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ALMOST GLOBAL EXISTENCE
FOR QUASILINEAR WAVE EQUATIONS

IN THREE SPACE DIMENSIONS

MARKUS KEEL, HART F. SMITH, AND CHRISTOPHER D. SOGGE

1. Introduction

This article studies almost global existence for solutions of quadratically quasi-
linear systems of wave equations in three space dimensions. The approach here
uses only the classical invariance of the wave operator under translations, spatial
rotations, and scaling. Using these techniques we can handle wave equations in
Minkowski space or Dirichlet-wave equations in the exterior of a smooth, star-
shaped obstacle. We can also apply our methods to systems of quasilinear wave
equations having different wave speeds.

This extends our work [11] for the semilinear case. Previous almost global ex-
istence theorems for quasilinear equations in three space dimensions were for the
non-obstacle case. In [9], John and Klainerman proved almost global existence on
Minkowski space for quadratic, quasilinear equations using the Lorentz invariance
of the wave operator in addition to the symmetries listed above. Subsequently,
in [14], Klainerman and Sideris obtained the same result for a class of quadratic,
divergence-form nonlinearities without relying on Lorentz invariance. This line of
thought was refined and applied to prove global-in-time results for null-form equa-
tions related to the theory of elasticity in Sideris [22], [23], and for multiple-speed
systems of null-form quasilinear equations in Sideris and Tu [24], and Yokoyama
[29].

The main difference between our approach and the earlier ones is that we ex-
ploit the O(|x|−1) decay of solutions of wave equations with sufficiently decaying
initial data as much as we involve the stronger O(t−1) decay. Here, of course,
x = (x1, x2, x3) is the spatial component, and t the time component, of a space-
time vector (t, x) ∈ R+×R3. Establishing O(|x|−1) decay is considerably easier and
can be achieved using only the invariance with respect to translations and spatial
rotation. A weighted L2 space-time estimate for inhomogeneous wave equations
(Proposition 3.1 below, from [11]) is important in making the spatial decay useful
for the long-time existence argument.

For semilinear systems, one can show almost global existence from small data
using only this spatial decay [11]. For quasilinear systems, however, we also have
to show that both first and second derivatives of u decay like 1/t. Fortunately,
we can do this using a variant of some L1 → L∞ estimates of John, Hörmander,
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and Klainerman (see [6], Lemma 6.6.8, and also [7], [13]) that is well adapted to
our approach since it only uses the Euclidean rotation and scaling vector fields and
involves 1/|x| decay.

The translation, rotation, and scaling vector fields are useful for obstacle prob-
lems since their normal components to the boundary of the obstacle in space-time
are O(1). The Lorentz boost fields, which were also used in the original general-
ized energy approach [9], do not have this property for any obstacle: these fields
t∂i + xi∂t, i = 1, 2, 3, have normal components of size t. Consequently, it seems
difficult to use these Lorentz boosts and still obtain optimal results.

In the Minkowski space (single-speed) setting all of the generators of the Lorentz
group can be used without difficulty just by using the fact that they have favorable
commutation properties with the D’Alembertian. In the case of an obstacle prob-
lem, however, not even the Euclidean rotation or scaling vector fields commute with
the Dirichlet-wave operator. Because of the boundary conditions, the generalized
energy estimates here are more involved than they are for the Minkowski space set-
ting, particularly when these estimates involve the scaling vector field t∂t + x · ∇x.
For the scaling field we have to use our assumption that the obstacle is star-shaped
in an argument that is reminiscent of that of Morawetz [18].

We now describe more precisely the initial boundary value problems we shall
consider. We assume that the obstacle K ⊂ R3 is smooth and strictly star-shaped
with respect to the origin. By this, we understand that in polar coordinates x = rω,
(r, ω) ∈ [0,∞)× S2, we can write

(1.1) K = {(r, ω) : φ(ω)− r ≥ 0},

where φ is a smooth positive function on S2. Thus,

0 ∈ K, but 0 /∈ ∂K = {x : r = φ(ω)}.

For such K ⊂ R3, we consider smooth, quadratic, quasilinear systems of the form

(1.2)


�cu = Q(du, d2u), (t, x) ∈ R+ × R3\K
u(t, · )|K = 0
u(0, · ) = f, ∂tu(0, · ) = g.

Here

(1.3) �c = (�c1 ,�c2 , . . . ,�cN )

is a vector-valued multiple-speed D’Alembertian with

�cI = ∂2
t − c2I∆,

where we assume that the wave speeds cI are all positive but not necessarily distinct.
Here ∆ = ∂2

1 + ∂2
2 + ∂2

3 is the standard Laplacian.
By quasilinear we mean that the nonlinear term Q(du, d2u) is linear in the second

derivatives of u. We shall also assume that the highest-order nonlinear terms are
symmetric, by which we mean that, if we let ∂0 = ∂t, then

(1.4) QI(du, d2u) = BI(du) +
∑

0≤j,k,l≤3
1≤J,K≤N

BIJ,jkK,l ∂lu
K ∂j∂ku

J , 1 ≤ I ≤ N,
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with BI(du) a quadratic form in the gradient of u, and BIJ,jkK,l real constants satis-
fying the symmetry conditions

(1.5) BIJ,jkKl = BJI,jkKl = BIJ,kjKl .

The second equation here places no restriction on our systems as we may obviously
ensure this by symmetrizing. The first equality in (1.5) will be used when we prove
the standard energy estimates. Some restriction along these lines seems necessary
for our theorem to be true. In fact, there are even simple examples of linear second-
order systems that violate (1.5) and for which the basic energy estimate fails. (This
failure is well known; for example, it is pointed out by Fritz John in his work on
elasticity.) For completeness, we will sketch one such example following Proposition
3.2 below.

In order to solve (1.2) we must also assume that the data satisfies the relevant
compatibility conditions. Since these are well known (see, e.g., [10]), we shall
describe them briefly. To do so we first let Jku = {∂αx u : 0 ≤ |α| ≤ k} denote
the collection of all spatial derivatives of u of order up to k. Then if m is fixed
and if u is a formal Hm solution of (1.2) we can write ∂kt u(0, · ) = ψk(Jkf, Jk−1g),
0 ≤ k ≤ m, for certain compatibility functions ψk which depend on the nonlinear
term Q as well as Jkf and Jk−1g. Having done this, the compatibility condition
for (1.2) with (f, g) ∈ Hm ×Hm−1 is just the requirement that the ψk vanish on
∂K when 0 ≤ k ≤ m − 1. Additionally, we shall say that (f, g) ∈ C∞ satisfy the
compatibility conditions to infinite order if this condition holds for all m.

We can now state our main result. In describing the initial data we shall use the
weight

〈x〉 ≡ (1 + |x|2)
1
2 .(1.6)

Theorem 1.1. Let K be a star-shaped obstacle, and assume that Q(du, d2u) and
�c are as above. Assume further that (f, g) ∈ C∞(R3\K) satisfies the compatibility
conditions to infinite order.

Then there are constants κ, ε0 > 0, and an integer N > 0 so that for all ε ≤ ε0,
if

(1.7)
∑
|α|≤N

‖〈x〉|α|∂αx f‖L2(R3\K) +
∑

|α|≤N−1

‖〈x〉|α|+1∂αx g‖L2(R3\K) ≤ ε,

then (1.2) has a unique solution u ∈ C∞([0, Tε]× R3\K), with

(1.8) Tε = exp(κ/ε).

The norms in which we control the solution up to time Tε are found in §10.
We shall actually establish existence of limited regularity almost global solutions

u for data (f, g) ∈ HN × HN−1 satisfying the relevant compatibility conditions.
The fact that u must be smooth if f and g are smooth and satisfy the compatibility
conditions of infinite order follows from standard local existence theorems (see [10,
§9]). Also, we are not concerned here with minimal regularity issues. The value
N = 15, which we eventually require (see (10.1) below), is certainly not optimal.

Together with the finite propagation speed of our equations, the blow-up ex-
amples in, e.g., John [8] show that for the class of nonlinearities described above,
the time of existence (1.8) is sharp. If we restrict our attention to null-form non-
linearities and single-speed systems, global-in-time solutions outside of star-shaped
obstacles were established by the authors in [10]. This extended earlier spherically
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symmetric work of [4]. For related work outside of obstacles in higher dimensions
see [5], [28].

We point out that results similar to those in Theorem 1.1 were announced in
Datti [2], but there appears to be a gap in the argument which has not been repaired.
Specifically, the proof of Theorem 5.3 of [2] cannot be attained as claimed, and hence
the main estimates of the paper remain unproven.

As we remarked before, we can also give a proof of a multiple-speed generalization
of the almost global existence theorem of John and Klainerman [9]:

Theorem 1.2. Assume that Q(du, d2u) and �c are as above. Then there exists
N > 0 and constants κ, ε0 > 0 so that for all ε < ε0 and data (f, g) ∈ C∞(R3) ∩
L6(R3) satisfying

(1.9)
∑
|α|≤N

‖〈x〉|α|∂αx f ′‖L2(R3) +
∑

|α|≤N−1

‖〈x〉|α|∂αx g‖L2(R3) ≤ ε,

the system

(1.10)

{
�cu = Q(du, d2u),
u(0, · ) = f, ∂tu(0, · ) = g

has a unique solution u ∈ C∞([0, Tε]× R3), where

(1.11) Tε = exp(κ/ε).

As we noted earlier, in [14] Klainerman and Sideris established Theorem 1.2
in the case of certain divergence-form nonlinearities without using Lorentz boost
vector fields. Also, it seems clear that the techniques of Sideris [22] can handle the
special case of Theorem 1.2 where the semilinear terms BI(du) are not present.

We eventually choose N = 10 in Theorem 1.2 (see (3.12) below). The decay we
obtain up until time Tε is described in equations (3.15)–(3.16) below.

Global existence in three space dimensions has been shown for coupled multiple-
speed systems satisfying various multiple-speed versions of the so-called null condi-
tion [13]. See Sideris and Tu [24], Sogge [27] for such global, multiple-speed results
and further references. These results generalize the first global existence results
of Christodoulou [1] and Klainerman [13]. Long-time existence for multiple-speed
systems in two space dimensions was studied in Kovalyov [15].

This paper is organized as follows. In the next section we shall prove some new
pointwise L1 → L∞ estimates for the inhomogeneous wave equation in Minkowski
space that are well adapted to our approach of trying to mainly exploit 1/|x| decay
of solutions of nonlinear wave equations. From the point of view of the Minkowski
space argument of Theorem 1.2, this estimate is a departure from the approach
of Klainerman and Sideris [14]. After this, we recall the weighted space-time L2

estimates from [11] and give the straightforward iteration argument which proves
Theorem 1.2. We then turn to the obstacle case, obtaining versions of the point-
wise decay, weighted space-time L2 estimates, and fixed-time L2 estimates in the
exterior of a star-shaped obstacle. As pointed out above, the energy estimates for
the boundary value problem are more involved than their Minkowski space ana-
logues, and in fact our estimates involving the Euclidean rotation or scaling vector
fields involve a slight loss over their Minkowski variants. Fortunately this loss is
not important for our goal of proving Theorem 1.1. Finally, in §10, we combine the
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decay, weighted L2(R1+3), and energy estimates outside of obstacles in an adapta-
tion of the proof of Theorem 1.2 to obtain our almost global existence results for
quasilinear wave equations outside of star-shaped obstacles.

2. Pointwise estimates in Minkowski space

We write {Ω} = {Ωij}, where

Ωij = xi∂j − xj∂i, 1 ≤ i < j ≤ 3,(2.1)

are the Euclidean R3 rotation operators. Denote by Z either a space-time transla-
tion or spatial rotation vector field,

(2.2) {Z} = {∂t, ∂j ,Ωij}.
We also use the scaling operator

L = t∂t + x · ∇x = t∂t + r∂r .(2.3)

Throughout the remainder of the paper we will use without explicit mention the
following fact: if we denote by Γ any of the vector fields in (2.2)–(2.3), then

[Γi,Γj] =
∑
k

µijkΓk

for certain (possibly vanishing) fixed constants µijk.
To simplify the notation, we let

� = ∂2
t −∆

be the scalar unit-speed D’Alembertian. We shall state most of our estimates in
terms of it, rather than the multiple-speed operator�c in (1.3) since straightforward
scaling arguments will show that our estimates for � yield ones for �c.

Having set up the notation, we can now state one of our main results, which
is the following variant of an estimate of John, Klainerman, and Hörmander ([6],
Lemma 6.6.8).

Proposition 2.1. If w ∈ C5 and �w = F in [0, t]× R3, and the Cauchy data of
w vanishes at t = 0, then

(2.4) (1 + t) |w(t, x)| ≤ C
∫ t

0

∫
R3

∑
|α|+j≤3,j≤1

|LjZαF (s, y)| dy ds|y| .

To prove this estimate we use the following.

Lemma 2.2. Let w be as above, and fix x ∈ R3 with |x| = r. Then,

(2.5) |x| |w(t, x)| ≤ 1
2

∫ t

0

∫ r+t−s

|r−(t−s)|
sup
|θ|=1

|F (s, ρθ)| ρ dρ ds.

Proof. (Lemma 2.2). This result is well known (see, e.g., p. 8 of Sogge [26]). Since
the fundamental solution of the wave equation in 1 + 3 dimensions is positive, we
have that |w| ≤ |W |, where W is the solution of the inhomogeneous wave equation
�W (t, y) = G(t, |y|) and G is the radial majorant of F ,

G(t, ρ) = sup
θ∈S2

|F (t, ρθ)|.(2.6)
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On the other hand, W (t, y) is a spherically symmetric solution to the wave equation
in three space dimensions. Hence |y|W (t, y) satisfies the wave equation in one space
dimension with forcing term |y|G(t, |y|),

|x|W (t, x) =
1
2

∫ t

0

∫ r+t−s

|r−(t−s)|
G(s, ρ)ρ dρ ds.(2.7)

Together, (2.6), (2.7) yield (2.5). �

Proof. (Proposition 2.1): As in [6], we first prove the following:

(2.8) t |w(t, x)| ≤ C
∫ t

0

∫
R3

∑
|α|≤2,j≤1

|LjΩαF (s, y)| dy ds|y| .

