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Abstract. Let Γ be a discrete group with property (T ) of Kazhdan. We
prove that any Riemannian isometric action of Γ on a compact manifold X
is locally rigid. We also prove a more general foliated version of this result.
The foliated result is used in our proof of local rigidity for standard actions
of higher rank semisimple Lie groups and their lattices in [FM2].

One definition of property (T ) is that a group Γ has property (T ) if every
isometric Γ action on a Hilbert space has a fixed point. We prove a variety of
strengthenings of this fixed point properties for groups with property (T ).
Some of these are used in the proofs of our local rigidity theorems.

1. Introduction

One of the main results of this paper is the following.

Theorem 1.1. Let Γ be a discrete group with property (T ). Let X be a com-
pact smooth manifold, and let ρ be a smooth action of Γ on X by Riemannian
isometries. Then the action is C∞,∞ locally rigid and Ck,k−κ locally rigid
for every κ > 0 for k > 1.

We recall the definition of local rigidity.
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Definition 1.2. Given a locally compact group Γ and a Γ action
ρ : Γ × X → X by Ck diffeomorphisms on a manifold X, we say that the
action is Ck,r locally rigid, where r ≤ k, if any action ρ′ by Ck diffeomor-
phisms, that is sufficiently Ck close to ρ is conjugate to ρ by a small Cr

diffeomorphism. We say an action is C∞,∞ locally rigid if any action by
C∞ diffeomorphisms which is sufficiently C∞ close to ρ is conjugate to ρ
by a small C∞ diffeomorphism.

Remark. Throughout this paper, we assume that X, the ρ(Γ) invariant met-
ric g, and therefore the action ρ, are much smoother than any perturbation
we consider. This assumption is in some sense redundant: given a compact
Ck manifold X and a Ck−1 metric g on X, one can show that there is a C∞
structure on X and a C∞ metric g′ on X invariant under Isom(X, g).

We topologize the space of Ck actions of Γ by taking the compact open
topology on the space Hom(Γ, Diff k(X)). The special case of Ck,k local
rigidity is exactly local rigidity of the homomorphism ρ : Γ → Diff k(X).
Since the C∞ topology is defined as the inverse limit of the Ck topologies,
two C∞ diffeomorphisms are C∞ close if they are Ck close for some large k.
Our proof shows explicitly that, for any κ > 0, a C∞ perturbation ρ′ of ρ
which is sufficiently Ck close to ρ is conjugate to ρ by a C∞ diffeomorphism
which is Ck−κ close to the identity. Many local rigidity results have been
proven for actions of higher rank semisimple groups and their lattices. See
the introduction to [FM2] for a more detailed historical discussion.

In fact, Theorem 1.1 follows (though with lower regularity) from a more
general foliated version, whose somewhat complicated statement we defer
to the next section. We also give two self-contained proofs of Theorem 1.1,
since many of the ideas are clearer in that special case, and since one
proof gives better regularity in that case. Our foliated result is a principal
ingredient in our proof of local rigidity for quasi-affine actions of higher
rank semisimple Lie groups and their lattices [FM1,FM2].

Some prior results about local rigidity of isometric actions are known.
The question was first investigated for lattices Γ in groups G, where G is
a semisimple Lie group with all simple factors of real rank at least 2. In
[Z1], Zimmer proved that any ergodic, volume preserving perturbation of an
ergodic, isometric actions of such Γ preserves a C0 Riemannian metric g. In
[Z2], he showed that g was actually smooth. In [Z3], Zimmer extended his
result to cover all groups with property (T ) of Kazhdan, but still required that
the perturbation be ergodic and volume preserving and only constructed an
invariant metric rather than a conjugacy. In [Be], Benveniste proves C∞,∞
local rigidity for isometric actions of cocompact lattices in semisimple
groups G as above. As a direct generalization of Zimmer’s result, we have
the following.

Theorem 1.3. Let Γ be a discrete group with property (T ). Let (X, g) be
a compact Riemannian manifold and let ρ be a smooth action of Γ on X
preserving g. For any κ > 0, any Γ action ρ′ which is sufficiently Ck+1 close
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to ρ preserves a Ck−κ Riemannian. Furthermore, if ρ′ is a C∞ action C∞
close to ρ, then ρ′ preserves a C∞ metric.

