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Almost Everywhere Convergence of a Subsequence of the
Logarithmic Means of Vilenkin-Fourier Series

Gyorgy Gat and Karoly Nagy

Abstract: The main aim of this paper is to prove that the maximal opem@ta sub-
sequence of the (one-dimensional) logarithmic means einWih-Fourier series is of
weak type(1,1). Moreover, we prove that the maximal operator of the loganic
means of quadratical partial sums of double Vilenkin-Feuseries is of weak type
(1,1), provided that the supremum in the maximal operator is take special in-
dices. The set of Vilenkin polynomials is denselih so by the well-known density
argument the logarithmic meats(f) converge a.e. té for all integrable functiorf.

Keywords: Vilenkin group, Vilenkin system, double Vilenkin-Fouriseries, loga-
rithmic means, a.e. convergence.

1 Introduction

THE n-th Riesz’s logarithmic means of a Fourier series is defined b

1 n_lSK(f)
& K

wherel, := $f~1 1. The Riesz's logarithmic means with respect to the trigono-
metric system was studied by a lot of authors, e.g. Szasar{d]Yabuta [2], with
respect to Walsh, Vilenkin system by Simon [3] and Gat [4].

Let{q«: k> 1} be a sequence of nonnegative numberspttteNorlund means
of an integrable functiorf is defined by

n—1

~N n— f )
o k;q kSk(f)
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276 G. Gat and K. Nagy:

whereQ, := yR1 k. This Norlund means of Walsh-Fourier series was investigiat
by Méricz and Siddiqi [5]. The case, whep= % is excluded, since the method of
Méricz and Siddigi do not work in this case.

If g := % then we get the (Norlund) logarithmic means:

_1TEs()
()= 3 25

From now, we will write simply logarithmic meang(f). Recently, for the Walsh
system Gat and Goginava [6] proved some convergence aatydivce properties
of this logarithmic means of functions in the class of comtins functions, and
in the Lebesgue space. They proved that the maximal normecgernce function
space of this logarithmic meanslisog™ L.

The a.e. convergence of a subsequence of logarithmic méakialsh-Fourier
series of integrable functions was discussed by Gat andn@es [7, 8]. We will
generalize the results of Gat and Goginava for Vilenkineys.

More results on this logarithmic means with respect to umided Vilenkin
system can be found in [9].

First, we give a brief introduction to the theory of Vilenkgystems. These
orthonormal systems were defined by N.Ja. Vilenkin in 1947 11] as follows.

Let P denote the set of positiv integerd\ := PuU {0}. Let m=
(Mo, my,....My,...) (2<m € N,ke N) be a sequence of natural numbers and
denote byZn, the my-th cyclic group(k € N). That isZ,, can be represented
by the set{0,1,...,m¢ — 1},where the group operation is the mog addition and
every subset is open. Haar measureZgg is given in the way thap({j}) :=
% (] € Zm, ke N). Let Gy be the complete direct product of the compact groups
Zm, (ke N). Gy is a compact Abelian group and called Vilenkin group. The ele
ments ofG, are of the formx = (xg, X1, ..., X, ...) With 0 < x¢ < mg (k € N). The
group operation o1&y, is the coordinate-wise addition, the normalised Haar mea-
surep is the product measure. The topology @ is the product topology, a base
for which can be given in the following way:

lo(X) := Gm, In(X) :={y € Gm:y= (X0, ---s%-1,Y¥n,...)} (XE Gm,n € P),

In:=1n(0) (n€ N). Furthermore, letP(Gy,) denote the usual Lebesgue spaces on
Gm (with the corresponding norm.||p), #% the g-algebra generated by the sets
Ih(X)(x € Gm) andE, the conditional expectation operator with respectAgn
N).

Let (m) := {¢n : n € N} denote the character group &f,. We enumerate the
elements of (m) as follows. Fok € N andx € G, denotery the k-th generalized
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Rademacher function:

re(X) :== exp(2$k> (i:=v-1).

If we define the sequend®y : k € N) by Mg := 1 andMy := mpmy...mg_1 (K€ P)
then eacn € N has a unige representation of the foma= 3’ o ncMy, where 0<
Nk < my (Ng € N). Let the order oh > 0 be denoted byn| := max{j € N :n; # 0}.
That iS,M‘n| <n< M|n\+l'

Now, we define the Vilenkin functiong, by

[ee]

U= I(I:L(rk)nk.

We remark thaf" (m) is a complete orthonormal system related to the normalized
Haar measure 06,.