Since the estimate (2.8) is scale invariant, it suffices by scaling to prove the bounds
for t = 1, that is,

(2.9) |w(1, x)| ≤ C
∫ 1

0

∫
R3

∑
|α|≤2,j≤1

|LjΩαF (s, y)| dy ds|y| .

Let us first prove the estimate for those |x| > 1/10. By the Sobolev Lemma,

sup
|θ|=1

|F (s, ρθ)| ≤ C
∑
|α|≤2

∫
S2
|(ΩαF )(s, ρθ)| dθ.

Together with (2.5) this gives

(2.10) |x| |w(1, x)| ≤ C
∑
|α|≤2

∫ 1

0

∫
R3
|ΩαF (s, y)| dy ds|y| ,

which proves (2.9) when |x| > 1/10.
It remains to consider (2.9) for a fixed |x| ≤ 1/10. Since the estimate (2.9) only

involves homogeneous derivatives, and hence is preserved under cutoffs of the form
ψ(y/|x|), with ψ a radial bump function, we can reduce matters to considering two
cases:

• Case 1: supp F ⊂ {(s, y) : |y| ≥ 2|x|},
• Case 2: supp F ⊂ {(s, y) : |y| ≤ 4|x|}.

For both cases we use the formula for w coming from the fundamental solution,

w(t, x) =
1

4π

∫
|y|<t

F (t− |y|, x− y)
dy

|y| .

Case 1: In this case F (s, x− y) = 0 for |y| ≤ |x|. Hence

|w(1, x)| ≤
∫
|y|<1

|F (1− |y|, x− y)| dy

|x− y| .

Note that |(1 − |y|, x − y)| ≥ 1/4 on the support of the integrand. Thus, if ρ(s) ∈
C∞(R) vanishes for s < 1/8 and equals one for s > 1/4 we have

|w(1, x)| ≤
∫
|y|<1

H(1− |y|, x− y) dy,

where
H(s, v) = ρ(|(s, v)|)|F (s, v)|/|v|.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ALMOST GLOBAL EXISTENCE FOR QUASILINEAR WAVE EQUATIONS 115

We make the change of variables ϕ(τ, y) = τ(1 − |y|, x − y), where |y| ≤ 1 and
0 < τ < 1. The Jacobian is τ3(〈x, y〉/|y| − 1). It is bounded away from zero when
H(ϕ(τ, y)) 6= 0 since we are assuming that |x| < 1/10, and since H(s, v) = 0 when
|(s, v)| < 1/8. Also,∫
|y|<1

H(1− |y|, x− y) dy =
∫
|y|<1

|H(ϕ(1, y)| dy

≤ C
∫∫
|y|<1,0<τ<1

(|H(ϕ(τ, y)|+ | ∂∂τH(ϕ(τ, y)|) dτ dy.

Note that |∂H(ϕ(τ, y))/∂τ | = |(LH)(ϕ(τ, y)|/τ , and since τ is bounded from below
when H(ϕ(τ, y)) 6= 0, we conclude that

|w(1, x)| ≤ C
∫∫

0<s<1

(
|H(s, y)|+ |LH(s, y)|

)
dy ds

≤ C
∫∫

0<s<1

(
|F (s, y)|+ |LF (s, y)|

) dy ds
|y| ,

as desired.
Case 2: Our assumptions here are F (s, y) = 0 when |y| ≥ 4|x|, for some fixed
x with |x| < 1/10. In this case, we have w(1, x) = w0(1, x) where w0 solves
the inhomogeneous wave equation �w0(t, y) = G(t, y), with G(t, y) = F (t, y) if
t ≥ 1− 5|x|, and G(t, y) = 0 otherwise. By (2.10),

|w(1, x)| = |w0(1, x)| ≤ C

|x|

∫ 1

1−5|x|

∫ ∑
|α|≤2

|ΩαF (s, y)| ds dy|y|

≤ C sup
1/2<s<1

∫ ∑
|α|≤2

|ΩαF (s, y)| dy|y| .

As in Case 1, we bound this last quantity using the fundamental theorem of calculus,

F (s, y) =
∫ 1

0

d

dτ
G(τs, τy) dτ

=
∫ 1

0

LG(τs, τy) dτ,
1
2
≤ s ≤ 1.

Hence we have

|w(1, x)| ≤ C sup
1/2<s<1

∫ 1

0

∫ ∑
|α|≤2

|ΩαLG(τs, τy)| dτ dy|y|

≤ C
∫ 1

0

∫ ∑
|α|≤2

|ΩαLF (s, y)| dy|y| ,

where, similar to Case 1 above, we have used the fact that
∣∣∣∂(τs,τy)
∂(τ,y)

∣∣∣−1

is bounded
on the support of G. This completes the discussion of case 2.

Exactly as in [6], the desired bound (2.4) follows from (2.8). More precisely, if
supp F ⊂ {(s, y) : s ≥ 1}, then the same is true for supp w, and (2.4) follows
immediately from (2.8). In case supp F ⊂ {(s, y) : 0 ≤ s ≤ 1}, then we apply the
previous argument to the function w̃ with �w̃ = F (s−2, y1, y2, y3). The translation
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introduces the usual Euclidean derivatives and gives (2.4) by the preceding argu-
ment. The case of a general forcing function F follows from these considerations
and a partition of unity. �

3. L2
x, L

2
x,t estimates and almost global existence

for quasilinear equations in Minkowski space

We now use the pointwise estimates in Proposition 2.1 along with L2
tL

2
x estimates

exploiting 1/r decay of solutions of the wave equation to prove Theorem 1.2, the
almost global existence theorem for certain multiple-speed systems. As we shall see,
this proof provides a simple model for the proof of almost global existence results
in the presence of obstacles.

To do this we need to use a simple modification of an estimate from [11] which
involves the scalar D’Alembertian � = ∂2

t −∆.

Proposition 3.1. Suppose that v solves the wave equation �v = G on R+ × R3,
with Cauchy data f ∈ Ḣ1 ∩L6(R3) , g ∈ L2(R3) at t = 0. Then there is a constant
C so that

(3.1)
(
ln(2 + t)

)−1/2‖〈x〉−1/2v′‖L2([0,t]×R3) + ‖〈x〉−1v‖L2
sL

6
x([0,t]×R3)

≤ C ‖(f, g)‖Ḣ1×L2(R3) + C

∫ t

0

‖G(s, · )‖L2(R3) ds .

Here, and in what follows, v′ denotes the space-time gradient of v, i.e., v′ =
(∂tv,∇xv).

We sketch the proof of (3.1); more details appear in [11]. The bound is achieved
by considering separately two regions of {(s, x) : 0 ≤ s ≤ t}. Specifically, if the
norms on the left of (3.1) are taken over {(s, x) : 0 ≤ s ≤ t , |x| ≥ t}, the estimate
follows immediately from

〈t〉−1/2
(
‖v′‖L2([0,t]×R3) + ‖v‖L2

sL
6
x([0,t]×R3)

)
≤ ‖(f, g)‖Ḣ1×L2(R3) +

∫ t

0

‖G(s, · )‖L2(R3) ds,

which is in turn an immediate consequence of the standard fixed-time energy esti-
mate and Sobolev embedding. We remark that the condition f ∈ L6 implies that
f , hence v(s, · ) for all s, is the Ḣ1 limit of compactly supported functions, which
allows us to bound ‖v(s, · )‖L6 ≤ C ‖v′(s, · )‖L2 .

To establish (3.1) on the region {(s, x) : 0 ≤ s ≤ t , |x| < t}, we first show that

(3.2) ‖v′‖L2([0,t]×{|x|<1}) + ‖v‖L2
sL

6
x([0,t]×{|x|<1})

≤ C ‖(f, g)‖Ḣ1×L2(R3) + C

∫ t

0

‖G(s, · )‖L2(R3) ds .

For the term involving v′ on the left, this can be shown using the energy inequality
and the sharp Huygens principle (see [11] for details1). To handle the term in v, we
note that by the Duhamel principal we may take G = 0. By Sobolev embedding,
we can reduce matters to showing that

‖v‖L2(R×{|x|<1}) ≤ C ‖(f, g)‖Ḣ1×L2(R3) .

1In fact, the bound (3.2) is also implicit in several previous works, going back at least to [19],
[20].
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To verify this last estimate, we let χ(x) denote the cutoff to the set |x| < 1. Then
by the Plancherel theorem, we have

‖χv‖L2
tL

2
x(R×R3) = ‖(χ̂ ∗ v̂)(τ, ξ)‖L2

τL
2
ξ(R×R3)

≤ C ‖v̂(τ, ξ)‖L2
τL

1
ξ
≤ C ‖(f, g)‖Ḣ1×L2(R3) ,

where the last inequality is seen by expressing v̂ in terms of (f̂ , ĝ), and representing
the ξ integral in polar coordinates. Applying the Schwarz inequality to the angular
integral yields the desired bound.

A scaling argument applied to (3.2) yields

(3.3) ‖〈x〉−1/2v′‖L2([0,t]×{R<|x|<2R}) + ‖〈x〉−1/2v‖L2
sL

6
x([0,t]×{R<|x|<2R})

≤ C ‖(f, g)‖Ḣ1×L2(R3) + C

∫ t

0

‖G(s, · )‖L2(R3) ds.

The estimate for the first term in the left side of (3.1) on {|x| ≤ t} now follows by
squaring the left-hand side, decomposing dyadically in r, using (3.3) for each piece,
and adding the resulting estimates. One estimates the second term in the left side
of (3.1) using (3.3) and the fact that this second term involves the weight 〈x〉−1.
The extra weight of 〈x〉− 1

2 allows us to sum the estimates for the dyadic pieces with
no growth in t.

In addition to this estimate we shall also need the standard energy estimate:

Proposition 3.2. Let γIJ,ij(t, x), 1 ≤ I, J ≤ N , 0 ≤ i, j ≤ 3 be real C0,1 functions
satisfying

(3.4)
∑

0≤I,J≤N

∑
0≤i,j≤3

|γIJ,ij | < 1
2

min(c2I), 1 ≤ I ≤ N, 0 ≤ t ≤ T

as well as

(3.5)
∫ T

0

∑
0≤I,J≤N

∑
0≤i,j≤3

‖∇t,xγIJ,ij(t, · )‖L∞(R3) dt < 1.

Assume also that γIJ,ij satisfies the symmetry condition

(3.6) γIJ,ij = γJI,ij = γIJ,ji.

Then if

(∂2
t − c2I∆)vI =

N∑
J=1

∑
0≤i,j≤3

γIJ,ij∂i∂jv
J + F I , 1 ≤ I ≤ N

there is a constant C, independent of γIJ,ij, F , and T , so that

(3.7) ‖v′(t, · )‖L2(R3) ≤ C ‖v′(0, · )‖L2(R3) + C

∫ t

0

‖F (s, · )‖L2(R3) ds, 0 ≤ t ≤ T.

We omit the standard proof of (3.7), since analogous estimates for Dirichlet-wave
equations will be proven in §5. We observe here, though, that the energy estimate
can fail in the absence of the symmetry assumption (3.6). To see this, consider the
following nonsymmetric linear homogeneous system on R× R3:

�u = 0,

�v = 1
4 ∂

2
t u ,
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with u , v , ∂tv all vanishing at t = 0, and with ∂tu(0, · ) = g.
Then ‖(u′, v′)(0, · )‖L2(R3) = ‖g‖L2(R3), and the standard energy estimate shows

that

‖(u′, v′)(t, · )‖2L2(R3) =
∫
R3
|g(x)|2dx+

1
2

∫ t

0

∫
R3
vs(s, x)uss(s, x) dx ds .(3.8)

Using the Fourier transform and Duhamel’s principle, it is straightforward to see
that the second term on the right-hand side of (3.8) is comparable to ‖g′‖2L2(R3).

We shall actually require a corollary to Proposition 3.2 which is based on the
following commutator relations [(∂2

t −c2I∆), Z] = 0 (see (2.2)) and [(∂2
t −c2I∆), L] =

2(∂2
t − c2I∆), where, as above, L is the scaling vector field (2.3).

Corollary 3.3. Let γIJ,ij(t, x) ∈ C∞ satisfy (3.4)–(3.6), and let v and F be as in
Proposition 3.2. Then if M = 1, 2, . . . is fixed there is a constant C, independent
of γIJ,ij, F , and T , so that for 0 ≤ t ≤ T ,∑

|α|+m≤M
‖LmZαv′(t, · )‖L2(R3)(3.9)

≤ C
∑

|α|+m≤M
‖LmZαv′(0, · )‖L2(R3)

+ C

∫ t

0

∑
|α|+m≤M

‖LmZαF (s, · )‖L2(R3) ds

+ C

∫ t

0

∑
|α|+m≤M
I,J,i,j

‖[LmZα, γIJ,ij∂i∂j ]vJ (s, · )‖L2(R3) ds.

We note that if we restrict m ≤ 1 on the left-hand side, then we may take m ≤ 1
on the right-hand side as well. We shall also need the following consequence of the
Sobolev lemma, see Klainerman [12]:

Lemma 3.4. Suppose that h ∈ C∞(R3). Then for R > 1,

‖h‖L∞(R/2<|x|<R) ≤ CR−1
∑

|α|+|γ|≤2

‖Ωα∂γxh‖L2(R/4<|x|<2R).

To handle certain higher-order commutator terms that arise in our arguments,
we will also use the following variant of an estimate of Klainerman and Sideris (see
[14], Lemma 3.1).

Lemma 3.5. Suppose that 1 ≤ R ≤ ct/4. Then for 0 ≤ j ≤ 3,

‖∂jv′(t, · )‖L2(R/2<|x|<R) ≤ C (1 + t)−1
∑

|α|+m≤1

‖LmZαv′(t, · )‖L2(R/4<|x|<2R)

(3.10)

+ C R−1
(
‖v′(t, · )‖L2(R/4<|x|<2R) + ‖v(t, · )‖L6(R/4<|x|<2R)

)
+ C ‖(∂2

t − c2∆)v‖L2(R/4<|x|<2R) .
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Also,

‖∂jv′(t, · )‖L2(|x|<1) ≤ C (1 + t)−1
∑

|α|+m≤1

‖LmZαv′(t, · )‖L2(R3)(3.11)

+ C
(
‖v′(t, · )‖L2(|x|<2) + ‖v(t, · )‖L6(|x|<2)

)
+ C ‖(∂2

t − c2∆)v‖L2(|x|<2).