Though this theorem is a corollary of Theorem 1.1, we give a simple
direct proof of the finite regularity case of Theorem 1.3 in Sect. 4.

A locally compact, σ -compact group Γ has property (T ) if any continu-
ous isometric action of Γ on a Hilbert space has a fixed point. In this paper
we generalize this standard fixed point property to a wider class of actions.
One can view our results as showing that this fixed point property persists
for actions which are perturbations of isometric actions. In fact the fixed
point property holds quite generally, even for actions which are only par-
tially defined. Note that it is a theorem of Kazhdan that any discrete group
with property (T ) is finitely generated and any locally compact, σ -compact
group with property (T ) is compactly generated [K].

The definition above is not Kazhdan’s original definition of property (T ),
but is equivalent by work of Delorme and Guichardet [De,Gu]. Kazhdan
defined a group Γ to have property (T ) if the trivial representation of
Γ is isolated in the Fell topology on the unitary dual of Γ. For detailed
introductions to property (T ) see [HV] or [M, Chap. III]. A key step in
our proofs is to strengthen standard fixed point properties for groups with
property (T ). For our foliated local rigidity theorems, we also require an
effective method for finding fixed points. One corollary of our general
method is a simpler proof of Shalom’s result that any finitely generated
group with property (T ) is a quotient of a finitely presented group with
property (T ) [S]. See also [Zk] for related results. We also prove a similar
result for compactly generated groups with property (T ), see Theorem 2.4
below.

We now state a special case of our general fixed point property, that
suffices for the proof of Ck,k− 1

2 dim(X ) local rigidity.

Definition 1.4. Let ε ≥ 0 and Z and Y be metric spaces. Then a map
h : Z → Y is an ε-almost isometry if

(1 − ε)dZ(x, y) ≤ dY (h(x), h(y)) ≤ (1 + ε)dZ(x, y)

for all x, y ∈ Z.

The reader should note that an ε-almost isometry is a bilipschitz map.
We prefer this notation and vocabulary since it emphasizes the relationship
to isometries.

Definition 1.5. Given a group Γ acting on a metric space X, a compact
subset K of Γ and a point x ∈ X. The number supk∈K d(x, k·x) is called the
K-displacement of x and is denoted dispK(x).

Theorem 1.6. Let Γ be a locally compact, σ -compact group with property
(T ) and K a compact generating set. There exist positive constants ε and D,
depending only on Γ and K, such that for any continuous action of Γ on



22 D. Fisher, G. Margulis

a Hilbert space H where K acts by ε-almost isometries there is a fixed
point x; furthermore for any y in X, the distance from y to the fixed set is
not more than DdispK (y).

We note that in most of our applications, the ε-almost isometric action to
which we apply Theorem 1.6 and its generalizations are linear, and therefore
automatically has a fixed point, the 0 vector. The importance of the final
claim in Theorem 1.6 then becomes clear: we have a linear relationship
between the distance from a point to the fixed set and the K -displacement
of the point. In our applications this is used to find non-zero fixed vectors
in certain linear actions. That the fixed vector is close to a particular vector
with particular prescribed properties is also central to the proof.

Preliminary forms of Theorems 1.1 and 1.6 were announced by the
second author at a talk in Jerusalem in 1997.

Theorem 1.6 is proved by contradiction. We assume the existence of
a sequence of ε-almost isometric actions not satisfying the conclusion of
that theorem, with ε going to zero. One then constructs a limit action
which is isometric and therefore must have fixed points. One then uses
a quantitative strengthening of the fixed point property to show that actions
“close enough” to the limit action must have fixed points as well. In this
article we use ultra-filters and ultra-limits to produce the limit action which
considerably simplifies earlier versions of the argument. The argument is
further simplified by our use of a stronger quantitative strengthening of the
fixed point property which is, in fact, an iterative method for producing
fixed points. For Γ not discrete, additional difficulties arise from the fact
that the limit action is not a priori continuous.

