left of any vertical line Re s S in the complex plane. It may be proven that if at
least one of the conditions (7.1), (7.2) hold, then for p {1, 2,} the latter problem is
solvable if and only if (A, B) is controllable and

(8.1)

We note that if (A, B, H1) is a left-invertible system then the inclusion (8.1) becomes

im Gc +A[ b*(9’/2) f3

(see Theorem 6.3). If H2 is injective then (8.1) becomes

im G c *(3’g’,)+ + A[ CI

Again, for details the reader is referred to 17].

9. A worked example. To illustrate the theory developed in this paper and to
demonstrate its computational feasibility, in this section we will present a worked
example. We will consider a linear system with two outputs and check whether
(ADDPBP)p is solvable for this system. Next, we will actually compute a sequence of
feedback mappings that achieves our design purpose. The system that will be considered
is given by (t)=Ax(t)+ Bu(t)+Gd(t), Zl(t)= H1x(t), z2(t) H2x(t), with

0
-1 0 0 0

A= 0 0 1 0., B= 0 0

00 0 0 0 10 0 010 0 0 0

and

H1 (0 0 0 1 0), H2 I5x5

0

Thus, 5 and q/= 2. Denote 9’ci ker Hi. The route that we will take is as follows.
First, we will check whether the subspace inclusion im G c Vb(9’’l, 72) holds to see if
(ADDPBP)p is solvable. It turns out that this is indeed true. After this, we will follow
closely the lines of the development in 7 and construct a required sequence {Fn}. As
before, Cg={h C[ReA <0} and the subspaces //’g*(ffrl) and t/’g(Yffl, ffff2) are taken
with respect to this stability set. Let the standard basis vectors in 5 be denoted by

Using the algorithm ISA (see [22, p. 91]) and a construction as in [22, p. 114],
we calculate that g(Yf, Yf2) g*(Yf)= span {el, e2} (since *(Yf2)= {0}). Thus, by
Theorem 4.4, DDPOS is not solvable for the above system. Since Yf2 {0}, by Theorem
6.3 we should check if the subspace inclusion im G Vg*(Yf)+ +A( Yf) holds.
It may be calculated that g*(Yfl)+ +A( fq Yfl)=span {e, e2, e4, es}. Since im G is
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indeed contained in this subspace, (ADDPBP)p is solvable for all 1 _-< p <_-o. Unfortu-
nately, (ADDPBPSS)p is not solvable because (A, B) is an uncontrollable pair. We
will now construct a required sequence of feedback map,pings"

St,ep 1" decomp,osition. We decompose Vb g 03 W, with og/. := 0] +A( fq 1)
and such that 0)(f’l *(:7{1))=. Then W=span{e4, es}. Since es and
e4 Aes, W is equal to the two-dimensional singly generated almost controllability
subspace gO)Ag, where b- es. Note that indeed (6.2) and (6.3) are satisfied.

Step 2: approximation. Approximate g0)A by (A, B)-invariant subspaces-span {Xl(e),XE(e)} according to (7.3). In our case it can be calculated that Xl(e)=
(00-e2 -e 1) r and XE(e)=Ab=(O00 1 0). Note that b= Bu with u (). Following
(7.5) for e >0 define F’- 0//by FXl(e)=-e-l(l) and FXE(e)=-e-2(l).

Step 3" a feedback mapping outside. Note that for our system (A])+ Vg .
It can be verified that the conditions (7.9) to (7.14) are satisfied with A-{-3};
’= span {(00 1 -3 9) r} and FI"- given by

FI= 0000

Step 4: definition of the required sequence {F; e > 0}. Note that
In this decomposition define FI(Vg 0) Lr):= FII(Vg 0) Lr) and Fl :=F[. It can
be verified that the matrix of Fj with respect to the standard bases in =5 and
o?/=2 is given by

-1 0 0 0 0 )F:= 0 0 f:(,) -1/: f:()

where

-27ez+18e-3 27e3-3e-2
f23(e) and fEs(e)=eE+9e4 9ea+e

Finally, by valuating A + BF in the basis suggested by the decomposition- ?/’g 03
03, we can calculate the closed loop impulse response matrices from d to Zl and

z2, respectively:

WI (t):= Hle(A+n)tG=(+l)e-t/,
0

W2e(t) := H2e(A+n)tG e-t/.
t/e+

\-t/e2]
A standard calculation shows that WI L 2e -> 0 and that

wll,- w(t)ll dt<=l/2+.