The constant C depends only on c.

Proof. By scaling we may take the wave speed c to be one. We then use the fact
(see [14], Lemma 2.3) that for |x| < t/2,

|∂tv′(t, x)|+ |∆v(t, x)| ≤ C(1 + t)−1
∑

|α|+m≤1

|LmZαv′(t, x)|+ C|(∂2
t −∆)v(t, x)|.

Using this we immediately get the estimates for j = 0. The other cases of (3.10)
follow from the j = 0 bound and the fact that, for j, k = 1, 2, 3,

‖∂j∂kv(t, · )‖L2(R/2<|x|<R)

≤ C‖∆v(t, · )‖L2(R/4<|x|<2R) + C
∑
|α|≤1

R−2+|α|‖∂αx v(t, · )‖L2(R/4<|x|<2R)

≤ C‖∆v(t, · )‖L2(R/4<|x|<2R)

+ CR−1
(
‖v′(t, · )‖L2(R/4<|x|<2R) + ‖v‖L6(R/4<|x|<2R)

)
.

The inequality (3.11) follows by a similar argument. �

We now use Propositions 2.1 and 3.1, along with Corollary 3.3, to prove Theorem
1.2. We are assuming that the data f, g ∈ C∞(R3) ∩ L6(R3) satisfy the smallness
condition

(3.12)
∑
|α|≤10

‖〈x〉|α|∂αx f ′‖L2(R3) +
∑
|α|≤10

‖〈x〉|α|∂αx g‖L2(R3) ≤ ε,

where ε > 0 is small and we aim to show that there is a solution on [0, Tε] × R3,
verifying

(3.13)

sup
0≤t≤Tε

( ∑
|α|+m≤10,m≤1

‖LmZαu′(t, · )‖L2(R3) + (1 + t)
∑
|α|≤1

‖Zαu′(t, · )‖L∞(R3)

)
+
(
ln(2 + Tε)

)−1/2 ∑
|α|+m≤9,m≤1

‖〈x〉− 1
2LmZαu′‖L2([0,Tε]×R3) ≤ C ε,

where Tε = exp(κ/ε), with κ > 0 being a uniform constant. If the initial data is
C∞, and the solution satisfies (3.13), then standard local existence theory shows
that the solution is actually C∞ on [0, Tε]× R3.

Set u−1 = 0, and define uk, k = 0, 1, 2, . . . inductively by letting uk solve
(3.14)
�cIuIk(t, x) = BI(u′k−1) +

∑
0≤i,j,l≤3
1≤J,K≤N

BIJ,ijKl ∂lu
K
k−1∂i∂ju

J
k ,

(t, x) ∈ [0, Tε]× R3, 1 ≤ I ≤ N
uk(0, · ) = f, ∂tuk(0, · ) = g,
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where �c is as in (1.3). Let

Mk(T ) =
∑

|α|+m≤9,m≤1

[(
ln(2 + T )

)−1/2‖〈x〉−1/2LmZαu′k‖L2([0,T ]×R3)(3.15)

+ ‖〈x〉−1LmZαuk‖L2
tL

6
x([0,T ]×R3)

]
+ sup

0≤t≤T

∑
|α|+m≤10,m≤1

‖LmZαu′k(t, · )‖L2(R3)

+ sup
0≤t≤T

(1 + t)
∑
|α|≤1

‖Zαu′k(t, · )‖L∞(R3)

= Ik(T ) + IIk(T ) + IIIk(T ) .

We first observe that there is a uniform constant C0 so that

M0(T ) ≤ C0 ε,

for all T . This follows from the results of section 2 and the earlier L2 estimates of
this section, together with an application of the generalized Sobolev inequalities of
Klainerman to obtain the pointwise decay estimates.

We claim that if ε < ε0 is sufficiently small and if the constant κ occurring in
the definition of Tε is small enough, then there is a uniform constant C (which
will be allowed to change from line to line throughout this paper) so that for all
k = 1, 2, 3, . . . ,

(3.16) Mk(Tε) ≤ C ε .

We prove this inductively. We thus assume that the bound holds for k−1 and then
establish it for k.

We begin by applying Corollary 3.3, with F = B(u′k−1) and

γIJ,ij = γIJ,ij(u′k−1) =
∑
l,K

BIJ,ijKl ∂lu
K
k−1 ,

to estimate IIk(T ). Note that the hypotheses (3.4) and (3.5) on the metric per-
turbation are satisfied by the induction hypothesis if ε is small and T < Tε. The
symmetry hypothesis (3.6) is also valid in view of our symmetry assumption (1.5)
on the quasilinear terms. We next apply Proposition 3.1 with G = �cLmZαuk to
estimate Ik(T ). We conclude that

(3.17) Ik + IIk ≤ C0 ε+ C

∫ Tε

0

∑
|α|+m≤10
m≤1

‖LmZαB(u′k−1)(s, · )‖L2(R3) ds

+ C

∫ Tε

0

∑
|α|+m≤9
m≤1

‖LmZα�cuk(s, · )‖L2(R3) ds

+ C

∫ Tε

0

∑
I,J,i,j

∑
|α|+m≤10
m≤1

‖[LmZα, γIJ,ij(u′k−1)∂i∂j ]uJk (s, · )‖L2(R3) ds.
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We estimate the first integral by observing that

(3.18)
∑

|α|+m≤10
m≤1

|LmZαB(u′k−1)| ≤ C
∑

|α|+m≤9
m≤1

|LmZαu′k−1|
∑

|α|+m≤5
m≤1

|LmZαu′k−1|

+ C |u′k−1|
∑

|α|+m≤10
m≤1

|LmZαu′k−1| .

We control the contribution of the second term on the right-hand side of (3.18) to
(3.17) using the induction hypothesis (3.16) as follows:

(3.19)
∫ Tε

0

‖u′k−1(s, · )||L∞(R3)

∑
|α|+m≤10
m≤1

‖LmZαu′k−1(s, · )‖L2(R3) ds

≤ Cε2

∫ Tε

0

ds/(1 + s) ≤ C · κ · ε ,

where κ is the constant appearing in (1.8). For the first term on the right-hand side
in (3.18) we apply Lemma 3.4. If we fix s and R, we note that, for R/2 < |x| < 2R,

∑
|α|+m≤5
m≤1

|LmZαu′k−1(s, x)| ≤ C (1 +R)−1
∑

|α|+m≤7
m≤1

‖LmZαu′k−1(s, · )‖L2(R/4<|x|<4R) .

(3.20)

We can similarly bound this factor on the set |x| ≤ 1. Therefore, for each fixed s
we have for a given R = 2j, j ≥ 0,

(3.21)
∑

|α|+m≤9
m≤1

∑
|β|+n≤5
n≤1

∥∥(LmZαu′k−1(s, · )
)(
LnZβu′k−1(s, · )

)∥∥
L2(R<|x|<2R)

≤ C2−j
∑

|α|+m≤9
m≤1

‖LmZαu′k−1(s, · )‖L2(R<|x|<2R)

×
∑

|α|+m≤5
m≤1

‖LmZαu′k−1(s, · )‖L∞(R<|x|<2R)

≤ C
∑

|α|+m≤9
m≤1

‖〈x〉−1/2LmZαu′k−1(s, · )‖L2(R<|x|<2R) ,
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with a similar bound on the set |x| ≤ 1, where we applied the Sobolev Lemma.
Summing over R = 2j and using the induction hypothesis, we conclude that

(3.22)
∫ Tε

0

∑
|α|+m≤9
m≤1

∑
|β|+n≤5
n≤1

∥∥ (LmZαu′k−1(s, · )
)(
LnZβu′k−1(s, · )

) ∥∥
L2(R3)

ds

≤ C
∫ Tε

0

∑
|α|+m≤9
m≤1

‖〈x〉−1/2LmZαu′k−1(s, · )‖2L2(R3)

≤ C ln(2 + Tε)
( ∑
|α|+m≤9
m≤1

(
ln(2 + Tε)

)− 1
2 ‖〈x〉−1/2LmZαu′k−1‖L2([0,Tε)×R3)

)2

≤ C · κ · ε .

We thus have shown that∫ Tε

0

∑
|α|+m≤10,m≤1

‖LmZαB(u′k−1)(s, · )‖L2(R3)ds ≤ C · κ · ε .

The second integral on the right side of (3.17) has a quasilinear contribution
which is bounded by

(3.23)
∫ Tε

0

∑
|α|+m≤9
m≤1

‖u′k−1 (LmZαu′′k(s, · ))‖L2(R3) ds

+
∫ Tε

0

∑
|α|+m≤5
m≤1

∑
|β|+n≤8
n≤1

‖(LmZαu′k−1(s, · )) (LnZβu′′k(s, · ))‖L2(R3) ds

+
∫ Tε

0

∑
|α|+m≤5
m≤1

∑
|β|+n≤8
n≤1

‖(LmZαu′′k(s, · )) (LnZβu′k−1(s, · ))‖L2(R3) ds

+
∫ Tε

0

∑
|α|+m≤9
m≤1

‖u′′k(s, · ) (LmZαu′k−1(s, · ))‖L2(R3) ds .

We bound the integrand in the first integral of (3.23) by taking the first factor in
L∞, the second factor in L2, and arguing as in (3.19) above to bound this term by

C · ε ·Mk(Tε)
∫ Tε

0

1
1 + s

ds ≤ C · κ ·Mk(Tε) .

We estimate the second and third integrals in (3.23) as before, using the generalized
Sobolev bound of Lemma 3.4 on the first factor. The fourth integral in (3.23) is
bounded by taking the u′′k factor in L∞, and arguing as before using the induction
hypothesis. Both of these estimates yield bounds of C · κ ·Mk(Tε).

The semilinear contribution from the second integral on the right of (3.17) is
handled exactly as we bounded the first integral on the right of (3.17).
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To estimate the third integral in (3.17), which involves commutators, we begin
by noting that

∑
|α|+m≤10
m≤1

| [LmZα, γIJ,ij(u′k−1)∂i∂j ]uk |

≤ C
∑

|α|+m≤9
m≤1

|LmZαu′k−1|
∑

|α|+m≤5
m≤1

|LmZαu′k|

+ C
∑

|α|+m≤10
m≤1

|LmZαu′k−1| · |u′′k|

+ C
∑

|α|+m≤5
m≤1

|LmZαu′k−1|
∑

|α|+m≤9
m≤1

|LmZαu′k|

+ C
∑
|α|≤1

|Zαu′k−1|
∑

|α|+m≤10
m≤1

|LmZαu′k|

+ C |Lu′k−1|
∑
|α|≤9

|Zαu′′k| .

The contribution of the first four terms to the third integral in (3.17) can be con-
trolled as in the preceding arguments: when one factor appears with two or fewer Z
type derivatives, we take this factor out in L∞ as in (3.19) above; for the remaining
terms we argue as in (3.20)–(3.22). The last term above requires a different argu-
ment since the factor we would like to take in L∞ now involves the scaling vector
field L, which is not controlled by the term IIIk−1(Tε) (see (3.15)).

To estimate this last term, let c0 = minI{cI}. Then, on the region |x| > c0 s/4 ,
we can apply Lemma 3.4 to obtain

|Lu′k−1(s, x)| ≤ C (1 + s)−1
∑

|α|≤2,m≤1

‖LmZαu′k−1(s, · )‖L2(R3) ,

and we conclude, as in (3.19),

∫ Tε

0

∑
|α|≤9

‖Lu′k−1(s, · )Zαu′′k(s, · )‖L2(|x|>c0s/4) ds ≤ C · κ ·Mk(Tε) .

It remains to estimate the integrand here on the region |x| ≤ c0 s/4. To do this, we
bound the factor Lu′k−1 in L∞ using Lemma 3.4, then apply Lemma 3.5 to Zαu′′k.
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We obtain, for 1 ≤ R ≤ c0 s/4 ,

∑
|α|≤9

‖Lu′k−1Z
αu′′k(s, · )‖L2(R/2<|x|<R)

≤ C R−1
∑

|α|≤2,m≤1

‖LmZαu′k−1(s, · )‖L2(R/4<|x|<2R)

×
[

(1 + s)−1
∑

|α|+m≤10
m≤1

‖LmZαu′k(s, · )‖L2(R/4<|x|<2R)

+
∑
|α|≤9

‖Zα�cuk(s, · )‖L2(R/4<|x|<2R)

+R−1
∑
|α|≤9

(
‖Zαu′k(s, · )‖L2(R/4<|x|<2R) + ‖Zαuk(s, · )‖L6(R/4<|x|<2R)

)]
.

We can control the norms over |x| < 1 similarly. After squaring this estimate and
summing over dyadic values of R, using extra factors of R−1/2 to make the sums
converge, we conclude that

∑
|α|≤9

∫ Tε

0

‖Lu′k−1Z
αu′′k(s, · )‖L2(|x|<c0s/4) ds

(3.24)

≤ C
∫ Tε

0

∑
|α|≤2,m≤1

‖LmZαu′k−1(s, · )‖L2(R3) (1 + s)−1

×
∑

|α|+m≤10
m≤1

‖LmZαu′k(s, · )‖L2(R3) ds

+
∫ Tε

0

∑
|α|≤2,m≤1

‖LmZαu′k−1(s, · )‖L2(R3) ×
∑
|α|≤9

‖Zα�cuk(s, · )‖L2(R3) ds

+
∫ Tε

0

∑
|α|≤2,m≤1

‖〈x〉−1/2LmZαu′k−1(s, · )‖L2(R3)

×
∑
|α|≤9

(
‖〈x〉−1/2Zαu′k(s, · )‖L2(R3) + ‖〈x〉−1Zαuk(s, · )‖L6(R3)

)
ds .