Though the approaches and applications are different, our strengthen-
ings of property (T ) are related to the strengthenings discussed by Gromov
in [Gr2]. In particular, in Sect. 3.13B, Gromov outlines a proof of Theo-
rem 1.6, though only for a certain class of “random” infinite, discrete groups
with property (T ) and only for affine ε-almost isometric actions. See Ap-
pendix D.2 for further discussion.

Our original approach to proving Theorem 1.1 remains incomplete,
though the idea is instructive. Given an isometric action ρ of Γ on a compact
manifold X and a perturbation ρ′ of ρ, a conjugacy is a diffeomorphism
f : X → X such that ρ(γ) ◦ f = f ◦ ρ′(γ) for all γ in Γ. Rearranging,
the conjugacy is a fixed point for the Γ action on the group Diff k(X) of
diffeomorphisms of X defined by f → ρ(γ)◦ f ◦ρ′(γ)−1. Ideally we would
parameterize diffeomorphisms of X locally as a Hilbert space and then use
Theorem 2.3 below, a generalization of Theorem 1.6 for partially defined
actions, to find a fixed point or conjugacy. This approach does not work, see
Appendix D.1 for further discussion.

Our two proofs of Theorem 1.1 have distinct advantages. We outline here
the simpler one which allows us to prove our general foliated result. We
discuss here only the result that uses Theorem 1.6 and only indicate a proof
of Ck,k−dim(X )−1 local rigidity. Even combined with arguments below which
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improve regularity, this proof requires the loss of 1 + κ derivatives. The
precise regularity of Theorem 1.1 requires a different argument and requires
stronger assumptions on the action in the foliated case. In Subsect. 5.1 we
include the other proof of Theorem 1.1 but only briefly indicate how, and
when, it can be foliated.

Given a compact Riemannian manifold X, there is a canonical construc-
tion of a Sobolev inner product on Ck (X) such that the Sobolev inner product
is invariant under isometries of the Riemannian metric, see Sect. 4 below.
We call the completion of Ck(X) with respect to the metric induced by the
Sobolev structure L2,k(X). Given an isometric Γ action ρ on a manifold M
there may be no non-constant Γ invariant functions in L2,k(X). However, if
we pass to the diagonal Γ action on X × X, then any function of the distance
to the diagonal is Γ invariant and, if Ck, is in L2,k(X × X).

We choose a smooth function f of the distance to the diagonal in X × X
which has a unique global minimum at x on {x} × X for each x, and such
that any function C2 close to f also has a unique minimum on each {x}× X.
This is guaranteed by a condition on the Hessian and the function is obtained
from d(x, y)2 by renormalizing and smoothing the function away from the
diagonal. This implies f is invariant under the diagonal Γ action defined
by ρ. Let ρ′ be another action Ck close to ρ. We define a Γ action on X × X
by acting on the first factor by ρ and on the second factor by ρ′. For the
resulting action ρ̄′ of Γ on L2,k(X × X) and every k ∈ K , we show that
ρ̄′(k) is an ε-almost isometry and that the K -displacement of f is a small
number δ, where both ε and δ can be made arbitrarily small by choosing ρ′
close enough to ρ. Theorem 1.6 produces a ρ̄′ invariant function f ′ close
to f in the L2,k topology. Then f ′ is Ck−dim(X ) close to f by the Sobolev
embedding theorems and if k − dim(X) ≥ 2, then f has a unique minimum
on each fiber {x} × X which is close to (x, x). We verify that the set of
minima is a Ck−dim(X )−1 submanifold and, in fact, the graph of a conjugacy
between the Γ actions on X defined by ρ and ρ′.

