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Abstract 

A Hamiltonian walk in a connected graph G of order n is a 
closed spanning walk of minimum length in G. For a 
connected graph G, let h(G) be the length of a Hamiltonian 
walk in G and call it the Hamiltonian number of G. Let i be a 
non-negative integer. A connected graph G of order n is 
called an i-Hamiltonian if h(G) = n+i. Thus a 0-Hamiltonian 
graph is Hamiltonian. A 1-Hamiltonian graph is called an 
almost Hamiltonian graph. We prove in this paper that for an 
even integer n ≥ 10 there exists an almost Hamiltonian 
cubic graph of order n. Let P(k, m) be the generalized 
Petersen graph of order 2k. We show that P(k, m) is an 
almost Hamiltonian graph if and only if  m= 2 and k ≡ 
5(mod 6). For a cubic graph G, we define G* to be the 
graph obtained from G by replacing each vertex of G to a 
triangle, matching the vertices of the triangle to the former 
neighbors of the replaced vertex. We show that G is 
Hamiltonian if and only if G* is Hamiltonian and if G is 
almost Hamiltonian then G* is 2-Hamiltonian. 
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1. Introduction 

While certainly not every connected graph of order at least 3 
contains a Hamiltonian cycle, every connected graph does 
contain a closed spanning walk (in which all vertices are 
encountered, possibly more than once). If G is a connected 
graph of size m, there is always a closed spanning walk of 
length at most 2m. In [6, 7] Goodman and Hedetniemi 
introduced the concept of a Hamiltonian walk in a 
connected graph G, defined as a closed spanning walk of 
minimum length in G. They denoted the length of a 
Hamiltonian walk in G by h(G). Therefore, for a connected 
graph G of order n ≥ 3, it follows that h(G) = n if and only 
if G is Hamiltonian. Hamiltonain walks were studied 
further  

by T. Asano, T. Nishizeki, and T. Watanabe [2, 3], J. C. 
Bermond [4], and P. Vacek [9]. Thus h may be considered  
 
as a measure of how far a given graph is from being 
Hamiltonian. 

In [5] an alternative way to define the length h(G) of a 
Hamiltonian walk in a connected graph G was presented. A 
Hamiltonian graph G contains a spanning cycle C : vl,v2, • • • ,  
vn, vn+l =  v1,  where then vivi+l ∈ E(G) for 1 ≤  i ≤ n. Thus 
Hamiltonian graphs of order n ≥ 3 are those graphs for 
which there is a cyclic ordering C : v1, v2 ,  • • • , vn, vn+l = v1 of  
V(G) such that 11

( , ) ,n
i ii

d v v n+=
=∑  where d(vi,vi+1) is the 

distance between vi and v i + l  for 1 ≤  i ≤ n. For a connected 
graph G of order n ≥ 3 and a cyclic ordering s : v1,v2, … ,vn, 
v n + l = v1 of the elements of V(G), the number d(s) is 
defined as d(s) = 11

( , )n
i ii

d v v +=∑ . Therefore, d(s) ≥ n for 

each cyclic ordering s of the elements of V(G). The 
Hamiltonian number h(G) of G is defined in [5] by 
h(G) = min{d(s)}, where the minimum is taken over all 
cyclic orderings s of elements of V(G). It was shown in [5] 
that the Hamiltonian number of a connected graph G is, in 
fact, the length of a Hamiltonian walk in G. 
                                             v1 
                                     

             

 

Figure 1: A graph G with h(G) = 6 
 

To illustrate these concepts, consider the graph G = 
K2,3  of  Figure 1. For the cyclic orderings s1 : v1, v2, v3, v4, 
v5, v1 and s2 : vl, v3, v2, v4, v5, vl of V(G), we see that  d(sl) 
= 8 and d(s2) = 6. Since G is a non-Hamiltonian graph of 
order 5 and d(s2) = 6, it follows that h(G) = 6. 

Let i be a non-negative integer. A connected graph G 
of order n is called an i-Hamiltonian if  h(G) = n + i. 
Thus a 0-Hamiltonian graph is Hamiltonian. An almost 
Hamiltonian graph is a graph G of order n and h(G) = n 
+ 1. Thus K2,3 is an example of an almost Hamiltonian 
graph. 