Here, II" denotes the Euclidean norm. From this it can be seen that indeed for every
1 =< p <- oo the Lp Lp induced norm of the closed loop operator from d to Zl tends to
zero as e 0 and that the induced norm of the operator from d to z2 is bounded with
respect to e. Note that IIFll-, as e- O.
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10. Conclusions. In this paper we have developed a theory around the almost
disturbance decoupling problem with bounded peaking. Necessary and sufficient
conditions for the solvability of this synthesis problem were formulated in terms of a
subspace inclusion involving a certain almost controlled invariant subspace. We showed
that this almost controlled invariant subspace can be calculated using existing
algorithms. We also provided a conceptual algorithm to calculate the sequence of
feedback maps that achieve the design purpose. The calculations involved were illus-
trated in a numerical example.

Several questions remain to be answered. As a first direction for future research
we mention the extension of the above results to the case that the system under
consideration does not satisfy one of the conditions (7.1), (7.2), i.e., the system (A, B,
HI) is not left-invertible and the map H2 is not injective. Another interesting issue
would be to extend this theory to the more general situation that we allow only output
feedback instead of state feedback. In this context we mention [21] and recent results
in 18]. Finally, connections between this work and results on bounded peaking in the
context of the nearly singular optimal control problem [3] remain to be worked out.

Appendix A. In this appendix we will establish a proof of Lemma 5.3. The proof
will proceed through a series of lemmas. The first lemma is concerned with the
convergence of sequence of rational functions and was proven in [7]. In the following,
iff(s) is a strictly proper rational function, then degf will denote its McMillan degree.
We have:

LEMMA A.1. Let {f,} be a sequence of strictly proper rational functions. Suppose
that there exists rNl such that deff<-r for all e. Assume that lim_,of(s) exists for
infinitely many s C. Then there exists a rationalfunctionfsuch thatf(s)->f(s) (e ->0)
for all but finitely many s

We can then prove the following:
LEMMA A.2. Suppose that either the condition (i) or (ii) in Lemma 5.3 is satisfied.

Then there are a rational vector (s), proper and stable and, for i= 1, 2, subsequences
{z*/,,(s)} such that l,e,(S) "-> 0 (e’ -’>0) and z*2,,(s) -> (s) (e’ ->0) for all butfinitely many s.

Proof. If the condition (i) of Lemma 5.3 holds, then for tr := Re s >-0:

(A.1) e-’llz,,(t)ll dt<- IIz,,ll,.

If the condition (ii) of Lemma 5.3 holds, then by the fact that i.(s) is strictly proper
and has no poles in Re s _-> 0, applying the maximum modulus principle [8] gives, for
all Re s _-> 0,

(A.2) II ,, (s)ll  sup

Hence, in both cases we have l,(s)-->0 (e->0) and cv . Since, for all e,
z*2,(s) is analytic in Re s > 0 and since the sequence {2,(s)} is uniformly bounded
there, by Vitali’s theorem [8] there exists a function (s), analytic in Re s > 0, and a
subsequence {z*2,,(s)} such that 2,,(s)-> (s) (e’->0) uniformly on each compact set
K in the open right half plane. Therefore, z*2,,(s)-, (s) (e’->0) pointwise in Re s > 0.
By Lemma A.1, we may assume that 2,,(s)-> (s) (e’->0) for all but finitely many s
and (s) is rational. We contend that (s) cannot have poles in Re s 0, for define
J := {siRe s =0, s is not a pole of (s) and z*2,,(s)-> (s) (e’-> 0)}. Then the complement
of J in Re s 0 is a finite set. Suppose So s J. For e’ sufficiently small, z%,,(So) (So) --<
1. Hence we have

(A.3) R(,o)II + -< 1 + C
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Therefore, (s) is bounded on J and hence bounded on the entire imaginary axis.
Also from (5.3) there follows that (s) is proper. Finally, l,,(s)--> 0 (e’-0) in Re s =>0
and hence, again by Lemma A.1, for all but finitely many s. []

We will now complete the proof of Lemma 5.3. Recall that u (t) is a regular Bohl
input and zl.(t) HlX(t), z2,(t) H2x(t), where : Ax + Bu, x(O) Xo. We will
prove that if either the condition (i) or (ii) in Lemma 5.3 is satisfied, then Xo