In the context of Theorem 1.6, we can prove that given any vector v, one
can produce any invariant vector v0 by an iterative method of “averaging
over balls in Γ”. The proofs of the C∞ cases of a Theorems 1.1 and 1.3
rely on this iterative method and additional estimates. If our perturbation
ρ′ is Ck close to ρ, using this iterative method, convexity estimates on
derivatives and estimates on compositions we produce a sequence of C∞
diffeomorphisms which converge to conjugacy in the Cl topology for some
l > k. We then apply an additional iterative argument loosely inspired by the
KAM method, to produce the actual C∞ conjugacy. For a discussion of the
relation between our work and the KAM method, see Appendix D.1. The
proof of Ck,k−κ local rigidity for any κ > 0 and of the lower loss of regularity
in Theorem 1.3 follow from a somewhat technical result which allows us
to show that the iterative procedure defined by “averaging over balls” also
converges in L p type Sobolev spaces where p > 2. We defer statements
of these results to Subsect. 2.2. Once one replaces standard consequences
of property (T ) with an observation of Bader and Gelander [BFGM], the
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proof of this result is similar to the proofs of our results concerning actions
on Hilbert spaces.

The proof of the foliated generalization of Theorem 1.1 follows a similar
outline, but is more difficult at several steps. The choice of initial invariant
function is slightly more complicated since leaves of the foliation are gen-
erally non-compact. The absence of a natural topology on the set of pairs
of points on the same leaf forces us to work on the holonomy groupoid of
the foliation. Since we need to work in a Sobolev space defined by only
taking derivatives along the leaves of the foliation, having small norm in
this topology on functions only gives a good Ck estimate on the conjugacy
on a set S of large measure. To guarantee that the orbit of S covers all of X,
we use our effective method of producing f̃ from f by “averaging over
balls” in Γ.

Plan of the paper: In Sect. 2 we make the necessary definitions and state our
general results. First, in Subsect. 2.1 we discuss various generalizations of
Theorem 1.6 for actions on Hilbert spaces. Second in Subsect. 2.2 we discuss
various generalizations of Theorem 1.6 for actions on more general Banach
spaces. Then in Subsect. 2.3 we describe our foliated generalization of
Theorem 1.1. Subsections 3.1 and 3.2 contain preliminaries on, respectively,
groups with property (T ) and limits of actions. We then proceed to prove
the results from Subsects. 2.1 and 2.2 in Subsects. 3.3 and 3.4 respectively.
Section 4 gives an explicit construction of various Sobolev metrics on
various spaces of tensors on Riemannian manifolds and more general spaces
with Riemannian foliations. Section 4 also contains a proof of Theorem 1.3.
Section 5 contains two proofs of Theorem 1.1. In Sect. 6, we prove the C∞
case of Theorem 1.1. Section 7 contains some additional background on
foliations, a discussion of the holonomy groupoid of a foliation, and a proof
of the foliated generalization of Theorem 1.1. On first reading the paper,
the reader may wish to skip Subsects. 2.2, 2.3, 3.4, read 4 assuming p = 2
everywhere and assuming that the foliation is by a single leaf and then read
Subsect. 5.1. This allows the reader to read the proof of Theorem 1.1 for
the Ck,k− dim(X )

2 case, before beginning to study the techniques for improving
regularity and/or the, significantly more complicated, formulation and proof
of the foliated version.

Acknowledgements. The authors would like to thank: Dmitry Dolgopyat, Bassam Fayad
and Raphael Krikorian for useful conversations concerning the KAM method and convexity
of derivatives; Uri Bader and Tsachik Gelander for sharing their observations on property
(T ) and L p spaces and for useful conversations concerning Banach spaces and positive
definite functions; and Tim Riley for useful conversations concerning ultrafilters, ultralimits
and ultraproducts of metric spaces. We also thank the referees for copious helpful comments
that considerably improved the exposition.

2. Definitions and statements of main results

In this section we give the necessary definitions and state our general results.
The first subsection is devoted to general results on actions and partially
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defined actions of groups with property (T ) on Hilbert spaces. The second
subsection concerns generalizations of some of these results to more gen-
eral Banach spaces. The third subsection concerns the foliated version of
Theorem 1.1.

On constants: Throughout this paper, we use a convention to simplify
the specification of which constants depend on which other choices. When
introducing a constant C, we will use the notation C = C(α, β, S) to specify
that C depends on choices of α, β and S. We make one exception to this
rule: as most constants in this paper depend on a choice of a group Γ and
a generating K , we will always leave this dependence implicit. The few
cases where constants do not actually depend on an ambient choice of Γ
and K are clear from context as they appear in statements where Γ and K
are irrelevant.