The following results are known (see [5, 7]). 
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Theorem A For every connected graph G of order n≥2, 

n ≤ h(G) ≤ 2n - 2. 
Moreover, 

1. h(G) = 2n - 2 if and only if G is a tree and 
2. for every pair n, k of integers with 3 ≤  n  ≤  k ≤   
   2n–2, there exists a connected graph G of order n  
   having h(G) = k. 

  + 

Thus for a connected graph G of order n, G is an i-
Hamiltonian graph for some i = 0, 1, 2, • • •, n–2. Moreover, 
for integers n and i with n ≥ 3 and 0 ≤  i ≤  n–2, there is 
an i-Hamiltonian graph G of order n. 

Let P(k, m) be a generalized Petersen graph such that 
V(P(k, m)) = {ui, vi : i = 0, 1, • • • , k–1} and E(P(k, m)) 
= {uiui+l, vivi+m, uivi : i = 0, 1, 2, • • •, k–1} where addition is 

taken modulo k and m ≤ 
2
k .  In [1] Alspach completed 

the determination of the parameters k, m for which P(k, 
m) is Hamiltonian as stated in the following theorem. 
 
Theorem B The generalized Petersen graph P(k, m) is 
non-Hamiltonian if and only if m = 2 and k ≡ 5(mod 6). 

+ 

2. Almost Hamiltonian cubic graphs  

We have seen that a generalized Petersen graph is not a 
Hamiltonian graph if and only if  m = 2 and k  ≡ 5(mod 
6). Thus in this case h(P(k, m)) ≥ 2k + 1. We will show 
in the next theorem that P(k, m) is an almost 
Hamiltonian graph if and only if m = 2 and k  ≡ 5 (mod 
6). 
 
Theorem 2.1 Let P(k, m) be a generalized Petersen 
graph. Then 

2 1 2  5(mod  6),
( ( , ))

2 .
k if m and k

h P k m
k otherwise
+ = ≡⎧

= ⎨
⎩

 

 
Proof. Let m = 2 and k ≡ 5 (mod 6). By Theorem B, it is 
suffice to show that  h(P(k,2))= 2k+1. Consider a closed 
spanning walk W : v0,  v2,  • • • ,vk -1,  v1, v3, • • •,vk–2, uk -2,  
uk -3,  uk -4,  …,u1, u0, uk -1,  u0, v0  of P(k,2). It is clear 
that W has length 2k +1. Thus h((P(k, m)) = 2k +1. 

+ 
      
     It was shown in [8] that all connected cubic graphs of 
order n, where 4 ≤ n ≤ 8, are Hamiltonian. It was also 
shown in [8] that the Petersen graph P(5,2) and the 
Tietze graph (denoted by T12) are the only 2-connected 

cubic graph of order 10 and 12, respectively, that are not 
Hamiltonian. They are, in fact, almost Hamiltonian cubic 
graphs of respective order. Note that the T12  is obtained 
from P(5,2) by replacing one vertex of P(5,2) to a 
triangle, matching the vertices of the triangle to the 
former neighbors of the replaced vertex. Thus T12 

contains a triangle. Let G be a cubic graph and v ∈ V(G). 
We denote G ∗ v to be the graph obtained from G by 
replacing v to a triangle, matching the vertices of the 
triangle to the former neighbors of v. Thus G ∗ v is also a 
cubic graph containing a triangle. 
 
Theorem 2.2 Let G be a cubic graph of order n ≥ 4 and 
v ∈ V(G). Then G  is Hamiltonian  if and only if G∗ v  is 
Hamiltonian. 
 
Proof. Let G be a cubic graph and V(G) = {v1, v2, • • • , vn}. 
Put v = v1. Thus G * v is the graph with V(G ∗ v) =  (V(G) 
– v) ∪ {xl, yl, zl}, {xl, yl, zl} induced a triangle in G ∗ v 
and ylv2, vn zl  ∈ E(G ∗ v).  
     Suppose that G is Hamiltonian. Without loss of 
generality we may assume that C : vl, v2, • • • , vn, vl is a 
Hamiltonian cycle of G. Thus  

Cv : z1, x1, y1, v2, v3, • • • , vn, z1 
is a Hamiltonian cycle of G ∗ v.  
     Conversely, suppose that G ∗ v is Hamiltonian and let 
                     Cv : u1, u2, • • • , un+2, u1 
be a Hamiltonian cycle of G ∗ v. If xl is not a neighbor of 
y1 and zl in Cv, then dG∗ v(xl) ≥ 4. Thus xl is a neighbor of 
y1 or zl in Cv. It is also true for yl and z1. Thus xl, y1, z1 must 
appear as consecutive vertices in Cv. Deleting the three 
vertices and replacing by v1, we obtain a Hamiltonian 
cycle of G.  