The argument used in bounding the second integral in (3.17) yields

∫ Tε

0

∑
|α|≤9

‖Zα�cuk(s, · )‖L2(R3) ds ≤ C · κ ·
(
ε+Mk(Tε)

)
.
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Plugging this into (3.24), and applying Cauchy-Schwarz to the s integral of the last
term on the right of (3.24), we conclude

∑
|α|≤9

∫ Tε

0

‖Lu′k−1Z
αu′′k(s, · )‖L2(|x|<c0s/4) ds

≤ ln(2 + Tε) ·Mk−1(Tε) ·Mk(Tε) +Mk−1(Tε) · C · κ ·
(
ε+Mk(Tε)

)
≤ C · κ ·

(
ε+Mk(Tε)

)
.

We have shown that

Ik + IIk ≤ C0 ε+ C · κ ·
(
ε+Mk(Tε)

)
.(3.25)

The final step is to show that IIIk(Tε) can be controlled in this way,

(3.26) sup
0≤t≤Tε

(1 + t)
∑
|α|≤1

|Zαu′k(t, x)| ≤ C0 ε+ C · κ ·
(
ε +Mk(Tε)

)
.

Together, (3.25) and (3.26) yield

Mk(Tε) ≤ 3C0 ε ,

by choosing the constant κ sufficiently small.
It suffices then to show (3.26). We first note that the left-hand side of (3.26) is

bounded by

(3.27) C0 ε+
∫ t

0

∫
R3

∑
|α|+m≤5,m≤1

|LmZα�cuk(s, y)| dy ds|y| .

This follows by Proposition 2.1, together with the fact that the Cauchy data of
Zαu′k at t = 0 is of size ε in the appropriate norm, and hence the homogeneous
solution with the same Cauchy data satisfies the desired bounds (3.26), by the
Klainerman-Sobolev inequalities [12].

We begin by handling the integral over |y| > 1. We note that

(3.28)
∑

|α|+m≤5,m≤1

|LmZα�cuk(s, y)|

≤ C
∑

|α|+m≤7
m≤1

|LmZαu′k−1(s, y)|
∑

|α|+m≤7
m≤1

(
|LmZαu′k−1(s, y)|+ |LmZαu′k(s, y)|

)
,
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and conclude by the Schwarz inequality and the induction hypothesis that∫ Tε

0

∫
|y|>1

∑
|α|+m≤5,m≤1

|LmZα�cuk(s, y)| dy ds|y|

≤ C
( ∑
|α|+m≤7
m≤1

‖〈y〉− 1
2LmZαuk−1‖L2([0,Tε]×R3)

)2

+ C

( ∑
|α|+m≤7
m≤1

‖〈y〉− 1
2LmZαuk−1‖L2([0,Tε]×R3)

)

×
( ∑
|α|+m≤7
m≤1

‖〈y〉− 1
2LmZαuk‖L2([0,Tε]×R3)

)

≤ C · ln(2 + Tε) ·
(
M2
k−1(Tε) +Mk−1(Tε) ·Mk(Tε)

)
≤ C · κ ·

(
ε+Mk(Tε)

)
,

as desired.
To handle the integral over |y| < 1, we apply the Sobolev inequality and (3.28)

to obtain∑
|α|+m≤5,m≤1

sup
|y|<1

|LmZα�cuk(s, y)| ≤ C
∑

|α|+m≤9,m≤1

||LmZαu′k−1(s, · )||L2(|y|<2)

×
∑

|α|+m≤9,m≤1

(
||LmZαu′k−1(s, · )||L2(|y|<2) + ||LmZαu′k(s, · )||L2(|y|<2)

)
.

Since 1
|y| ∈ L1(R3),∫ Tε

0

∫
|y|≤1

∑
|α|≤4,m≤1

|LmZα�cuk(s, y)| dy ds|y|

≤ C
( ∑
|α|+m≤9
m≤1

‖LmZαu′k−1‖L2([0,Tε]×{|y|≤2})

)2

+ C

( ∑
|α|+m≤9
m≤1

‖LmZαu′k−1‖L2([0,Tε]×{|y|≤2})

)

×
( ∑
|α|+m≤9
m≤1

‖LmZαu′k‖L2([0,Tε]×{|y|≤2})

)

≤ C · κ ·
(
ε+Mk(Tε)

)
as above. We have therefore established (3.26).

Similar arguments show that

sup
0≤t≤Tε

‖u′k(t, · )− u′k−1(t, · )‖L2(R3) → 0, k →∞.
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We conclude that uk converges to a solution of (1.10) that verifies (3.13) with
C = 3C0. This completes the proof of Theorem 1.2. �

Later we will need the following observation. If we replace the smallness condi-
tion (3.12) by

(3.29)
∑
|α|≤N

‖〈x〉|α|∂αx f ′‖L2(R3) +
∑

|α|≤N−1

‖〈x〉|α|∂αx g‖L2(R3) ≤ ε ,

for N ≥ 10, then the same argument as above gives that for ε > 0 small, one
obtains a solution on [0, Tε]× R3 verifying

(3.30) sup
0≤t≤Tε

∑
|α|+m≤N,m≤1

‖LmZαu′(t, · )‖L2(R3)

+
(
ln(2 + Tε)

)−1/2 ∑
|α|+m≤N−1,m≤1

‖LmZαu′‖L2([0,Tε]×R3) ≤ C ε ,

for this value of N .

4. Pointwise estimates outside of star-shaped obstacles

In this section we shall consider Dirichlet-wave equations outside of smooth,
compact, star-shaped obstacles K ⊂ R3. Our main goal is to show that the solution
of the inhomogeneous equation

(4.1)


�u(t, x) = F (t, x), (t, x) ∈ R+ × R3\K,
u(t, x) = 0, x ∈ ∂K,
u(t, x) = 0, t ≤ 0

satisfies slightly weaker pointwise estimates than those in Proposition 2.1. As be-
fore, � = ∂2

t − ∆ denotes the unit-speed scalar D’Alembertian, and any of the
following estimates for � extend to estimates for �c after applying straightforward
scaling arguments.

The pointwise estimate that we can prove is the following.

Theorem 4.1. Suppose that K ⊂ R3 is a star-shaped obstacle as in (1.1). Then
each C∞ solution u of (4.1) satisfies, for each α,

(4.2) t |Zαu(t, x)| ≤ C
∫ t

0

∫
R3\K

∑
|β|+j≤|α|+6

j≤1

|LjZβF (s, y)|dy ds|y|

+ C

∫ t

0

∑
|β|+j≤|α|+3

j≤1

‖Lj∂βs,yF (s, · )‖L2(R3\K) ds .

As a first step, we shall see that for any obstacle, we can reduce things to
proving decay estimates for Zαu(t, x) when x belongs to a fixed neighborhood of
the obstacle. Here and in what follows, we shall assume, without loss of generality,
that

(4.3) K ⊂ {x ∈ R3 : |x| < 1}.
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Lemma 4.2. Suppose that u is as in Theorem 4.1 and that K satisfies (4.3). Then

(4.4) (1 + t)|Zαu(t, x)| ≤ C
∫ t

0

∫
R3\K

∑
|γ|+j≤3,j≤1

|LjZα+γF (s, y)| dy ds|y|

+ C sup
|y|<2,0≤s≤t

(1 + s)
(
|Zαu′(s, y)|+ |Zαu(s, y)|

)
.

Proof. The inequality is obvious for |x| < 2. So we show that there is a uniform
constant C such that

(4.5) (1 + t) sup
|x|≥2

|Zαu(t, x)| ≤ C
∫ t

0

∫
R3\K

∑
|γ|+j≤3,j≤1

|LjZα+γF (s, y)| dy ds|y|

+ C sup
|y|<2,0≤s≤t

(1 + s)
(
|Zαu′(s, y)|+ |Zαu(s, y)|

)
.

For this, we fix ρ ∈ C∞(R) satisfying ρ(r) = 1, r ≥ 2 and ρ(r) = 0, r ≤ 1. Then

w(t, x) = ρ(|x|)Zαu(t, x)

solves the boundaryless wave equation

�w(t, x) = ρZαF (t, x)− 2ρ′(|x|) x|x| · ∇xZ
αu(t, x)− (∆ρ(|x|)Zαu(t, x) ,

with zero initial data. We split w = w0 + w1, where �w1 = ρZαF . If we apply
Proposition 2.1, we conclude that (1 + t)|w1(t, x)| is dominated by the first term in
the right side of (4.5), and so it suffices to show that (1 + t)|w0(t, x)| is dominated
by the last term in (4.5). Write

G(t, x) = −2ρ′(|x|) x|x| · ∇xZ
αu(t, x)− (∆ρ(|x|))Zαu(t, x).

By Lemma 2.2,

|w0(t, x)| ≤ C 1
|x|

∫ t

0

∫ |x|+(t−s)

||x|−(t−s)|
sup
|θ|=1

|G(s, rθ)| rdr ds.(4.6)

However, G(t, x) = 0 for |x| ≤ 1 and |x| ≥ 2. Hence the s integrand in (4.6) is
nonzero only when

−2 ≤ |x| − (t− s) ≤ 2,
that is,

(t− |x|) − 2 ≤ s ≤ (t− |x|) + 2.
We conclude that

|w0(t, x)| ≤ C 1
|x|

1
1 + |t− |x||

× sup
(t−|x|−2)≤s≤(t−|x|+2)

|y|≤2

(1 + s) (|Zαu′(s, y)|+ |Zαu(s, y)|) .

This yields immediately the desired bounds for |w0(t, x)| and completes the proof
of Lemma 4.2. �

To establish decay estimates for |x| < 2 we shall use the following local energy
estimates, which follow from the exponential decay estimates of Lax, Morawetz,
and Phillips (see [16], also [21] for local exponential decay outside more general
obstacles).
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Lemma 4.3. Suppose that u ∈ C∞ satisfies (4.1), where K ⊂ R3 is a star-shaped
obstacle as in (4.3). Suppose also that F (t, x) = 0 for |x| > 4. Then there is a
constant c > 0 so that

(4.7) ‖u′(t, · )‖L2(R3\K: |x|<4) ≤ C
∫ t

0

e−c(t−s)‖F (s, · )‖L2(R3\K) ds.

Consequently, under these assumptions, if M = 0, 1, 2, . . . is fixed,

(4.8)
∑

|α|+j≤M
j≤1

‖(t∂t)j∂αt,xu′(t, · )‖L2(R3\K: |x|<4)

≤ C
∑

|α|+j≤M−1
j≤1

‖(t∂t)j∂αt,xF (t, · )‖L2(R3\K)

+ C

∫ t

0

e−
c
2 (t−s)

∑
|α|+j≤M
j≤1

‖(s∂s)j∂αs,xF (s, · )‖L2(R3\K) ds.

Proof. The first estimate is an immediate consequence of the exponential decay
estimates of Lax and Phillips. As for (4.8), using induction and elliptic regularity
(see the proof of Theorem 5.2 below) one shows that for all M = 0, 1, 2, . . . ,

(4.9)
∑
|α|≤M

‖∂αt,xu′(t, · )‖L2(R3\K: |x|<4) ≤ C
∑

|α|≤M−1

‖∂αt,xF (t, · )‖L2(R3)

+ C

∫ t

0

e−c(t−s)
∑
|α|≤M

‖∂αs,xF (s, · )‖L2(R3) ds.

It remains to bound

(4.10)
∑

|α|≤M−1

‖(t∂t)∂αt,xu′(t, · )‖L2(R3\K: |x|<4).

Clearly ∂tu satisfies (4.1) with forcing term ∂tF . Apply (4.9) to this equation for
∂tu, summing on the left over |α| ≤M −1, and multiply both sides of the resulting
inequality by t to bound (4.10) as in (4.8). �

For later use, notice that since L = t∂t + r∂r , inequality (4.8) implies that if
F (s, y) = 0, |y| > 4, then

(4.11) ∑
|α|+j≤M,j≤1

‖(t∂t)j∂αt,xu′(t, · )‖L2(R3\K: |x|<4) ≤ C
∑

|α|+j≤M−1
j≤1

‖Lj∂αt,xF (t, · )‖L2(R3)

+ C

∫ t

0

e−
c
2 (t−s)

∑
|α|+j≤M
j≤1

‖Lj∂αs,xF (s, · )‖L2(R3) ds.

End of proof of Theorem 4.1. Since the coefficients of Z are bounded when |x| < 2,
it suffices to show that if |β| ≤ |α| + 1 (where α was fixed in the statement of the
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Theorem), then

(4.12) t sup
|x|<2

|∂βt,xu(t, x)| ≤ C
∫ t

0

∑
|γ|+j≤|α|+3

j≤1

‖Lj∂γs,xF (s, · )‖L2(R3\K) ds

+ C
∑

|γ|+j≤|α|+4
j≤1,|µ|≤2

∫ t

0

∫
|LjΩµ∂γs,xF (s, y)| dy ds|y| .

Using cutoffs for the forcing terms, we can split things into proving (4.12) for
the following two cases:

• Case 1: F (s, y) = 0 if |y| > 4,
• Case 2: F (s, y) = 0 if |y| < 3.

For either case, we shall use the following immediate consequence of the fundamen-
tal theorem of calculus,

| t ∂βt,xu(t, x)| ≤
∫ t

0

∑
j≤1

|(s∂s)j∂βs,xu(s, x)| ds .

We apply the Sobolev Lemma to the right side, using the fact that |β| ≤ |α| + 1,
and that Dirichlet conditions allow us to control u locally by u′, to conclude that

t sup
|x|<2

|∂βt,xu(t, x)| ≤ C
∫ t

0

∑
|γ|≤|α|+2,j≤1

‖(s∂s)j∂γs,xu′(s, · )‖L2(R3\K: |x|<4) ds

≤ C
∫ t

0

∑
|γ|+j≤|α|+3,j≤1

‖(s∂s)j∂γs,xu′(s, · )‖L2(R3\K: |x|<4) ds .