2.1. Fixed points for actions of groups with property (T ) on Hilbert spaces

Throughout this subsection Γ will be locally compact, σ -compact, group
generated by a fixed compact subset K , which contains a neighborhood of
the identity. It follows from work of Kazhdan [K] that any locally compact,
σ -compact Γ with property (T ) is compactly generated. Given any compact
generating set C, a simple Baire category argument shows that Cs contains
a neighborhood of the identity for some positive integer s. (Given a subset
K of a group Γ, we write Ks for the set of all elements of Γ that can be
written as a product of s elements of K .)

Theorem 1.6 suffices to prove Ck,k− dim(X )
2 local rigidity in Theorem 1.1.

To obtain better finite regularity, a C∞,∞ local rigidity result, and to prove
our more general results, we will need more precise control over how one
obtains an invariant vector from an almost invariant vector. As noted above,
most of the applications of our results are to the case where the ε almost
isometric actions are actually linear representations. Since the statements
of our results do not simplify in any useful way in that setting, we leave it
to the interested reader to state the special cases.

Fix a (left) Haar measure µΓ on Γ. We let U(Γ) denote the set of continu-
ous non-negative functions h with compact support on Γ with

∫
Γ

hdµΓ = 1.
Given h ∈ U(Γ) and an action ρ of Γ on a Hilbert space H , we can define
an operator ρ(h) on H . Let ρ(h)v = ∫

Γ
ρ(γ)(h(γ)v)dµΓ. It is straightfor-

ward to see that
∫
Γ

hdµΓ = 1 implies that this definition does not depend
on the choice of basepoint in H . When the action ρ is not affine, ρ(h)
is not necessarily an affine transformation. We let U2(Γ) be the subset of
functions h ∈ U(Γ) such that h > 0 on K2. We denote by f ∗ g the convo-
lution of integrable functions f and g. Note that if f, g ∈ U(Γ) then so is
f ∗ g. Given a positive integer d, we denote by f ∗d the d-fold convolution
of f with itself. More generally, if P (Γ) is the set of probability measures
on Γ and ν ∈ P (Γ), we can also define ρ(ν)v = ∫

Γ
ρ(γ)vdν. Note that

U(Γ) ⊂ P (Γ) and that this definition generalizes the one above.
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We now state a theorem which implies Theorem 1.6. This theorem
implies that iterates of certain averaging operators converge to a bounded
projection onto the set of fixed points for the action.

Theorem 2.1. If Γ has property (T ) and f ∈ U2(Γ) and 0 < C < 1, there
exists ε > 0, and positive integers m = m(C, f ) and M = M(C, f ), such
that, letting h = f ∗m, for any Hilbert space H , any continuous action of Γ
on H such that K acts by ε-almost isometries, and any x ∈ H we have

(1) dH (x, ρ(h)(x)) ≤ MdispK (x)
(2) dispK (ρ(h)(x)) ≤ CdispK (x).

Remark. In this theorem choosing smaller values of C increases the value
of m. The number M is the least integer with supp(h) = supp( f ∗m) ⊂ K M .

Proof of Theorem 1.6 from Theorem 2.1. The hypotheses of the theorems are
almost identical. Since the Γ action in Theorem 1.6 is continuous, it follows
that every point x ∈ H has finite K -displacement. Given a point x ∈ H with
K -displacement δ, we look at the sequence yn = ρ(h)n(x). Theorem 2.1
implies that the dispK (yn) ≤ Cnδ and that d(yn, yn+1) ≤ MCnδ. This
implies that yn is a Cauchy sequence and y = limn→∞ yn clearly has K
displacement zero. Letting D = ∑∞

i=1 MCn = MC
1−C , then dH (x, y) < Dδ

which completes the proof. 
�
We now make precise our notion of a partially defined action. By B(x, r)

we denote the ball around x of radius r.

Definition 2.2. Let X a metric space and fix a point x ∈ X. Given positive
constants r, s, ε, δ, we call a map ρ : Ks × B(x, r) → X an (r, s, ε, δ, K )-
almost action of Γ on X at x if the following conditions hold.