Define the Fourier coefficients, the partial sums of the Femgeries, the Dirich-
let kernels, the Fejér means, the Fejér kernels, the itbgaic means and logarith-
mic kernels by

n-1 n-1
)= | St 3 P00 Dui= 3

1n 10h
onf ==Y Sf, Kh:==3 Dy,
nkZO nkZO

. 1n—1 S(f - 1n—1 Dk
tn(f)'_ﬁkzln_l( Fn-_ﬁkzln_ka

wheren € P andDg := 0,Kg := 0.
Itis known [11, 12] that

Mn, X€E Iy,
Dm. (X) = 1
0 (X {O, otherwise @

andE,f =Sy, f (neN).

Next, we introduce some notation with respect to the thebtywo-dimensional
system. Let the two-dimensional Vilenkin group &, x G, and the two-
dimensional Fourier coefficients, the rectangular pasiahs of the Fourier series,
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Dirichlet kernels, the Marcinkiewicz means and Marcinkiexwkernels be defined
as:

1?w(nl?n2) = / f‘l’nlll’nzd%

mXGm
n—1m—1

Shl,nzf(X:L»XZ) = kZO I; fw(k>|)WK(X1)WI (XZ)’

Dnl,nz (X1> Xz) = Dnl (Xl)Dnz (X2)>

12 12
///nf == %S(,kf, Kn = - %Dk,k
nk: nk:

wheren € P.

The two-dimensional logarithmic means and kernels of catadhl partial sums
are defined by

(f) = Ly S 10 D
m Ink;n—k’ T G-k

Let <, denote theo-algebra generated by the séf$x) x In(y) (X,y € Gm)
andE, » the conditional expectation operator with respectAg, (n € N).

For two-dimensional variablex,y) € Gy x G we use the notations
L)Ur}(xv y) = L[In(X), Dr]i(xv y) = Dn(X), K%(Xv y) = Kn(X),
l,Ur%(X, y) = "Un(y)a Dﬁ(X, y) = Dn(y), Kr%(x>y) = Kn(y),

for anyn € N. From now, let the sequence be bounded.

2 The a.e. Convergence of a Subsequence of One-Variable Loiga
mic Means
Theorem 1 Let{n*: k > 1} be a sequence of positive integers wich satisfies
2(nk — nk M|nk| + 1)

% log i
< 0
k Y

& logn

where f = 5% ,nfM;. Then the operator{f) := sup. [t (f)| is of weak type
(1,1).

Analogue of this result on Walsh-Fourier logarithmic meaas given by Goginava

[71.
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Corollary 1 Let{n*: k> 1} be a sequence of positive integers which satisfies the
condition of Theorem 1 and letd L*(G,), then

tx(f,x) — f(x) a.e. as k— oo.
Corollary 2 Let f € LY(Gp), then
tm, (f,X) — f(X) a.e. as n— .
The basis of the proof of Theorem 1 are the following lemmas.

Lemmal Let My < n < Ma,1, then

InFn(X) - InDnAMA(X)
WS (-~ - K;()
B wnAMA_l JZ]_ n—nAMA—i—j_n—nAMA—i—j—i—l IR
NaMa —1_
- 'ﬁUnAMAfl(X)%KHAMAfl(X)

+ Uham, (X)In- naMa Fn—nams (%)

Proof 1 During the proof of Lemma 1 we will use the following equaiifil1]:

DnAMA+j = Dnym, + wnAMADj (2)
and the equation in [13]
DnAMAfj - DnAMA - L)UnAMAflﬁju (3)
for0< j < naMa and0 < na < Ma.
Let|n| = A, then
MaMa B (x 1 Di(x
hFa() = 5 ‘(_) ’(.)z:|+||.

j=1 n_J j=naMa+1 n_J

First, we discuss Il by the help of (2).

"AYAL Dt (X)

Il = .
n—naMa— j

=
—naMa—1
Nn—nNaMa DJ(X)

=ln_nm.D M(X)—i—l,U M(X) —_—
N—naANMa ™~ NaMa N le n—nAMA—J

:ln— naMa DnAMA (X) + l,UnAMA (X) I n—naMa Fn— naMa (X) .
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By the help of (3) and Abel’s transformation we investigate |
"% DoY)
N J; Nn—naMa+ j

:_D”AMA (%) nA'\E_l DnaMa—j (x)
Nn—nNaMa = n—nAMA—i—j

:(In - In—nAMA)DnAMA(X)

—WnaMa-1(X) ”A'\%—Z < ! L ) iKj(x)

=1 n—nAMA—i—j_n—nAMA—i—j—i—l

NaMa—1_
- l’UnAMA_l(X) ﬁ KnAMA—l(X) .

This completes the proof of Lemma 1.

__log?(nk—nk Mk +1)

H Ink|
Lemma 2 Letllirg0 Togr¥

< o, then
[Fllt <c<o, k=1,2,..
Proof 2 In [14] we have
|Kn||2 = O(1) as n— oo. (4)

Moreover,
|IDn|j1 = O(logn) as n— co.