If we are in Case 1, we can apply (4.11) to get (4.12).
In Case 2, we need to write u = u0 + ur where u0 solves the boundaryless wave

equation �u0 = F with zero initial data. Fix η ∈ C∞0 (R3) satisfying η(x) = 1,
|x| < 2, and η(x) = 0, |x| ≥ 3. It follows that if we set ũ = ηu0 + ur then, since
ηF = 0, ũ solves the Dirichlet-wave equation

�ũ = G = −2∇xη · ∇xu0 − (∆η)u0

with zero initial data. The forcing term G vanishes unless 2 ≤ |x| ≤ 4. Hence by
Case 1,

t sup
|x|<2

|∂βt,xu(t, x)| = t sup
|x|<2

|∂βt,xũ(t, x)|

≤ C
∫ t

0

∑
|γ|+j≤|α|+3,j≤1

‖Lj∂γs,xG(s, · )‖L2(R3\K) ds

≤ C
∫ t

0

∑
|γ|+j≤|α|+4,j≤1

‖Lj∂γs,xu0(s, · )‖L2(2≤|x|≤4) ds

≤ C
∫ t

0

∑
|γ|+j≤|α|+4,j≤1

‖Lj∂γs,xu0(s, · )‖L∞(2≤|x|≤4) ds.
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To finish the argument, we apply (2.5) to w = Lj∂γs,xu0 with j = 0, 1. Doing so
yields

‖Lj∂γs,xu0(s, · )‖L∞(2≤|x|≤4) ≤ C
∫ s

0

∫
|s−τ−ρ|≤4

sup
|θ|=1

|Lj∂γτ,xF (τ, ρθ)| ρ dρ dτ

≤ C
∑
|µ|≤2

∫ s

0

∫
|s−τ−ρ|≤4

|Lj∂γτ,xΩµF (τ, ρθ)| ρ dρ dθ dτ

= C
∑
|µ|≤2

∫ s

0

∫
|s−τ−|y| |≤4

|Lj∂γτ,xΩµF (τ, y)| dy dτ|y| .

Note that the sets Λs = {(τ, y) : 0 ≤ τ ≤ s, |s−τ −|y| | ≤ 4} satisfy Λs∩Λs′ = ∅
if |s−s′| > 20. Therefore, if in the preceding inequality we sum over |γ|+j ≤ |α|+4,
j ≤ 1 and then integrate over s ∈ [0, t] we conclude that (4.12) must also hold for
Case 2, which completes the proof. �

5. Fixed time L2
estimates for Euclidean vector fields

outside obstacles

In this section we shall work with wave equations that are small perturbations of
the standard D’Alembertian � on R+ ×R3\K. We let �γ denote the second-order
operator given by

(5.1) (�γw)I = (∂2
t − c2I∆)wI +

N∑
J=1

3∑
j,k=0

γIJ,jk(t, x) ∂j∂kwJ , 1 ≤ I ≤ N,

where the perturbation terms γIJ,jk satisfy the symmetry conditions (3.6). Given
T > 0 fixed, we shall assume that γ is uniformly small,

(5.2)
N∑

I,J=1

3∑
j,k=0

‖γIJ,jk(t, x)‖L∞([0,T ]×R3\K) ≤ δ,

and we also assume that

(5.3)
N∑

I,J=1

3∑
i,j,k=0

‖∂iγIJ,jk(t, x)‖L1
tL
∞
x ([0,T ]×R3\K) ≤ C0.

Under these assumptions we shall prove L2 estimates for solutions of the inho-
mogeneous Dirichlet-wave equation

(5.4)


�γw = F,

w|∂K = 0,
w(t, x) = 0, t ≤ 0.

The first estimate is the standard energy estimate:

Theorem 5.1. Assume w ∈ C2 satisfy (5.4), and γ as above satisfies the symmetry
conditions (3.6) as well as (5.3) and (5.2) for δ > 0 sufficiently small. Then

(5.5) ‖w′(t, · )‖L2(R3\K) ≤ C
∫ t

0

‖F (s, · )‖L2(R3\K) ds, 0 ≤ t ≤ T,

for a uniform constant C (depending on C0).
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Although the result is standard, we shall present its proof since it serves as a
model for the more technical variations which are to follow.

We first define the components of the energy-momentum vector. For I =
1, 2, . . . , N , we let

(5.6) eI0 = eI0(w) = (∂0w
I)2 +

3∑
k=1

c2I(∂kw
I)2

+ 2
N∑
J=1

3∑
k=0

γIJ,0k∂0w
I∂kw

J −
N∑
J=1

3∑
j,k=0

γIJ,jk∂jw
I∂kw

J ,

and for k = 1, 2, 3,

(5.7) eIk = eIk(w) = −2 c2I ∂0w
I∂kw

I + 2
N∑
J=1

3∑
j=0

γIJ,jk∂0w
I∂jw

J .

Then

∂0e
I
0 = 2 ∂0w

I∂2
0w

I + 2
3∑

k=1

c2I∂kw
I∂0∂kw

I(5.8)

+ 2 ∂0w
I
N∑
J=1

3∑
k=0

γIJ,0k∂0∂kw
J + 2

N∑
J=1

3∑
k=0

γIJ,0k∂2
0w

I∂kw
J

−
N∑
J=1

3∑
j,k=0

γIJ,jk
[
∂0∂jw

I∂kw
J + ∂jw

I∂0∂kw
J
]

+RI0,

where

RI0 = 2
N∑
J=1

3∑
k=0

(∂0γ
IJ,0k)∂0w

I∂kw
J −

N∑
J=1

3∑
j,k=0

(∂0γ
IJ,jk)∂jwI∂kwJ .

Also,
3∑

k=1

∂ke
I
k =− 2 ∂0w

Ic2I∆w
I − 2

3∑
k=1

c2I∂kw
I∂0∂kw

I(5.9)

+ 2 ∂0w
I
N∑
J=1

3∑
j=0

3∑
k=1

γIJ,jk∂j∂kw
J

+ 2
N∑
J=1

3∑
j=0

3∑
k=1

γIJ,jk∂0∂kw
I∂jw

J +
3∑

k=1

RIk,

where

RIk = 2
N∑
J=1

3∑
k=1

(∂kγIJ,jk)∂0w
I∂jw

J .

Note that by the symmetry conditions (3.6), if we sum the second to last term
and the third to last term in (5.8) over I, we get

−2
N∑

I,J=1

3∑
j=0

3∑
k=1

γIJ,jk∂0∂kw
I∂jw

J ,
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which is −1 times the sum over I of the second to last term of (5.9). From this, we
conclude that if we set

ej = ej(w) =
N∑
I=1

eIj , j = 0, 1, 2, 3,

and

R = R(w′, w′) =
N∑
I=1

3∑
k=0

RIk,

then

∂te0 +
3∑

k=1

∂kek = 2〈∂tw,�γw〉+R(w′, w′),

with 〈 · , · 〉 denoting the standard inner product in RN .
If we integrate this identity over R3\K and apply the divergence theorem, we

obtain

(5.10) ∂t

∫
R3\K

e0(t, x) dx −
∫
∂K

3∑
j=1

ejnj dσ

= 2
∫
R3\K
〈∂tw,�γw〉 dx +

∫
R3\K

R(w′, w′) dx .

Here, ~n is the outward normal to K, and dσ is surface measure on ∂K.
Since we are assuming that w solves (5.4), and hence ∂tw vanishes on ∂K, the

integrand in the last term in the left side of (5.10) vanishes identically. Therefore,
we have

∂t

∫
R3\K

e0(t, x) dx = 2
∫
R3\K
〈∂tw,F 〉 dx+

∫
R3\K

R(w′, w′) dx.

Note that if δ in (5.2) is small, then

(5.11)
(
2 max

I
{c2I , c−2

I }
)−1|w′(t, x)|2 ≤ e0(t, x) ≤ 2 max

I
{c2I , c−2

I }|w′(t, x)|2.

This yields

∂t

(∫
R3\K

e0(t, x) dx
)1/2

≤ C‖F (t, · )‖L2(R3\K) + C

N∑
I,J=1

3∑
i,j,k=0

‖∂iγIJ,jk(t, · )‖∞
( ∫

R3\K
e0(t, x) dx

)1/2

.

The theorem now follows from (5.11), (5.3), and Gronwall’s inequality. �
We will also need the following estimates for L2 norms of higher-order derivatives.

Theorem 5.2. Suppose that γIJ,jk ∈ C∞([0, T ] × R3\K) satisfy the symmetry
conditions (3.6) as well as (5.2) and (5.3) where 0 < δ < 1/2 in (5.2) is small
enough so that (5.5) holds. Then if w solves (5.4) and if N = 0, 1, 2, . . . there is a
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constant C, depending on N , δ, K, and C0, so that for 0 < t < T ,∑
|α|≤N

‖∂αt,xw′(t, · )‖L2(R3\K) ≤ C
∫ t

0

∑
j≤N
‖�γ∂jsw(s, · )‖L2(R3\K) ds(5.12)

+ C
∑

|α|≤N−1

‖�c∂αt,xw(t, · )‖L2(R3\K) ,

where �γ and �c are as in (5.1) and (1.3), respectively.

Proof of Theorem 5.2. We have already observed that (5.12) holds when N = 0.
So we show that if the estimate is valid if N is replaced by N − 1, then it must be
valid for N .

We first observe that, since ∂tw|R+×∂K = 0,
∑
|α|≤N−1 ‖∂αt,x(∂tw)′(t, · )‖L2(R3) is

dominated by the right side of (5.12). Hence it suffices to show that, for N ≥ 1,∑
|α|=N

‖∂αx∇xw(t, · )‖L2(R3)

also has this property. But,

(5.13)
∑

|α|=N−1

‖∆∂αxw(t, · )‖L2(R3)

≤ C
∑

|α|=N−1

‖∂αx ∂2
tw(t, · )‖L2(R3) + C

∑
|α|=N−1

‖�c∂αxw(t, · )‖L2(R3) ,

where C depends only on the wave speeds, cI . As we have observed, the first
term in the right side of (5.13) is dominated by the right side of (5.12), and
thus the left side of (5.13) is similarly bounded. By elliptic regularity, so is∑
|α|=N ‖∂αx∇xw(t, · )‖L2(R3), which completes the proof. �

6. Weighted L2
tL

2
x estimates for the D’Alembertian

outside star-shaped obstacles

We shall also require L2
tL

2
x estimates for the unperturbed inhomogeneous wave

equation near the obstacle. As in section 4, we consider the scalar Dirichlet-wave
equation, where � = ∂2

t −∆,

(6.1)


�v = G,

v|∂K = 0,
v(t, · ) = 0, t < 0.

Just as before, our estimates here extend to solutions of non-unit speed scalar wave
equations after a straightforward scaling argument. One of the required estimates
is the following.

Proposition 6.1. Let v be as in (6.1). Assume also that K is star-shaped and
contained in {x ∈ R3 : |x| < 1}. Then there is a uniform constant C so that

(6.2) ‖v′‖L2([0,t]×R3\K: |x|<2) ≤ C
∫ t

0

‖�v(s, · )‖L2(R3\K) ds.
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Additionally, if N = 1, 2, 3, . . . is fixed, there is a uniform constant C so that

(6.3)
∑
|α|≤N

‖∂αs,xv′‖L2([0,t]×R3\K: |x|<2)

≤ C
∫ t

0

∑
m≤N

‖�∂ms v(s, · )‖L2(R3\K) ds+ C
∑

|α|≤N−1

‖�∂αs,xv‖L2([0,t]×R3\K).

Proof. The elliptic regularity argument used in the proof of Theorem 5.2 shows
that (6.3) is a consequence of (6.2); so we shall prove only (6.2).

To prove (6.2), we consider first the case when G(s, y) = 0 for |y| > 4. In this
case, (4.7) and the Schwarz inequality give us for 0 < τ < t,

‖v′(τ, · )‖2L2(R3\K: |x|<2)

≤ C
( ∫ τ

0

e−c(τ−s)‖G(s, · )‖L2(R3\K) ds
)(∫ t

0

‖G(s, · )‖L2(R3\K) ds
)
.

This implies (6.3) after integrating τ from 0 to t. Note, in addition, that applying
the Schwarz inequality to (4.7) in a slightly different way yields

‖v′(τ, · )‖2L2([0,t]×R3\K: |x|<2) ≤ C
∫ t

0

(∫ τ

0

e−c(τ−s)‖G(s, · )‖L2(R3\K)ds

)2

dτ

≤ C
∫ t

0

∫ τ

0

e−
c
2 (τ−s)‖G(s, · )‖2L2(R3\K) ds dτ

again under the assumption that G(s, y) = �v(s, y) = 0, |y| > 4. Therefore, we
also have

(6.4) ‖v′‖L2(R3\K: |x|<2) ≤ C ‖G‖L2([0,t]×R3\K), if G(s, y) = 0 , |y| > 4.

To finish, we need to show that we also have (6.2) when we assume that G(s, y) =
�v(s, y) = 0, |y| < 3. For this, as in the proof of Theorem 4.1 we fix η ∈ C∞(R3)
satisfying η(x) = 1, |x| ≤ 2, and η(x) = 0, |x| ≥ 3. Then if we write v = v0 + vr,
where v0 solves the boundaryless wave equation �v0 = G with zero initial data, it
follows that ṽ = ηv0 + vr solves the Dirichlet-wave equation

�ṽ = G̃ = −2∇xη · ∇xv0 − (∆η)v0

with zero initial data, since ηG = 0. Also, ṽ = v for |x| < 2, and G̃(s, y) = 0 if
|y| > 4. So by (6.4) we have

‖v′‖L2([0,t]×R3\K: |x|<2) = ‖ṽ′‖L2([0,t]×R3\K: |x|<2)

≤ C‖�ṽ‖L2([0,t]×R3\K)

≤ C‖v′0‖L2([0,t]×R3\K: |x|<4)

+ C‖v0‖L2([0,t]×R3\K: |x|<4) .

One now gets (6.2) for this remaining case by applying (3.2), since �v0 = G. �

We also shall need L2
tL

2
x estimates involving the scaling and Euclidean rotation

vector fields.
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Proposition 6.2. Let v and K be as in Proposition 6.1. Then if N is fixed, there
is a constant C so that∑

|α|+m≤N
m≤1

‖Lm∂αs,xv′‖L2([0,t]×R3\K: |x|<2)(6.5)

≤ C
∫ t

0

∑
|α|+m≤N
m≤1

‖�Lm∂αs,xv(s, · )‖L2(R3\K)ds

+ C
∑

|α|+m≤N−1
m≤1

‖�Lm∂αs,xv‖L2([0,t]×R3\K).