(1) For each d ∈ Ks, the map ρ(d, ·) : B(x, r) → X is an ε-almost isometry.
(2) dispK (x) < δ.
(3) With the notation ρ(d, z) = ρ(d)z, if ab, a and b are in Ks then

ρ(a)(ρ(b)y) = ρ(ab)y whenever ρ(b)y is in B(x, r).

When K is fixed, we sometimes abbreviate the above notation by calling
an (r, s, ε, δ, K )-almost action an (r, s, ε, δ)-almost action. We denote by a
(∞, s, ε, δ, K )-almost action the case when B(x, r) in the definition above
can be replaced by X. The following theorem now produces fixed points
for partially defined actions on Hilbert spaces that are “close enough” to
isometric ones.

Theorem 2.3. If Γ has property (T ) and δ0 > 0 there exist ε > 0, D > 0,
a positive integer s, and r = r(δ0) > 0 such that for any Hilbert space X,
any δ ≤ δ0 and any x ∈ X, any continuous (r, s, ε, δ, K )-action of Γ on X
at x has a fixed point. Furthermore, the distance from the fixed point to x is
not more than Dδ.
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Fixing δ0 is only necessary as a normalization. If we compose a given
action with a homothety, we may always assume δ0 is 1. The constants s
and ε remain unchanged by this process, but r becomes δ0r. The utility
of considering partially defined actions is illustrated by our proof of the
observation of Shalom stated in the introduction. In fact, we prove the
following generalization, which is used in Sect. 7. For background on the
notion of a compact presentation see [Ab].

Theorem 2.4. Let Γ be a locally compact, σ -compact group with prop-
erty (T ). Then Γ is a quotient of a compactly presented locally compact,
σ -compact group with property (T ).

Proof. As remarked above, by work of Kazhdan, Γ is compactly generated,
and we fix a compact generating set K . Possibly after replacing K with
a power of K , we can assume that K contains a neighborhood of the identity.
The group Γ is the quotient of the group Γ′ generated by K satisfying all
relations of Γ of the form xy = z where x, y, z ∈ Ks. Since Γ′ satisfies all the
relations contained in K , we can topologize Γ′ so that the projection Γ′ → Γ
is a homeomorphism in a neighborhood of the identity and therefore Γ′ is
locally compact and σ -compact. We believe that this fact is known, but state
it as Proposition C.1 in Appendix C where we also sketch a proof, as we did
not find a reference in the literature. Since a continuous isometric Γ′ action
is a continuous (∞, s, 0, δ)-action of Γ at x where δ is the K -displacement
of x, Theorem 2.3 implies that, if we choose s large enough, Γ′ has property
(T ). It is clear that Γ′ is compactly presented. 
�
Remarks. (1) Theorem 2.4 is used in the proof of Theorem 2.11, the foliated

generalization of Theorem 1.1. It is used to show that an action of
a locally compact group with property (T ) on a compact foliated space
lifts to an action on the holonomy groupoid of the foliation.

(2) It is also possible to prove Theorem 2.11 directly from Theorem 2.5
and Corollary 2.8 below.

We now state a generalization of Theorem 2.1 which implies Theo-
rem 2.3. We note that the operator ρ(h) is well defined for a (r, s, ε, δ, K )-
action ρ, provided the support of h is contained in Ks.

Theorem 2.5. If Γ has property (T ) and f ∈ U2(Γ), 0 < C < 1 and
δ0 > 0 there exist r = r(δ0, f, C) > 0 and ε > 0 and positive integers
m = m( f, C), s = s( f, C) and M = M( f, C) such that, letting h = f ∗m,
for any Hilbert space X, any δ ≤ δ0, any x ∈ X, and any continuous
(r, s, ε, δ, K )-action ρ of K on X at x we have

(1) dH (x, ρ(h)(x)) ≤ MdispK (x);
(2) dispK (ρ(h)(x)) ≤ CdispK(x).