C, C)"
Proof of Lemma 5.3. Let F" --> 0// be such that AF*(’{’2)c *(’{’2). Denote

v(t) := u(t) Fx(t). Then AFx + Bv. Note that x and v have rational Laplace
transforms. Let P" ///’*(2) be the canonical projection and let A--- be the quotient
map of AF modulo *(’{’2). Let /:= PB and let 1 and 2 be mappings such that
H1P H1 and H2P H2. Decompose 0//= 0//1 0//2 with //1 ker B and //2 an arbitrary
complement. Accordingly, partition B=(0, B2). Then B2 is injective. Let G(s):=
2(Is-,)-1/2. Let *(2) be the supremal controllability subspace in 2 with
respect to (.,/). By [22, Ex. 5.8], we have *(2)= {0}. Hence, by [22, Ex. 4.4],
(s) is a left-invertible rational matrix, with left-inverse t+(s). Now, let (s) and
to (s) be the Laplace transforms of x and v, respectively. Let (s) := Ps (s) and
go := Pxo. Partition

\,o.(s)

and conform the decomposition 0//= 01)02" The following relations then hold

(A.4)

(A.5)

and hence

(A.6)

(A.7)

Xo (Is AF)( s) Brow(s),

0 (Is AF)(s) B2t02, (s),

o=,, (s) d+(s)[e=,,(s) #I(Is )-’o],

L s) (Is )-’(o+ #,o.,(s)).
Apply Lemma A.2 to obtain (s) such that z"2,(s) (s) (e-0) for all but finitely
many s (write e in the subsequence for which this holds). It follows that there are
rational vectors to2(s) and :(s) such that to2,(s)- to2(s) and :(s)--> :(s) for all but
finitely many s. Define now

0s))’o(s):= (,o
Then we have #0 (Is--AF)(s)--Bto(s). Moreover, since HI: (s)= l,(s) 0 (e 0),
we have Hl:(s)=0. Also, since 2L(s)= 2,(s) (s), 2(s) is proper and stable.

Finally, let :(s) be any rational vector such that :(s)= P(s). Then Hl:(s) =0,
H2(s) is proper and stable and, for some vector xlm *(2), Xo=
(IS-AF)(s)-Bto(s)+x1. It follows that Xo--Xl.b({1,{2). Since *(ffLr2)
b (’Cl, ’/’2) we thus obtain Xo //’b(1, ff’2). This completes the proof of Lemma 5.3. [3

Appendix B. In this appendix we will state and prove a result on the geometrical
structure of the sequence of subspaces :(’/’i, ff/’2), given by (6.8). Our result is a
generalization of [19, Thm. 7.1] and deals with the representation of subspaces in
terms of chains in the input space . Related results can be found in [14] and [10].
Further, in this appendix we will prove Lemma 6.5.
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LEMMA B.1. Given the system =Ax+ Bu and subspaces 2 1 let
*(’[1, ’2) be defined by (6.7) and (6.8). Then the following holds: for all , there
are a chain {l}il and a map F" such that

(a.1) ’(:,, y:) A-’,
/=1

(a.2) A-2 2,
1=2

(a.3) dim dim A-I, dim (1, Y)/-1(1, 2)] (l]).

Remark. In the above, for consistence define A- {0} if i= 1. In the
following we will denote :=(, 2).
oo The proof is by induction. For 1, the lemma is trivially true" take

be a chain in and:= 1. Suppose now the lemma is true for i. Let {/}:
F be a map such that the conditions (B.1), (B.2) and (B.3) are satisfied. We will show
that+ can also be represented as above. This will be done by constructing an extra

and by defining a newfeedback map Fnw. First, letterm1 for the chain {l} !:

], be subspaces such that

_
(define o := ). Using (B.1) we then have:

i ff{2= ( l:l A-(t+l + +l)WA-i) y{2

(ill=l A-I1+1W t=li@lA-1+I+AFi-1i)
Using the modular distributive rule [22, p. 4] and (B.2), it follows that

(B.4) ’ Y[2 A-I,+I+ +,+AF ,
/=1 /=1

On the other hand, by (6.8),

(B.5) ’+’= ’+’(yc:) yCl ( +A(’(C:) C)) Cl.
Since, by the fact that {2 c if{l, ff(Y{2) {2 {2, it follows by combining (B.4)
and (B.5)

:( [(i1 A_I ) ] )i+l + ml+ +A A-I[+I + i if[2
(B.6) =

(+ ) Y[.

Here, we defined

:=+ 2 ++ Yr
/=1

Again using the modular distributive rule andc yg, we obtain

(.7) + +( yr).