(see [10]). These give that

IFall < 3 525 <, 3 nmg = O

Using Lemma 1, we immediately have

I P
Ful1 < c+— L 2K
H nk”l = +Ink JZ]_ i +InkH n‘knk‘Mlnkl—lnl
[
”k—”‘knk|M\nk\
+ H nkfnk M|r’lk|Hl

[ Ink|

log?(nk — N Mg +1)

This completes the proof of Lemma 2.



Almost Everywhere Convergence of a Subsequence ... 281

Proof of Theorem 1:The maximal functionf* := sup,cy | f * D, | is of weak type
(1,1) [15]. Define the operatof by

T f = Sup |f *annAMAflL
n,AeN
In|<A
In the paper [13] Gat and Goginava proved that
| suplkil <c. 5)
|

k h>Mg

(4),(5) and the definition
Tf <sup|f|*|Kn =:Gf

neN

give by standard argument that the operafr€ are of weak typd1,1). At last,
let f € L*(Gp), suppf C Iy and f, f =0. Setn(l) := min{j : [n}| > 1}.

If k< n(l) then
(10 = [ T0)Fw(x=Y)duE) = Ft0) [ F3)du(y) =

Consequently, sé&t> n(l).
Define the operatax by

1l Mk
N f:=sup|f * @« K_ Kk .
n>1p| A I " _n|nk\M|"k\|
We have that
I k k
n“—n‘, M,
k| InK]
[op Tl
I k>n(l) nk Ink| I’
k
© log(n*— n‘nklek‘ +1) HF H
< K_pk 1
& lognk =N Minky
2
00 |Og ( ‘nk‘M|nk|+l) -
C.
-4 lognk -

This implies

[Ntdu < / f(y / S0P (Rt (K=Y IOH(X) | ity

IN

CHflll-
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From Lemma 2 the operatdt andt* is of type (o, ). The operatoN is sublinear
and quasi-local, this gives by standard argument [16] tiebperatoN is of weak

type (1,1).
Lemma 1 and

nrnk‘M‘nk‘sz f
t"(f) < cf*+sup— Z — +cTf+Nf
k>1 Tnk j=1 J

< cf*+cTf4cNf
complete the proof of Theorem Il

Corollary 3 The operator t is of type(p, p) forall 1 < p < oo.

3 The a.e. Convergence of a Subsequence of Logarithmic Meaaos
Quadratical Partial Sums

Define the two-dimensional maximal operatoby

tJ f(xlvxz) = SUp|tMn(f,X1,X2)|.
neP

During the proof of Theorem 2 we will use that the two-dimensil maximal func-
tion f* := sup,.p|f * (D}, DF; )| is of weak type(1,1) and of type(p, p) for all
1< p<o[15].

Theorem 2 The operatortis of weak typél,1) and of typgp, p) forall 1 < p <

00,

By standard argument we have
Corollary 4 Let f € LY(Gm x Gy), then
tw, (F,x1,%%) — f(x!,%%) a.e. as n— o.
The analogue of this result with respect to Walsh-Fourigatdhmic means was

given by Gat and Goginava [8]. To proove Theorem 2 we needidhewing
Calderon-Zygmund decomposition lemma [17].
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Lemma 3 (Calderon-Zygmund decomposition [17]) LetfLy (Gmx Gm), A >
| f]l,. Then there existéuV u-2)) € Gy x Gm, ki € N(i = 1,2,...,) and a de-

composition
f="fo+ Y fj,
2"

where

1) [[folles <€A, [[folly < c|f
2) supp fC Iy (uM1) x I (u?), [ fi=0,i=12 .;
G

mXGm

3) u (_G (I (U x I (ui’z))> < ||l /2.

i=1

Proof of Theorem 2: First, we decompose thd,-th logarithmic kernels. by the
help of (3)

. Far (62 = anl D, (x*) D, (*?)
h" Mn 4 j

+ Py 1 (<) Pty 10F) >

= J
=, (Fii, (X7,5%) — R, (x5, %%) — R, (x4 %8) + g, (X4 %)),
SinceRj (x},x?) = Dy, (x!)Dy, (x?) we have
t}f = sup|f«Fy | = f*.
neP
To discussFﬁ we will use Abel’'s transformatiorF{jn goes in the same way)

M1 D; Mn2<1 1 >__ = M2 K;
—: - — JK'+KM,1—1: +K|\/|n_1
Z j ,Zl i) ,Zl j+1

These implies that
K2

i, = Div, Wi, -1 z JT1+D v, Wi, 1KM 1= FM +FM
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Define the operatort%z’i andt? fori=1,2 by

2t =sup f«Fg'|, t2'f:=|f«xF'| (neP).
neP
From (1) and (4) we have that the operanfré(i =1,2) are of type(co, ). Now,
we will discuss the operatd)f’l (tuz’2 goes in the same way). We follow the method
of Gat and Goginava [8].
Denote (use the notation of Lemma 3)

0 (141 42
g(tht?) := > [ (1)) (Ith’it ),
L(t) = i “fff'.