Proof of Theorem 2.3 from Theorem 2.5. The proof is almost identical to
the proof of Theorem 1.6 from Theorem 2.1. One point requires additional
care: if r0 and C are the constants given by Theorem 2.5, we need to take
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r in Theorem 2.3 to be at least r0 + M
∑∞

i=1 Ci
1. This insures that we can

apply Theorem 2.5 to each ρ(h)i(x) successively, since it implies that ρ
defines an (r, s, ε, Ciδ)-action on H at ρ(h)i(x). 
�
Remarks. (1) That Theorem 2.5 implies Theorem 2.1 is clear from the

definitions. Section 3 is devoted to the proof of Theorem 2.5.
(2) For most of our dynamical applications Theorem 2.1 suffices. However,

as remarked above, we need Theorem 2.4, and therefore Theorem 2.3,
for the proof of Theorem 2.11. As remarked above, one can also prove
Theorem 2.11 using Theorem 2.5 in place of the combination of Theo-
rem 2.1 and Theorem 2.4.

2.2. Property (T ) and uniformly convex Banach spaces

In this subsection we describe some generalizations of the results in the
previous subsection to non-Hilbertian Banach spaces. Throughout this sub-
section Γ and K will be as in the previous subsection. For 1 < p ≤ 2, we
will call a Banach space B a generalized L p space, if the function ‖x‖p is
negative definite on B or equivalently if exp(−t‖x‖p) is positive definite
for all t > 0. A theorem of Bretagnolle, Dacunba-Castelle and Krivine
implies that any generalized L p space is a closed subspace of an L p space,
see [BL, Theorem 8.9]. For q > 2, we will called a Banach space B a
generalized Lq space if the dual of B is a generalized L p space where
1
p + 1

q = 1. Given a finite dimensional Euclidean space V with Euclidean
norm ‖·‖V and a measure space (S, µ) we define a norm on measurable
maps f : S → V by ‖ f ‖p = ∫

S ‖ f(s)‖p
V dµ and let L p(S, µ, V ) be the

space of equivalence classes of maps f with finite norm. If dim(V ) = n
and 1 < p < ∞, we will call L p(S, µ, V ) a Banach space of type L p

n . It
is easy to verify that if 1

p + 1
q = 1 then the dual of a Banach space of type

L p
n is a Banach space of type Lq

n. It is also easy to verify, for 1 < p < ∞,
that a Banach space of type L p

n is a generalized L p space. For p ≤ 2 this is
shown by embedding L p(S, µ, V ) into L p(S × S1(V ), µ × ν) where S1(V )
is the unit sphere in V and ν is (normalized) Haar measure. For p > 2 it is
immediate from the definitions.

We now state a variant of Theorem 2.1 for affine actions on Banach
spaces.

Theorem 2.6. If Γ has property (T ) and f ∈ U2(Γ), δ0 > 0, 0 < C < 1,
and η > 0, there exist ε = ε(η) > 0 positive integers m = m( f, C, η), s =
s( f, C, η) and numbers r = r(δ0, η, f, C) > 0 and M = M( f, C, η) such
that, letting h = f ∗m, for any generalized L p space B where 1+η < p ≤ 2,
any δ ≤ δ0, any x ∈ B, and any continuous affine (r, s, ε, δ, K )-action ρ of
K on B at x we have

(1) dH (x, ρ(h)(x)) ≤ MdispK (x);
(2) dispKρ(h)(x) ≤ CdispK(x).
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Though they are only concerned with finding fixed points and do not
discuss the iterative method, the special case of Theorem 2.6 for (globally
defined) isometric actions is essentially contained in [BFGM]. Modulo that
fact, the proof of this theorem is quite similar to the proof of Theorem 2.5.
In [BFGM], it is also proven that a version of Theorem 2.1 holds for unitary
representations in L p spaces with 2 < p < ∞ using a simple duality
argument. (Once again they only find fixed points, and do not describe the
iterative method for finding them.) It would be interesting to know if this is
true for representations which are only “almost unitary” and p > 2, but we
only need a weaker statement for our applications, which we now deduce.
We first define the relevant notion of an “almost unitary” representation.

Definition 2.7. (1) Let σ be a continuous linear representation of Γ on
a Banach space B. Given ε > 0, we say that σ is (K, ε)-almost unitary
if for any k in K, the map σ(k) is an ε-almost isometry.