Let c N be a subspace such that += and let {v,..., v} be a basis
for . By definition of , each v can be represented as v== A-bd+Ab, with

/=2
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Here, bj i and b.j (j _r, _/). By the assumption that fq i= {0}, it can be
verified that for fixed {0,. ., i}, the vectors {Abl," ", Ab,.} are linearly indepen-
dent. Define now

(B.9) +1 := span {bl,. b,}.

Note that i+1 c. Also, for _/, define vectors x,t by

l-1

(B.10) xj, := bj, xj,, :’- E AIF-k-a b-k+,j .-I- AtF- b.
k=l

From (B.10), for 2,. , we have x,t AFX._ + bi-/2,j and v AFX,i + b..
Moreover, by the independency of the vectors {AFb;j e_r} and by the fact that the
spaces A-N (l e_/) are independent (the sum in (B.1) is direct), it can be shown that
the vectors {xj,; j e _r, e_/} are linearly independent. Extend this system to a basis for. Let lj,k O be such that b_k+,j=Buj,k and define a map F":- q/by defining it
in the above basis by F"x,t:= u, and F" arbitrary on the extension. It can then be
seen that for

(B.11)
span {x., ., x,..} (Ar + BF")t-Ji+,
( span {v,. ., v} (AF + BF")i+

and, for 1= 1,..., i-1

(B.12) BF"(AF + BF")’-,+I +,_t 1.
Let {;’}’t=l be a chain in such that i/l@’=. Since+ @, by (B.1)
and (B.11) we obtain

.i+1 E AIF-’I+(AF + BF i+1
/=1

Z A-I,+I + (AF + BF")’,+I + Z A-I’.
1=1 l=l

Thus, by (B. ).

i+1

(B.13) ffi+l= , (Av + BF")t-J,+ + _, AIF-I’JT.
1=1 1=1

We contend that all sums in (B.13) are, in fact, direct sums. To prove this, assume the
contrary. Then the following strict inequality must hold

i+1

dim +1 < Y dim (AF + BF")l-lffdi+l + dim A-IJ
/=1 /=1

=< Y. dim i+ "- dim d+ dim J’ dim + dim ,
/=1 /=1 /=1

where the last equality follows from the fact that i+1@ t--1" On the other hand,
however, dim+ =dim +dim , which by (B.3) and (B.1) equals _= dim
dim . Hence we obtain a contradiction. It follows that

i+1

(B.14) ri+, @ (A+BF,,)I-I,+,@@
I=l 1=1
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A-7 By (B.14) we have thatDefine //’:=)i=, (Ar+BF")-,+ and :=)i=,
o//. f-) {0}. Decompose //’09, where is arbitrary. In this decomposition,
define Fnew" -> q/as follows

(B.15) Fnowl T’:= (F+ F")I T" Fnow[:
and F, arbitrary on . It can now be seen immediately from (B.14) that

i+1 i+1

(B.16) ’+ ) (A+BF,,w)-,+@ (A+BF,,w)’-I7=@ (A+BFr,ow)t-.
/=1 /=1 /=1

This already verifies (B.1). Next, we will verify (B.3).
It is claimed that for 1, 2,..., i+ 1, dim (A+ BFnew)t-lt dim t. Suppose

the contrary. Then we have

i+1

dim t+dim (= dim 5’+1= dim (A+ BFw)t-IJt
/=1 /=1

E dim (A+ BFnew)t-ldt+dim (
/=1

< dim t + dim J,
/=1

which is a contradiction. Equation (B.3) then follows immediately by noting that
dim (A+ BFw)ii+ dim J=dim [i+/:]. Finally, it can be verified using (B.2),

i+1 !-2(a.8), (B.11) and (B.15) that=2 (A/ BFnew) 2.
Remark B.2. Note that the proof of the above lemma is straightforward but

notationally rather involved. An alternative proof could be given using the concept of
train basis, see [14].

The above lemma is needed in the following:
Proof of Lemma 6.5. By Lemma B.1, there is a chain {}i"__ in and a map

F" --> q/such that " =)= A-I and such that (6.12) holds. Since 5" c if{l, also
(6.11) holds. By (B.3), to prove (6.13) it is sufficient to show that, for a _n, dim A-I
dim AFJi. Suppose the contrary, i.e., suppose that dimA-I > dimA for some
i. Then there is a vector v 0 in A-1i such that AFv 0. Since a subspace o//. is
controlled invariant itI AFt/’c /’-I-td [22, Lemma 4.2] it follows that span{v}
is controlled invariant. Since also Vail, v must be contained in *(1), the
largest controlled invariant subspace in . On the other hand,
*(r2) f) *(rl) t’). By Lemma 2.2 it follows that b a a*(’{). Thus, v
,*(1) fq *(), which by Lemma 2.2 contradicts the assumption that *() {0}.
Thus, we have proved formula (6.13).