Additionally,

∑
|α|+|γ|+m≤N

m≤1

‖LmΩγ∂αs,xv
′‖L2([0,t]×R3\K: |x|<2)

(6.6)

≤ C
∫ t

0

∑
|α|+|γ|+m≤N

m≤1

‖�LmΩγ∂αs,xv(s, · )‖L2(R3\K) ds

+ C
∑

|α|+|γ|+m≤N−1
m≤1

‖�LmΩγ∂αs,xv‖L2([0,t]×R3\K).

Proof. We first notice that (6.5) implies (6.6) since∑
|α|+|γ|+m≤N

m≤1

‖LmΩγ∂αs,xv
′‖L2([0,t]×R3\K: |x|<2)

≤ C
∑

|α|+m≤N
m≤1

‖Lm∂αs,xv′‖L2([0,t]×R3\K: |x|<2).

To prove (6.5), one repeats the proof of Proposition 6.1 using (4.11) in place of
(4.7). �

As in [11], one can use these estimates and the estimates for the non-obstacle
case to obtain the following.

Theorem 6.3. Let v and K be as in Proposition (6.1). Then if N is fixed, there
is a constant C so that

(6.7)
(
ln(2 + t)

)−1/2 ∑
|α|≤N

‖〈x〉−1/2∂αs,xv
′‖L2([0,t]×R3\K)

+
∑
|α|≤N

‖〈x〉−1∂αs,xv‖L2
sL

6
x([0,t]×R3\K)

≤ C
∫ t

0

∑
|α|≤N

‖�∂αs,xv(s, · )‖L2(R3\K) ds+ C
∑

|α|≤N−1

‖�∂αs,xv‖L2([0,t]×R3\K).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ALMOST GLOBAL EXISTENCE FOR QUASILINEAR WAVE EQUATIONS 137

Additionally,

(6.8)
(
ln(2 + t)

)−1/2 ∑
|α|+m≤N
m≤1

‖〈x〉−1/2Lm∂αs,xv
′‖L2([0,t]×R3\K)

+
∑

|α|+m≤N
m≤1

‖〈x〉−1Lm∂αs,xv‖L2
sL

6
x([0,t]×R3\K)

≤ C
∫ t

0

∑
|α|+m≤N
m≤1

‖�Lm∂αs,xv(s, · )‖L2(R3\K)ds

+ C
∑

|α|+m≤N−1
m≤1

‖�Lm∂αs,xv‖L2([0,t]×R3\K),

and (
ln(2 + t)

)−1/2 ∑
|α|+m≤N
m≤1

‖〈x〉−1/2LmZαv′‖L2([0,t]×R3\K)(6.9)

+
∑

|α|+m≤N
m≤1

‖〈x〉−1LmZαv‖L2
sL

6
x([0,t]×R3\K)

≤ C
∫ t

0

∑
|α|+m≤N
m≤1

‖�LmZαv(s, · )‖L2(R3\K) ds

+ C
∑

|α|+m≤N−1
m≤1

‖�LmZαv‖L2([0,t]×R3\K).

Proof. Let us first handle (6.7) since it is the simplest. In view of Proposition 6.1
and Sobolev embedding it suffices to prove that

(6.10)
(
ln(2 + t)

)−1/2 ∑
|α|≤N

‖〈x〉−1/2∂αs,xv
′‖L2([0,t]×R3\K: |x|>2)

+
∑
|α|≤N

‖〈x〉−1∂αs,xv‖L2
sL

6
x([0,t]×R3\K: |x|>2)

≤ C
∫ t

0

∑
|α|≤N

‖�∂αs,xv(s, · )‖L2(R3\K) ds+ C
∑

|α|≤N−1

‖�∂αs,xv‖L2([0,t]×R3\K).

Let us estimate the first term in the left side. For this we fix β ∈ C∞(R3)
satisfying β(x) = 1, |x| ≥ 2 and β(x) = 0, |x| ≤ 3/2. By assumption the obstacle is
contained in the set |x| < 1. It follows that w = βv solves the boundaryless wave
equation

�w = β�v − 2∇xβ · ∇xv − (∆β)v
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with zero initial data, and satisfies w(t, x) = v(t, x), |x| ≥ 2. We split w = w1 +w2,
where �w1 = β�v and �w2 = −2∇xβ · ∇xv − (∆β)v. Note that by (3.1) we have∑

|α|≤N

(
ln(2 + t)

)−1/2‖〈x〉−1/2∂αs,xw
′
1‖L2([0,t]×R3)

≤ C
∑
|α|≤N

∫ t

0

‖∂αs,x�v(s, · )‖L2(R3\K) ds,

where we have used the fact that∑
|α|≤N

∫ t

0

‖∂αs,x(β�v(s, · ))‖L2(R3\K) ds ≤ C
∑
|α|≤N

∫ t

0

‖∂αs,x�v(s, · )‖L2(R3\K) ds.

To bound the first term on the left of (6.10) it therefore suffices to prove that

(6.11)
(
ln(2 + t)

)−1/2 ∑
|α|≤N

‖〈x〉−1/2∂αs,xw
′
2‖L2([0,t]×R3: |x|>2)

≤ C
∑
|α|≤N

∫ t

0

‖�∂αs,xv(s, · )‖L2(R3\K) ds+ C
∑

|α|≤N−1

‖�∂αs,xv‖L2([0,t]×R3\K) .

To prove (6.11) we note that G = −2∇xβ · ∇xv − (∆β)v = �w2 vanishes unless
1 < |x| < 2. To use this, fix χ ∈ C∞0 (R) satisfying χ(s) = 0, |s| > 2, and∑
j χ(s−j) = 1. We then splitG =

∑
j Gj , whereGj(s, x) = χ(s−j)G(s, x), and let

w2,j be the solution of the inhomogeneous wave equation �w2,j = Gj on Minkowski
space with zero initial data. By the sharp Huygens principle, the functions w2,j

have finite overlap, so that we have |∂αt,xw2(t, x)|2 ≤ C
∑

j |∂αt,xw2,j(t, x)|2, for some
uniform constant C. Therefore, by (3.1) it follows that the square of the left side
of (6.11) is dominated by∑
|α|≤N

∑
j

(∫ t

0

‖∂αs,xGj(s, · )‖L2(R3)ds
)2

≤ C
∑
|α|≤N

‖∂αs,xG‖2L2([0,t]×R3)

≤ C
∑
|α|≤N

‖∂αs,xv′‖2L2([0,t]×{1<|x|<2}) + C
∑
|α|≤N

‖∂αs,xv‖2L2([0,t]×{1<|x|<2})

≤ C
∑
|α|≤N

‖∂αs,xv′‖2L2([0,t]×R3\K:|x|<2).

Consequently, the bound (6.11) follows from (6.3). Since the second term in (6.10)
can also be handled by this argument, this completes the proof of (6.7). Inequalities
(6.8) and (6.9) follow by a similar argument, using (6.5) and (6.6) instead of (6.3).

�

7. Fixed-time L2
estimates involving

arbitrary differential operators outside obstacles

In this section we work with differential operators P = P (t, x,D) that are
not necessarily tangent to ∂K, but which satisfy other conditions to be specified.
We shall prove rather crude L2 estimates for Pw if w solves the inhomogeneous
Dirichlet-wave equation (5.4) with K a star-shaped obstacle. In our applications,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ALMOST GLOBAL EXISTENCE FOR QUASILINEAR WAVE EQUATIONS 139

P will be a product of powers of the Euclidean translation vector fields and the
Euclidean rotation vector fields {Ω}, as well as the scaling vector field, L. Neither
L nor the fields {Ω} are tangent to ∂K (unless K is a ball, in which case the {Ω}
vanish), and therefore, unlike in the boundaryless case, we cannot deduce L2 esti-
mates for Pw directly from the energy estimate using commutation properties of
the vector fields and �c. On the other hand, the nontangential components of L
and Ω on ∂K are bounded, which leads to estimates that we can use to prove the
desired existence results.

Our basic result in this context is the following. As remarked before, the differ-
ential operator P can be thought of as P =

∑
|α|+j≤M
j≤1

LjZα.

Proposition 7.1. Suppose that w solves (5.4) where the γIJ,jk are as in Theorem
5.2. Suppose further that there is an integer M and a constant C0 so that
(7.1)
|(Pw)′(t, x)| ≤ C0t

∑
|α|≤M−1

|∂t∂αt,xw′(t, x)|+ C0

∑
|α|≤M

|∂αt,xw′(t, x)|, x ∈ ∂K.

Then, if �γ and �c are as in (5.1) and (1.3), respectively,

‖(Pw)′(t, · )‖L2(R3\K) ≤ C
∫ t

0

‖�γPw(s, · )‖L2(R3\K) ds(7.2)

+ C

∫ t

0

∑
|α|+j≤M+1

j≤1

‖�cLj∂αs,xw(s, · )‖L2(R3\K) ds

+ C
∑

|α|+j≤M
j≤1

‖�cLj∂αs,xw‖L2([0,t]×R3\K) .

Proof. The proof is similar to that of Theorem 5.1, except that here we must
estimate the flux terms that arise by using the trace inequality and the bounds
(7.1).

To be more specific, we need to use the analogue of (5.10) where w is replaced
by Pw. Therefore, if we now set

ej = ej(Pw), j = 0, 1, 2, 3,

then (5.10) in our context becomes

(7.3) ∂t

∫
R3\K

e0(t, x) dx−
∫
∂K

3∑
j=1

ejnj dσ

= 2
∫
R3\K
〈∂tPw,�γPw〉 dx+

∫
R3\K

R
(
(Pw)′, (Pw)′

)
dx ,

where as before R is a quadratic form whose coefficients belong to L1
tL
∞
x . Therefore,

if as in the proof of Theorem 5.1, we use (5.2) and (5.3) and apply Gronwall’s
inequality, we conclude that if δ > 0 is small enough, then

‖(Pw)′(t, · )‖L2(R3\K) ≤ C
∫ t

0

‖�γPw(s, · )‖L2(R3\K) ds

+ C
( ∫

[0,t]×∂K

(
|∂tPw(s, x)|2 + |∇xPw(s, x)|2

)
dσ
)1/2

.
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Recall that we are assuming K ⊂ {x ∈ R3 : |x| < 1}. Therefore, by (7.1) and a
trace argument we have(∫

[0,t]×∂K
|(Pw)′(s, x)|2 dσ

)1/2

≤ C
∑

|α|+j≤M+1
j≤1

‖Lj∂αs,xw′‖L2([0,t]×R3\K: |x|<2).

One therefore gets (7.2) from (6.5). �

As an immediate corollary we have the following.

Corollary 7.2. Assume that w solves (5.4). Then if M = 1, 2, . . . ,

∑
|α|+j≤M
j≤1

‖(LjZαw)′(t, · )‖L2(R3\K) ≤ C
∫ t

0

∑
|α|+j≤M
j≤1

‖�γLjZαw(s, · )‖L2(R3\K) ds

(7.4)

+ C

∫ t

0

∑
|α|+j≤M+1

j≤1

‖�cLj∂αs,xw(s, · )‖L2(R3\K) ds

+ C
∑

|α|+j≤M
j≤1

‖�cLj∂αs,xw‖L2([0,t]×R3\K) .

8. L2
x estimates involving only the scaling and

translation vector fields outside star-shaped obstacles

In this section we prove L2
x estimates involving a single occurrence of the scaling

vector field L = t∂t + x · ∇x. Recall that the commutator of L with �c is 2�c.
For obstacle problems, the complication arises that L does not preserve Dirichlet
boundary conditions. Because of this, unlike in the boundaryless setting, one cannot
derive L2 estimates for Lu just by using energy estimates. Fortunately, though, if
one assumes that ∂K is star-shaped, then in the proof of the energy estimates, L
contributes a term with a favorable sign, as in the classical Morawetz inequality for
star-shaped domains [18]. For this reason, we can estimate Lu′ in L2, although there
is a slight loss versus the corresponding estimates for Minkowski space. This slight
loss is reflected especially in the third and fourth terms on the right of (8.3) below.
Unlike the corresponding terms on the right side of (7.4), these terms involve only
translation derivatives and as such are easily handled in the nonlinear applications
to follow.

To prove the estimates of this section requires strengthening the hypotheses on
the metric perturbations γIJ,jk. We shall assume as before that (5.3) holds, but
need to strengthen (5.2) to

(8.1)
∑
I,J,j,k

|γIJ,jk(t, x)| ≤ δ/(1 + t),

with δ > 0 small enough so that (5.12) holds. Under these assumptions, we have
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Proposition 8.1. Let w solve (5.4) with γ as in (5.3), (8.1). Then

‖(Lw)′(t, · )‖L2(R3\K) ≤ C
∫ t

0

‖�γLw(s, · )‖L2(R3\K) ds(8.2)

+ C

∫ t

0

∑
|α|≤2

‖�c∂αs,xw(s, · )‖L2(R3\K) ds

+ C
∑
|α|≤1

‖�c∂αt,xw‖L2([0,t]×R3\K).

As a corollary of this and (5.12) we have the following useful estimate.

Theorem 8.2. Let w solve (5.4) with γ as in (5.3), (8.1). Then if N = 0, 1, 2, . . .
is fixed,

∑
|α|+m≤N
m≤1

‖Lm∂αt,xw′(t, · )‖L2(R3\K)

(8.3)

≤ C
∫ t

0

∑
|α|+m≤N
m≤1

‖�γLm∂αs,xw(s, · )‖L2(R3\K) ds

+ C
∑

|α|+m≤N−1
m≤1

‖�cLm∂αt,xw(t, · )‖L2(R3\K)

+ C

∫ t

0

∑
|α|≤N+1

‖�c∂αs,xw(s, · )‖L2(R3\K) ds+ C
∑
|α|≤N

‖�c∂αs,xw‖L2([0,t]×R3\K).