+ 
 
     Let G be a cubic graph of order n with V(G) = {v1, v2,    
• • • , vn}. Put G1 = G ∗ v1 and for 1 ≤  i ≤ n – l,  put G i+l =   
Gi ∗  vi+l . Thus from Theorem 2.2 we have the following 
corollary. 
 
Corollary 2.3 Let G be a cubic graph of order n. Then G is 
Hamiltonian if and only if  G i is Hamiltonian  for all 1≤ i≤ n. 

+ 
      
     Now we consider when G is not Hamiltonian cubic 
graph. Thus G∗ v is not Hamiltonian by Theorem 2.2. Let 
K′4 be the graph obtained from K4 and a subdivision to an 
edge of  K4 (see Figure 2). 
 
                       

                                       K′4  =   
 

Figure 2 : Graph K′4 
     
     Let G be a graph obtained from three copies of K′4  and 
connecting three vertices of degree two to a new vertex v. 
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Thus G is cubic of order 16 with h(G) = 21 but h(G∗ v) = 
24. That is G is a 5-Hamiltonian while G ∗ v is 6-
Hamiltonian. Note that G ∗w is 5-Hamiltonian, for each 
vertex w of G difference from v. 
 
Theorem 2.4 For an even integer n ≥ 10, there exists an 
almost Hamiltonian cubic graph of order n. 
 
Proof. The Petersen graph P(5,2) is the unique almost 
Hamiltonian cubic graph of order 10 and the Tietze graph 
T12 is also the unique almost Hamiltonian cubic graph of 
order 12 and T12 = G ∗ v, where G = P(5,2) and v ∈ V(P(5, 
2)). Let ul, v1, wl be the induced triangle of  T12. Let T14 = 
T12 ∗ vl. Thus for an integer i ≥ 1, let ui, vi, wi be the 
induced triangle of T12+2(i –1) and T12+2i = T12+2(i –1) ∗ vi. By 
assuming that the graph T12+2(i–1) is almost hamiltonian, 
we have that h(T12+2i) ≤ 12 + 2i + 1. By Theorem 2.2 we 
have that T12+2i is not Hamiltonian. Therefore h(T12+2i) = 
12 + 2i + 1 and T12+2i is almost Hamiltonian.  

+ 
 
     A Hamiltonian graph is necessary 2-connected. The 
same result is also hold in the class of almost Hamiltonian 
cubic graphs. The following results can be considered as a 
characterization of cubic graphs for being almost 
Hamiltonian. 
 
Theorem 2.5 Let G be a connected cubic graph of order 
n ≥ 10. If G is almost Hamiltonian, then G is 2-
connected. 
 
Proof. Suppose G is not 2-connected and v is a cut vertex 
of G. Since G is cubic, there exists a vertex u such that u is 
also a cut vertex of G and u is adjacent to v. Furthermore, 
uv is a cut edge of G. Let G – e = G1 ∪ G2. It follows that 
h(G) ≥  h(Gl)+h(G2)+2 ≥ n + 2. The proof is complete. 

+ 
 
Theorem 2.6 Let G be a connected non-Hamiltonian 
cubic graph of order n ≥ 10. Then G is an almost 
Hamiltonian graph if and only if for every Hamiltonian 
walk W of G, W contains a cycle of order n -1. 
 
Proof. Suppose h(G) = n + 1. Let v1, v2, • • • , vn+2 = v1 be a 
Hamiltonian walk of length n + 1. Thus there exist vi and 
vj with 1 ≤ i < j ≤  n and vi = vj  and all other vertices are 
distinct. Without loss of generality we may assume that i = 
1. If  j ≥ 4, then d(v1) ≥ 4. Thus  j = 3 and v3, v4, • • • , vn+2 
= v3 is a cycle in G of length n – 1. Suppose G contains a 
cycle v1, v2, • • • , vn = v1 of length n – 1. Let v ∈ V(G) – 
{v1 = vn, v2, v3, • • • , vn–1}. Thus there exists an integer k  
with 1 ≤ k ≤ n – 1 such that v k  is adjacent to v. We now 
form a Hamiltonian walk v1, v2, • • • , vk, v, vk,  • • • ,vn = v1 

and this walk has length n + l. Therefore h(G) = n + 1.                       
+ 
      
     Let G be a Hamiltonian cubic graph. We have shown in 
Theorem 2.2 that for every v 　  V(G), G ∗  v is 
Hamiltonian and vise versa. We have also mentioned that 
there is a 5-Hamiltonian graph G and v 　  V(G) such that 
G ∗  v is 6-Hamiltonian. 
     Let G be a connected cubic graph of order n with V(G) 
= {v1, v2, • • • , vn}. Let G* = Gn. Figure 3 shows the graphs 
P(5,2) and P*(5,2). 
 