Finally, to prove (6.10), note from (6.9) that b(’/’,’’E)=+AF"=
/AFJ /’’" / A"FJ,,. It will be shown that this is, in fact, a direct sum. Suppose it

is not. Then there are vectors b a i and boa , not all zero, such that =oAb O.
A-ibm. Then we have AFw =-bo a J. Since also w a 1, w must beDefine w :==1

contained in T’*(I). On the other hand, we *(1), and it follows as above that
w=0. Hence, bo 0. Repeating this argument with w=" A-lb replaced by w=

i=2 A-2b then yields Aw=-bl, and thus bl =0, etc. In this way we find b=0
(ia _n), which is a contradiction, l’1

Allentlix C. This appendix will be devoted to a proof of Lemma 7.4. The proof
will be given through a series of smaller lemmas. For e > 0, let x(e), a _k, a subspace

and a map F’ q/ be given by (7.3) to (7.5). Recall from Lemma 7.3 that a
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matrix of the map (A+ BF)[. with respect to the basis X := {x(e),..., Xk(e)} is
given by (7.6). Now, let D’. be the linear map with matrix
diag (- 1/e,. ., 1/e) with respect to X. Define a nilpotent map N" - by
N := (AF + BF)I D. Obviously, the matrix ofN with respect to X is given by

(C.1) matN

0 --B
-2 B-

0 0

The following lemma is then immediate:
LEMMA C.1. Let _k. Thenforj i, i+ 1,. ., k we have Nx( e =0. On the other

hand, for j 1, 2,. ., i- 1 the following holds

i--1 !--1 Ij_--I
(C.2) Nx,(e)= E , (-1)ieJ-’-Jxj(e)

/t=l /2=1 lj=l

(For consistency, define lo := i.)
Proof. Use (C.1) to obtain an expression for Nxi(e). ApplyN to the result, etc.
Another technical ingredient we will need in our proof is:
LEMMA C.2. Let k. Then we have

(C.3) x,(e) A’-lb ’-’+
F -e , A lx(e)F

/=1

Proof. This follows immediately from (7.3), using induction. E]

Finally, we will need the following result:
LEMMA C.3. Under the assumptions of Lemma 7.4, the following holds for all

_k: nlxi(e) O(e k-i) and HEXi(e) O(ek-’-).
Proof. By iterating formula (C.3), we obtain

x,(e)=AF-lb -e Y AFb+e2 Y. ., Alb+
11=1 I1=1 12----1

(C.4) +(-e) k-’-I 2 2 b
/=1 /2=1 lk_i_=l

+(-e) k-’ E E Ak-’-’Xk_,(e)
/l=l 12=1 lk_i=l

(assume that l<-i-<k-2). Under the assumptions of Lemma 7.4 we have
A-b, ,AkF-3beK2C :7[ and Ak-2ber. Thus, in (C.4) all terms but the last are
in and all terms but the last two are in 2. It follows then that lim_,o e i-k" HlX(e)
exists and that lim_,o e i/-k. H2x(e) exists.

For k-1, the existence of the former limit follows again from (C.4), while the
existence of the latter is obvious. For k, the existence of both limits is obvious, l-1

Proof ofLemma 7.4. By the nilpotency of N, note that for e _k

e(AF+a)txi( e eNteDtxi( e e-(/’)txi( e ).
j=o ji ]

By the triangle inequality it therefore suffices to prove the following" forj 0, 1, , k
1, the sequence IIte-’/’HNGx,()ll, tends to 0 as e0 for a 1 and is uniformly
bounded with respect to e if a 2. Since o te-/’ dt =jle+, it suffices to prove
this asymptotic behaviour for (Euclidean norml). Apply now Lemma
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C.1 to obtain a representation of N{xi(e). Again by the triangular inequality, it is then
sufficient to prove that lim_oeJ/lH,e*-i-Jx,(e) is 0 for a 1 and exists for a =2. (l
is some index ranging between 1 and k.) Now, by Lemma C.3 Hx(e)= O(e k-l) and
HEX(e)= O(ek--l). Thus, indeed lim_o e-i-lHlx(e)=O for all l _k and i _k and
lim_,o e-i-1HEX(e) exists for all _k and _k. This completes the proof of Lemma
7.4. D
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