The proof that Theorem 8.2 follows from Proposition 8.1 requires a simple modi-
fication of the proof that Theorem 5.2 follows from Theorem 5.1. Precisely, we first
note that, if m = 0, then Theorem 8.2 follows from Theorem 5.2. For m = 1, we
apply induction on the number of spatial derivatives in α. The elliptic regularity
estimate required in this step is that, for N ≥ 2,∑
|α|=N

‖∂αxLw‖L2(R3\K) ≤ C
∑

|α|≤N−2

(
‖∂αx∆Lw‖L2(R3\K) + ‖∂αx (Lw)′‖L2(R3\K)

)
+ C‖(Lw)|∂K ‖

HN−
1
2 (∂K)

.

This holds locally by standard elliptic regularity (see e.g. [3], Theorem 8.13), and
the fact that Lw is locally controlled by (Lw)′ and the trace of Lw. Using cutoff
functions one can then reduce to the boundaryless case, where only the first term
on the right is required.

Since (Lw)|∂K = (x · ∂xw)|∂K , by the trace theorem we have

‖(Lw)|∂K ‖
HN−

1
2 (∂K)

≤ C
∑
|α|≤N

‖∂αxw′‖L2(R3\K) ,

and the right-hand side involves the estimate (8.2) for the case m = 0. It remains,
then, to prove Proposition 8.1.
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To prove (8.2), we need to use the analogue of (5.10) where w there is replaced
by Lw. Therefore, if we set

ej = ej(Lw), j = 0, 1, 2, 3,

then (5.10) in our context becomes

(8.4) ∂t

∫
R3\K

e0(t, x) dx−
∫
∂K

3∑
j=1

ejnj dσ

= 2
∫
R3\K
〈∂tLw,�γLw〉 dx+

∫
R3\K

R
(
(Lw)′, (Lw)′

)
dx ,

where as before R is a quadratic form whose coefficients belong to L1
tL
∞
x .

We can simplify the last term on the left-hand side. We first notice that, at
points (s, x) belonging to R+× ∂K, the Dirichlet boundary conditions on w give us

∂sLw
I = s ∂2

sw
I + ∂sw

I + ∂s〈x,∇x〉wI = ∂s〈x,∇x〉wI = 〈x, ~n〉 ∂~n∂swI ,

where ∂~nwI = 〈~n,∇x〉wI denotes differentiation with respect to the outward nor-
mal to K. Similarly,

3∑
j=1

nj∂jLw
I = s ∂~n∂sw

I + ∂~n(〈x,∇x〉wI)

on R+ × ∂K. As a consequence, we have

−
3∑
j=1

ejnj = 2
N∑
I=1

[
〈x, ~n〉 c2I s (∂~n∂swI)2

+ 〈x, ~n〉 c2I ∂~n∂swI∂n(〈x,∇x〉wI)− 〈x, ~n〉 ∂~n∂swI
N∑
J=1

3∑
j=1

3∑
k=0

γIJ,jknj∂kLw
I
]
.

Since we are assuming (8.1), we have

−
3∑
j=1

ejnj = 2
N∑
I=1

c2I〈x, ~n〉 s |∂~n∂swI |2 −Q(w′′, w′) ,

where

|Q(w′′, w′)| ≤ C
∑

1≤|α|≤2

|∂αs,xw|2

for some uniform constant C. Because of this, identity (8.4) yields

∂t

∫
R3\K

e0(t, x) dx +
∫
∂K

2
N∑
I=1

c2I〈x, ~n〉 s |∂~n∂swI |2 dσ

=
∫
∂K
Q(w′′, w′) dσ + 2

∫
R3\K
〈∂tLw,�γLw〉 dx+

∫
R3\K

R
(
(Lw)′, (Lw)′

)
dx .
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The second term on the left-hand side is positive, since 〈x, ~n〉 > 0 for star-shaped
K. Hence, we can apply Gronwall’s inequality to obtain

‖(Lw)′(t, · )‖L2(R3\K) ≤ C
∫ t

0

‖�γLw(s, · )‖L2(R3\K) ds

+ C
( ∑

1≤|α|≤2

∫
[0,t]×∂K

|∂αs,xw|2 dσ
)1/2

.

The first term on the right here is contained in the right side of (8.2). As a result,
it suffices to show that the last term in the preceding inequality is dominated by
the other terms in the right side of (8.2). But

( ∑
1≤|α|≤2

∫
[0,t]×∂K

|∂αs,xw|2dσ
)1/2

≤ C
∑
|α|≤2

‖∂αs,xw′(s, · )‖L2([0,t]×R3\K: |x|<2) ,

so that (6.3) yields the desired bounds for this term as well. This completes the
proof of (8.2), and hence Proposition 8.1. �

9. Main L2
estimates outside star-shaped obstacles

We shall assume here that K ⊂ R3 is star-shaped. We shall also assume that
the γIJ,jk satisfy (5.3) and (8.1). Then if we combine our L2 estimates we have the
following useful result.

Theorem 9.1. Let w ∈ C∞ solve (5.4) and vanish for t < 0. Suppose also that K is
star-shaped (see (1.1)) and the γIJ,jk are as in (5.3), (8.1). Then if N = 0, 1, 2, . . .
is fixed, we have

∑
|α|≤N+4

‖∂αt,xw′(t, · )‖L2(R3\K) +
∑

|α|+m≤N+2
m≤1

‖Lm∂αt,xw′(t, · )‖L2(R3\K)(9.1)

+
∑

|α|+m≤N
m≤1

‖LmZαw′(t, · )‖L2(R3\K)

≤ C
∫ t

0

( ∑
|α|≤N+4

‖�γ∂αs,xw(s, · )‖L2(R3\K)

+
∑

|α|+m≤N+2
m≤1

‖�γLm∂αs,xw(s, · )‖L2(R3\K)

+
∑

|α|+m≤N
m≤1

‖�γLmZαw(s, · )‖L2(R3\K)

)
ds
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+ C
∑

|α|≤N+3

‖�γ∂αt,xw(t, · )‖L2(R3\K)

+ C
∑

|α|+m≤N+1
m≤1

‖�γLm∂αt,xw(t, · )‖L2(R3\K)

+ C
∑

|α|≤N+2

‖�c∂αs,xw‖L2([0,t]×R3\K)

+ C
∑

|α|+m≤N
m≤1

‖�cLm∂αs,xw‖L2([0,t]×R3\K).

To see this, let the left side be denoted by I+ II + III, and let RHS denote the
right side. We then claim that

I ≤ RHS +
∑
I,J,j,k

∑
|α|≤N+3

‖γIJ,jk∂j∂k∂αt,xw(t, · )‖L2(R3\K)(9.2)

II ≤ RHS + C

∫ t

0

∑
|α|≤N+3

∑
I,J,j,k

‖γIJ,jk∂j∂k∂αs,xw(s, · )‖L2(R3\K) ds(9.3)

+
∑

|α|+m≤N+1
m≤1

∑
I,J,j,k

‖γIJ,jk∂j∂kLm∂αt,xw(t, · )‖L2(R3\K)

III ≤ RHS + C

∫ t

0

∑
|α|+m≤N+1

m≤1

∑
I,J,j,k

‖γIJ,jk∂j∂kLm∂αs,xw(s, · )‖L2(R3\K) ds.(9.4)

Indeed, by (5.12), I is dominated by the first and fourth terms in the right side
of (9.1) along with the last term in (9.2). Also, by (8.3), II is dominated by the
second, fifth, first, and sixth terms in the right side of (9.1) along with the last two
terms in (9.3). Lastly, by (7.4), III is dominated by the third, second, and seventh
terms in the right side of (8.2), along with the last term in (9.4). By inequality
(5.2), if δ is sufficiently small, we can absorb the time t terms on the right-hand side
of (9.2) and (9.3) into the left-hand side of (9.1). The inequality(9.1) now follows
from (5.3) and (9.2)–(9.4) by Gronwall’s inequality. �

Repeating this proof and using Theorem 6.3 yields the following result, which
will be used in the iteration argument of the next section.

Corollary 9.2. Let w, K and γIJ,jk be as in Theorem 9.1. Then if N is fixed,

∑
|α|≤N+4

‖∂αt,xw′(t, · )‖L2(R3\K) +
∑

|α|+m≤N+2
m≤1

‖Lm∂αt,xw′(t, · )‖L2(R3\K)

(9.5)

+
∑

|α|+m≤N
m≤1

‖LmZαw′(t, · )‖L2(R3\K)
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+
(
ln(2 + t)

)−1/2
( ∑
|α|≤N+3

‖〈x〉−1/2∂αs,xw
′‖L2([0,t]×R3\K)

+
∑

|α|+m≤N+1
m≤1

‖〈x〉−1/2Lm∂αs,xw
′‖L2([0,t]×R3\K)

+
∑

|α|+m≤N−1
m≤1

‖〈x〉−1/2LmZαw′‖L2([0,t]×R3\K)

)

+
( ∑
|α|≤N+3

‖〈x〉−1∂αs,xw‖L2
sL

6
x([0,t]×R3\K)

+
∑

|α|+m≤N+1
m≤1

‖〈x〉−1Lm∂αs,xw‖L2
sL

6
x([0,t]×R3\K)

+
∑

|α|+m≤N−1
m≤1

‖〈x〉−1LmZαw‖L2
sL

6
x([0,t]×R3\K)

)

≤ C
∫ t

0

( ∑
|α|≤N+4

‖�γ∂αs,xw(s, · )‖L2(R3\K) +
∑

|α|+m≤N+2
m≤1

‖�γLm∂αs,xw(s, · )‖L2(R3\K)

+
∑

|α|+m≤N
m≤1

‖�γLmZαw(s, · )‖L2(R3\K)

)
ds

+ C
∑

|α|≤N+3

‖�γ∂αt,xw(t, · )‖L2(R3\K)

+ C
∑

|α|+m≤N+1
m≤1

‖�γLm∂αt,xw(t, · )‖L2(R3\K)

+ C
∑

|α|≤N+2

‖�c∂αs,xw‖L2([0,t]×R3\K)

+ C
∑

|α|+m≤N
m≤1

‖�cLm∂αs,xw‖L2([0,t]×R3\K)

+ C
∑

|α|+m≤N−2
m≤1

‖�cLmZαw‖L2([0,t]×R3\K).

10. Almost global existence for quasilinear wave equations

outside of star-shaped obstacles

We conclude by showing how to adapt the proof of Theorem 1.2 to establish
almost global existence for the system (1.2). As in [10], [11], it is convenient to
reduce the Cauchy problem (1.2) to an equivalent equation with driving force but
vanishing Cauchy data, in order to avoid dealing with compatibility conditions for
the Cauchy data. We can then set up an iteration argument for the new equation
similar to that used in the proof of Theorem 1.2.
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As in the boundaryless case, we do not need to assume that the data has compact
support. Here, however, we have to replace the smallness condition (3.12) by

(10.1)
∑
|α|≤15

‖〈x〉|α|∂αx f‖L2(R3\K) +
∑
|α|≤14

‖〈x〉|α|+1∂αx g‖L2(R3\K) ≤ ε .

The extra number of derivatives required is due to the loss of four derivatives in the
L2 estimates for the obstacle case versus the non-obstacle case. The extra power
of 〈x〉 and our assumption here that we control the size of (f, g) as well as their
derivatives, are used in the steps following (10.8) below.

To make the reduction to an equation with zero initial data, we first note that
if the data satisfy (10.1) with ε > 0 small, then we can construct the solution u to
the system (1.2) on the set (t, x) ∈ {0 < c t < |x|} ∩ {[0, Tε)× R3\K}, where

(10.2) c = 5 max
I
cI ,

and that on this set the solution satisfies

(10.3) sup
0≤t≤∞

∑
|α|≤15

‖〈x〉|α|∂αt,xu(t, · )‖L2(R3\K : |x|>c t) ≤ C0 ε .

To see this, we note that by scaling the t variable we may assume that maxI cI = 1
2 .

The local existence results in [10] yield a solution u to (1.2) on the set (t, x) ∈ [0, 2]×
R3\K, satisfying the bounds (10.3).2 To see that this solution can be extended to
include all (t, x) with 0 < c t < |x|, we let R ≥ 4 and consider data (fR, gR)
supported in R/4 < |x| < 4R, which agrees with the data (f, g) on the set R/2 <
|x| < 2R. Let uR(t, x) satisfy the boundaryless equation

(10.4) �cuR = Q(duR, R−1d2uR) ,

with Cauchy data
(
fR(R · ), RgR(R · )

)
. (Recall that Q is the nonlinearity appearing

in the equation, see (1.2), (1.4).) Because of our smallness assumption (1.7) on
(f, g), the solution uR of (10.4) exists for 0 < t < 1 by standard results (see e.g.
[6]), and satisfies

sup
0≤t≤1

‖uR(t, · )‖H15(R3) ≤ C
(
‖fR(R · )‖H15(R3) +R ‖gR(R · )‖H14(R3)

)
≤ C R−3/2

( ∑
|α|≤15

‖(R∂x)αfR‖L2(R3) +R
∑
|α|≤14

‖(R∂x)αgR‖L2(R3)

)
.

The smallness condition on |u′R| implies that the wave speeds for the quasilinear
equation (10.4) are bounded above by 1. A domain of dependence argument shows
that the solutions uR(R−1t, R−1x) restricted to

∣∣ |x| − R ∣∣ < R
2 − t agree on their

overlaps, and also with the local solution u, yielding the solution to (1.2) on the
desired set (t, x) ∈ {0 < c t < |x|}∩{[0, Tε)×R3\K}. A partition of unity argument
now yields (10.3).

We use this partial construction of the solution u to start our iteration. Fix a
cutoff function χ ∈ C∞(R) satisfying χ(s) = 1 if s ≤ 1

2c and χ(s) = 0 if s > 1
c , with

c as in (10.2). Set

u0(t, x) = η(t, x)u(t, x) , η(t, x) = χ( |x|−1t ) .

2The local existence theorem in [10] was stated only for diagonal systems. However, since the
proof was based only on energy estimates, it also applies to nonlinear systems that satisfy the
symmetry condition (1.5), using Theorem 5.1.
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Note that since |x| is bounded below on the complement of K, the function η(t, x)
is smooth and homogeneous of degree 0 on (t, x) ∈ [0, Tε)× (R3\K). Also,

�cu0 = ηQ(du, d2u) + [�c, η]u .