       
 
 
 
 

Figure 3: Graphs P(5,2) and P*(5, 2) 
 
Theorem 2.7  If  G is an almost Hamiltonian cubic graph of 
order n, then h(G*) = 3n + 2. 
 
Proof. By Theorem 2.2, it follows that h(G*) ≥ 3n + l. As-
sume, to the contrary, that h(G*) = 3n + 1. By Theorem 2.6, 
let C : x1, x2, • • • , x3n–1, x1 be a cycle of length 3n – 1 of G*,  
where V(G*) = { x1, x2, • • • , x3n}. Without loss of generality 
we may assume that x3n is adjacent to x1. Since G* is non-
Hamiltonian, x3nx2, x3nx3n–1 ∉ E(G*). Since G* is cubic, 
there exist i, j with 1 < i < j <  3n – 1 such that {x3n,  xi, xj} 
induced a triangle in G*. Since G* is cubic, j = i + 1 and 
G* is Hamiltonian. This is a contradiction. 

 
 
 
 
 
 
 
                                                           

 
Figure 4: Part of G* 

 
     In order to show that h(G*) = 3n + 2, we will construct 
a Hamiltonian walk of G* of length 3n + 2. In the proof of 
Theorem 2.6, let 

W : v1, v2, • • • , vk, v, vk, • • • , vn+1 = v1 
be a Hamiltonian walk of G.  
     For each i, 1 ≤ i ≤ n , we replace vertices vi and v in W  
by triangles  xi, yi,  zi and  x, y, z respectively, and then 
arrange them in such a way that xi is adjacent to yi+l , for all 
i = 1, 2, • • • , n – 1. Without loss of generality we may 
assume that zk is adjacent to x as shown in Figure 4. Thus 
the Hamiltonian walk   
W : zl,  xl,  y2,  z2,  x2 , • • • , yk–1,  z k–1,  xk–1,  yk,  zk , x, y,  z,  x, zk,  
xk,  yk+1, zk+1, xk+1, • • • , yn–1,  zn–1,  xn–1, yn,  zn =  z1   

yk–1  

zk–1  

xk–1  

zk  

xk yk  

x 

y z 

xk+1 

zk+1 

yk+1 
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has length 3n + 2. 
+ 

 
      The following result can be obtained as a direct 
consequence of Theorem 2.7. 
 
Corollary 2.8  h(P*(k, 2)) = 6k + 2,  for every positive 
integer k with k 　  5 (mod 6). 

+ 

3. Conclusion 

A Hamiltonian walk in a connected graph G of order n is a 
closed opening walk of minimum length in G. Let h(G) be 
the length of a Hamiltonian walk in G. The graph 
parameter h is called the Hamiltonian number of G. Thus 
h(G) may be considered as a measure of how far the graph 
G is from being Hamiltonian. A connected graph G of 
order n is called an i-Hamiltonian if  h(G) = n + i. Thus a 
0-Hamiltonian graph is Hamiltonian. A 1-Hamiltonian 
graph is called an almost Hamiltonian graph. Some 
characterizations of almost Hamiltonian cubic graphs are 
obtained in this paper. In other words, we proved that a 
cubic graph G of order n is almost Hamiltonian if and only 
if G is 2-connected containing a cycle of length n –1. In 
particular, we proved that the generalized Petersen graph 
P(k, m) is almost Hamiltonian if and only if m = 2 and k 
　  5(mod 6). Let G be a cubic graph of order n. we denote 
G* the graph obtained from G by replacing each vertex of 
G to a triangle, matching the vertices of the triangle to the 
former neighbors. We proved that G is Hamiltonian if and 
only if G* is Hamiltonian and if G is almost Hamiltonian, 
then G* is 2-Hamiltonian.  
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