Let

) € U e () x b (62))
Since [g, fi = 0 we have

Vi (yhy?) =0 (6)

forn <k;.

Lety e Iy, (U-1). Then from 1 we can write that>" f; (y',y?) =0forn> k.
Hencet(?* (y ,¥?) # 0 implies that* € I, (u"!) . Consequently, we can suppose
that

Y€ [l (Ui2).
i=1

Then we write

D = u {(yl,yz) € Gm x <ﬁIK(T2)> :tj(z’l)f (V1 y?) > c)\}

i=1

/ u{y it (g) /) >cA}du<y2>

M1 (U2)
=1

IN
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From (6), we have

té”(Zl >(y yz)‘

s 1 2y Py (M =¥ (-1 (0C = ¥?) |
< [fi (x5 %) |

‘;k (u 1)4 ¥2)

M2 K (YY) |
X 2 1

/(/Z“ (XL, 52) | Moz Z‘KJ J+1y)dﬂ(xz)) Du, (< —y*) dpt ()

:l
Gm

_ / (/ g(x", %) L (¢ —y*) d (X2>) Du, (X" —y*) dut (x').

du (x1, %)

Define the one -dimensional functidg for every fixedy? € G, by hya ( (x)
o, g(xt,x%) L(x2 —y?)du(x?). The one-dimensional operator sup|Su, f| is of

weak type(1,1). We apply this fact for the functlok(; Consequently, by the above
we can write

D< / u{yleGm:sgp/hyz(xl)DMn(Xl—yl)dﬂ(xl)>CA}d“(y2)
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Now, we investigatéfhy2||; for a fixedy? € Gy, By the theorem of Fubini

el = [ ( / g(xl,x2>L<x2y2>du<x2>) du()

Gm 'm

= /(/gxxdu ) (¢ —y?)du ()

Gm \Gm

. iiﬁl / (/ 1<, 32) |t (x ) L0 = y))du ()

and
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Since (4) we have
pt<ls 1 /
X2,
Ik U'2

Mk1 -1
|kl u|2

C
Xzinlll —Hf||1

In [13] it was proved forA k € N, A > k that

[ [ 11009

2, ol J—i-_l 2)‘O'N(yz)lolu(xz)

Mc(A—k+1
[ suplka( () < MAZIED,
|anMA A

Using (7) forD? we have

© 1
p2<S _/ / i (<, %2)| d
_)‘iZlIMkil ‘l ‘I‘l )

ki(Ui=2 Ik ull

o Mry1—1 1

S [ | e 505 g

K 2 i1
|k (Ui Iki(u' )

| 1K (@ =y) | du (v?) | du (€)

Iki (ui,Z)

IN

8

lelle S1IFly.

>|o

ey L (5 Mk o
A ZlIMk (r; My >|k‘(.{2)|k1({1) “' (lex )‘dﬂ (x

28

1 XZ)

7

()
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These imply

{(y Y € U I (UL) x Iy (U2)) (20 (vt y2)>C/\} ;Ilflll-

i=1
From Lemma 3, we get

{<y ) e
< (0 b)) < im

and consequently the operatéT1L is of weak type(1,1).

Cs

i=1

(1 (U1) x 1y (42)) 829 (112) > c)\}

Cs

1

Now, we discus$y; . Abel's transformation gives that

& DD 0¢) _ ansz'(lexz) R 1(40)
=] ) =R
and

i
Now, we will define the operatd®, M by the following way
Gf:= sup|f,_1U,—1Kn |<3Up|f\*\Kn|— M.

nAcP
[n|<A

4 1 4 2 M2 K|
R +K
Mo = Ty Yin,—1Pm,-1 zl o1 K-

It was proved in [18] that

sup|Ky| < ¢ (8)
lex Ik n>My
and in [19] that
[Knl1<c ©)

for all n € N. (9) imply that the operatok (andG) is of type (e, ). (8) gives
immediately the quasi-locality of the operatdr These and that the operatdris
sublinear give by standard argument [16] the operdaoandG) is of weak type
(1,1) and of type(p, p) forall 1 < p < oo,

Mn—2

1
f_su fxF3 | <su —Mf+cMf<cMf
p| M | neFE)an Zl j+1 o

imply the same properties of the operal[ﬁ)r
This completes the proof of Theorem[2.
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