Thus, u solves �cu = Q(du, d2u) for 0 < t < Tε and x ∈ R3\K if and only if
w = u− u0 solves

(10.5)


�cw = (1 − η)Q

(
d(u0 + w), d2(u0 + w)

)
− [�c, η]u,

w|∂K = 0,
w(t, x) = 0, t ≤ 0

for 0 < t < Tε. We emphasize that u0 has been constructed for all (t, x) ∈ [0, Tε)×
(R3\K), and the solution u has been constructed on the support of [�c, η], so that
(10.5) should be viewed as a nonlinear problem for w.

We shall solve (10.5) by iteration. We set w0 = 0, and recursively define wk for
k = 1, 2, . . . by requiring that

�cwk = (1− η)Q
(
d(u0 + wk−1), d2(u0 + wk)

)
− [�c, η]u,

wk|∂K = 0,
wk(t, x) = 0, t ≤ 0 .

In place of (3.15), we now let

Mk(T ) = sup
0≤t≤T

( ∑
|α|≤14

‖∂αt,xw′k(t, · )‖L2(R3\K) +
∑

|α|+m≤12
m≤1

‖Lm∂αt,xw′k(t, · )‖L2(R3\K)

+
∑

|α|+m≤10
m≤1

‖LmZαw′k(t, · )‖L2(R3\K) + (1 + t)
∑
|α|≤2

‖Zαwk(t, · )‖L∞(R3\K)

)

+
(
ln(2 + T )

)−1/2
( ∑
|α|≤13

‖〈x〉−1/2∂αs,xw
′
k‖L2([0,T ]×R3\K)

+
∑

|α|+m≤11
m≤1

‖〈x〉−1/2Lm∂αs,xw
′
k‖L2([0,T ]×R3\K)

+
∑

|α|+m≤9
m≤1

‖〈x〉−1/2LmZαw′k‖L2([0,T ]×R3\K)

)

+
∑
|α|≤13

‖〈x〉−1∂αs,xwk‖L2
sL

6
x([0,T ]×R3\K)

+
∑

|α|+m≤11
m≤1

‖〈x〉−1Lm∂αs,xwk‖L2
sL

6
x([0,T ]×R3\K)

+
∑

|α|+m≤9
m≤1

‖〈x〉−1LmZαwk‖L2
sL

6
x([0,T ]×R3\K).

If we let M0(T ) denote the above quantity with wk replaced by u0, then we note
that (10.3) together with Lemma 3.4 implies

sup
0<T<∞

M0(T ) ≤ C ε .
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We seek to find a constant C1 so that for all k,

(10.6) Mk(Tε) ≤ C1 ε ,

provided that ε < ε0 and provided that ε0 and the constant κ occurring in the
definition (1.8) are sufficiently small. To do this, we proceed inductively as in §3,
and show that, provided Mk−1(Tε) ≤ C1 ε and ε ≤ κ, then

(10.7) Mk(Tε) ≤ C · ε+ C · C1 · κ ·
(
Mk−1(Tε) +Mk(Tε)

)
,

where C is a universal constant. The bound (10.6) with C1 = 2C follows from
(10.7), provided κ is sufficiently small.

We begin by estimating the fourth term in the formula for Mk(Tε), that is, the
pointwise bounds for Zαwk . By Theorem 4.1 and the support properties of wk, this
is bounded by

(10.8) C

∫ Tε

0

∫
R3\K

∑
|β|+j≤8
j≤1

|LjZβ�cwk(s, y)| dy ds|y|

+ C

∫ Tε

0

∑
|β|+j≤5
j≤1

‖Lj∂βs,y�cwk(s, · )‖L2(R3\K) ds .

The contribution to (10.8) where �cwk is replaced by [�c, η]u is bounded by C ε.
Indeed, since this term is supported in the region |y|2c < s < |y|

c ,

(10.9)
∫ Tε

0

∫
R3\K

∑
|β|+j≤8
j≤1

|LjZβ [�c, η]u| dy ds|y|

≤ C
∫ Tε

0

〈s〉− 3
4

∫
R3\K
〈y〉− 1

4−
3
2

∑
|β|+j≤8
j≤1

〈y〉 3
2 |LjZβ[�c, η]u| dy ds

≤ C sup
0<t<∞

∑
|β|+j≤8
j≤1

‖〈y〉2LjZβ [�c, η]u‖L2(R3\K),

which by (10.3), and the homogeneity of η, is bounded by C ε. The contribution of
[�c, η]u to the second term in (10.8) is bounded using a similar argument,

(10.10)
∫ Tε

0

∑
|β|+j≤5
j≤1

‖Lj∂βs,y[�c, η]u(s, ·)‖L2(R3\K) ds

≤ C
∫ Tε

0

〈s〉− 3
2

∑
|β|+j≤5
j≤1

‖〈y〉 3
2Lj∂βs,y[�c, η]u(s, ·)‖L2(R3\K) ds ,

which is bounded by C ε as argued for (10.9).
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The contribution to the expression (10.8) in which we replace the term �cwk by
the term (1− η)Q

(
d(u0 + wk−1), d2(u0 + wk)

)
can be bounded by

(10.11) C ·
(
ε+

∑
|α|+m≤9
m≤1

‖〈x〉− 1
2LmZαw′k−1‖L2([0,Tε]×R3\K)

)

×
(
ε+

∑
|α|+m≤9
m≤1

‖〈x〉− 1
2LmZαw′k−1‖L2([0,Tε]×R3\K)

+
∑

|α|+m≤9
m≤1

‖〈x〉− 1
2LmZαw′k‖L2([0,Tε]×R3\K)

)
.

For example, a typical term involving u0 coming from the first term in (10.8) is
handled as follows:

(10.12)
∫ Tε

0

∫
R3\K

∑
|β|+j≤8
j≤1

(1− η) |LjZβ(u′0 w
′′
k )|dy ds|y|

≤ C
∫ Tε

0

〈s〉− 3
2

∑
|β|+j≤9
j≤1

‖〈y〉LjZβu′0(s, · )‖L2(R3\K)

×
∑
|β|+j≤9
j≤1

‖〈y〉− 1
2LjZβw′k(s, · )‖L2(R3\K) ds

≤ C
∑
|β|+j≤9
j≤1

‖〈s〉− 3
2 〈y〉LjZβu′0‖2L2([0,Tε)×R3\K)

×
∑
|β|+j≤9
j≤1

‖〈y〉− 1
2LjZβw′k‖L2([0,Tε)×R3\K)

≤ C ε
∑
|β|+j≤9
j≤1

‖〈y〉− 1
2LjZβw′k‖L2([0,Tε)×R3\K)

again using (10.3). Arguing as in (10.12), (10.9) and (10.10), one easily checks the
bound (10.11) for the other terms in (10.8) involving u0. To bound the contributions
to (10.8) involving only wk−1, wk, we apply the Schwarz inequality to handle the
first term in (10.8), and for the second term in (10.8), the bound (10.11) follows by
applying Lemma 3.4 in the manner used to bound the first term on the right side
of (3.18) (see (3.20)–(3.22)). We thus have the bound

C
(
ε+ ln(Tε)

1
2 Mk−1(Tε)

)
×
(
ε+ ln(Tε)

1
2 Mk−1(Tε) + ln(Tε)

1
2 Mk(Tε)

)
≤ C · ε + C · C1 · κ ·

(
Mk−1(Tε) +Mk(Tε)

)
.

Thus the fourth term in the definition of Mk(Tε) satisfies the bounds (10.7).
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All other terms in Mk(t) occur in the left-hand side of (9.5), taking N = 10,
w = wk, t = Tε, and letting γ be defined by

(�γwk)I ≡ �cIwIk − (1− η)
∑

0≤i,j,l≤3
1≤J,K≤N

BIJ,ijK,l (∂luK0 + ∂lw
K
k−1) ∂i∂jwJk

(10.13)

= (1 − η)BI
(
d(u0 + wk−1)

)
− [�cI , η]uI

+ (1− η)
∑

0≤i,j,l≤3
1≤J,K≤N

BIJ,ijK,l (∂luK0 + ∂lw
K
k−1) ∂i∂juJ0 .

Hence, we need to show that each term on the right of (9.5), with these values for
wk, γ, t and N , can be dominated by the right-hand side of (10.7).

We first estimate

(10.14)∫ t

0

( ∑
|α|≤14

‖�γ∂αs,xwk(s, · )‖L2(R3\K) +
∑

|α|+m≤12
m≤1

‖�γLm∂αs,xwk(s, · )‖L2(R3\K)

+
∑

|α|+m≤10
m≤1

‖�γLmZαwk(s, · )‖L2(R3\K)

)
ds .

Consider the third term in (10.14), which is clearly bounded by
(10.15)∑
|α|+m≤10
m≤1

∫ t

0

(
‖LmZα�γwk(s, · )‖L2(R3\K) + ‖ [�γ , LmZα]wk(s, ·)‖L2(R3\K)

)
ds .

The contribution to �γwk in the first term of (10.15) coming from [�c, η]u is
handled as in (10.10) above. To handle the contribution here from (1−η)BI(d(u0 +
wk−1)), we bound those terms involving u0 using (10.3) and arguing similar to
(10.9), (10.10), and (10.12) above. In the same way, one bounds the contribution
of the last term on the right side of (10.13) to the first term in (10.15). The
contributions that remain to be bounded from both terms of (10.15) are identical
to the first and third integrals on the right-hand side of (3.17), with u′k−1, u

′
k there

replaced by w′k−1, w
′
k, respectively. These terms can be estimated in an identical

manner to that section, with the following remark in mind. Lemma 3.4 holds on
our exterior domain for a general function h (and the same proof applies without
modification), but the analogue of estimate (3.11) of Lemma 3.5 on R3\K requires
Dirichlet boundary conditions to work. To get around this, we note that (3.11)
holds on R3\K provided either ∂j or the prime is a time derivative, by using the
same argument as in the proof of Lemma 3.5. This similarly handles the case in
which any factor of Zα involves a time derivative. For the remaining cases, involving
purely spatial derivatives, we can use the following elliptic estimate, which uses the
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fact that wk vanishes on the boundary,∑
|α|≤9

1≤i,j≤3

‖∂αx ∂i∂jwk(t, · )‖L2(R3\K : |x|<1)

≤ C
∑
|α|≤9

‖∂αx∆wk(t, · )‖L2(R3\K : |x|<2) + C ‖wk(t, · )‖L6(R3\K : |x|<2) .

The other two terms in (10.14) are estimated similarly, and thus these terms satisfy
the bound (10.7).

Next consider the following terms from the right side of (9.5),

(10.16)
∑
|α|≤13

‖�γ∂αt,xwk(t, · )‖L2(R3\K) +
∑

|α|+m≤11
m≤1

‖�γLm∂αt,xwk(t, · )‖L2(R3\K) .

We write

(�γ∂αt,xwk)I = ∂αt,x�γwIk − [∂αt,x,�γ ]wIk

= −(1− η)
∑

0≤i,j,l≤3
1≤J,K≤N

BIJ,ijK,l

[
∂αt,x, ∂lu

K
0 + ∂lw

K
k−1

]
∂i∂jw

J
k

+ ∂αt,x(1 − η)
∑

0≤i,j,l≤3
1≤J,K≤N

BIJ,ijK,l (∂luK0 + ∂lw
K
k−1)∂i∂ju0

+ ∂αt,x(1 − η)BI
(
d(u0 + wk−1)

)
− ∂αt,x[�cI , η]uI .

Upon expansion, each term on the right-hand side, with the exception of the last,
which has L2 norm bounded by C ε by (10.3), is the product of two terms, at least
one of which involves at most 8 derivatives. We can obtain L∞ bounds on such a
term by Sobolev embedding, and hence estimate the L2 norm of the product by
the right-hand side of (10.7). The same argument applies to the second term in
(10.16).

Finally, consider∑
|α|≤12

‖�c∂αs,xwk‖L2([0,Tε]×R3\K) +
∑

|α|+m≤10
m≤1

‖�cLm∂αs,xwk‖L2([0,Tε]×R3\K)

+
∑

|α|+m≤8
m≤1

‖�cLmZαwk‖L2([0,Tε]×R3\K) .

We write

�c∂αt,xwIk = ∂αt,x
∑

0≤i,j,l≤3
1≤J,K≤N

BIJ,ijK,l (∂luK0 + ∂lw
K
k−1)∂i∂jwJk

+ ∂αt,x
∑

0≤i,j,l≤3
1≤J,K≤N

BIJ,ijK,l (∂luK0 + ∂lw
K
k−1)∂i∂ju0

+ ∂αt,xB
I
(
d(u0 + wk−1)

)
− ∂αt,x[�cI , η]uI .

The last term involving u is easily handled as in (10.9) above. As a representative
of the other terms that arise upon expanding derivatives, noting that |α| ≤ 12,
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consider ∑
|β|≤6,|µ|≤13

‖∂βt,xw′k−1 ∂
µ
t,xw

′
k‖L2([0,Tε]×R3\K) .

We now apply Lemma 3.4 to the β terms and sum over R to conclude that∑
|β|≤6,|µ|≤13

‖∂βt,xw′k−1 ∂
µ
t,xw

′
k‖L2([0,Tε]×R3\K)

≤ C
∑
|β|≤8

‖〈x〉−1Zβw′k−1‖L2([0,Tε]×R3\K) sup
0<t<Tε

∑
|µ|≤13

‖∂µt,xw′k(t, · )‖L2(R3\K)

≤ C · C1 · ε · ln(Tε)
1
2 Mk(Tε) ≤ C · C1 · κ ·Mk(Tε) .

The other terms are similarly seen to be bounded by the right-hand side of (10.7),
which completes the proof of (10.7).

Next, using the energy inequality, one observes that {wk} is a Cauchy sequence
in the energy norm. Because of this and (10.6) we conclude that wk must converge
to a solution of (10.5) that satisfies the bounds in (10.6). Consequently, u = u0 +w
will be a solution of the original equation (1.2), which verifies the analogue of (10.6).
If the data is C∞ and satisfies the compatibility conditions to infinite order, the
solution will be C∞ on [0, Tε]×R3\K by standard local existence theory (see, e.g.,
[10]).

This completes the proof of Theorem 1.1 . �
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