(2) If σ is an (∞, s, ε, 0, 0)-almost action of Γ on a Banach space B, we
call σ a (K, ε, s)-almost unitary representation.

Remark. When a fixed choice of K has been made, we frequently refer to a
(K, ε)-almost unitary representation as an ε-almost unitary representation.

We begin by noting some consequences of Theorem 2.6 for a (K, ε, s)-
almost unitary representation σ of Γ on a generalized L p space B where 1 <
p < 2 where K, ε, s are chosen to satisfy the conclusions of Theorem 2.6
for some values of M, C, h. It is immediate that ‖σ(h)‖ ≤ (1 + ε)M and
that ‖σ(h)n‖ ≤ (1 + ε)nM . We can define an operator P by letting Pv =
limn→∞ σ(h)n(v). It is easy to see that ‖σ(h)n+1 − σ(h)n‖ ≤ Cn M and
therefore that ‖σ(h)n−P‖ ≤ Cn−2 M. One can then deduce that ‖P‖ < 1+α
where α depends only on ε and α → 0 as ε → 0.

If we have an ε-almost unitary representation σ∗ of Γ on a generalized
Lq space B with 2 < q < ∞, then the adjoint representation σ of σ∗ on
B∗ is an ε-almost unitary representation of Γ and B∗ is a generalized L p

space for 1 < p < 2. Assuming f(γ) = f(γ−1) and therefore h(γ) =
h(γ−1), it follows that σ(h)∗ = σ∗(h). Since ‖A‖ = ‖A∗‖ for any bounded
operator A, so the estimates above carry over for σ∗(h), and ‖σ∗(h)‖ ≤
(1 + ε)M and ‖σ∗(h)n‖ ≤ (1 + ε)nM . Furthermore, the operator P∗ defined
by letting P∗v = limn→∞ σ∗(h)n(v) is the adjoint of P and so bounded
and a projection. Ideally, P∗ would project on Γ invariant vectors. This is
easy to verify if ε = 0, but unclear in general. It is also immediate that
‖σ∗(h)n+1 − σ∗(h)n‖ ≤ Cn M and that ‖σ∗(h)n − P∗‖ ≤ Cn−2 M. We
summarize this discussion as follows:

Corollary 2.8. If Γ has property (T ) and f ∈ U2(Γ) satisfies f(γ) =
f(γ−1) and 0 < C < 1 and 1 < p0 < ∞, there exist positive integers
M = M( f, p0), s = s( f, p0) and m = m( f, p0) and ε = ε(p0) > 0 such
that, letting h = f ∗m, for any p < p0 and any (K, ε, s)-almost uni-
tary representation σ of Γ on a generalized L p space B and any
vector v, we have dB(σ(h)n+1v, σ(h)n(v)) < MCn dispK (v). Further-
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more Pv = limn→∞ σ(h)nv is a bounded linear operator such that
dB(v, Pv) ≤ MC

1−C dispK (v).

Remarks. (1) We emphasize again that we do not know if Pv is necessarily
Γ invariant unless σ is unitary. For applications, we will be dealing with
Banach spaces B which are L p type function spaces and so subspaces
of a Hilbert space H which is a function space of type L2. The operator
σ(h) will be defined on H and we will know, by Theorem 2.1, that
σ(h)nv converges to a Γ invariant vector v′. Corollary 2.8 will be used
in conjunction with the Sobolev embedding theorems to obtain stronger
estimates on the regularity of v′. For this argument to work, it is im-
portant to know that we can choose h satisfying both Corollary 2.8 and
Theorem 2.1 at the same time. It is for this reason that we emphasize
throughout that h can be any large enough convolution power of any
f ∈ U2(Γ).

(2) We only explicitly use below the variant of this corollary for (K, ε)-
almost unitary representations. As remarked above, the version for
partially defined representations can be used in conjunction with Theo-
rem 2.5 to give a proof of Theorem 2.11 that does not use Theorem 2.4.

2.3. Foliating Theorem 1.1

We now discuss the necessary notions to state our generalization of Theo-
rem 1.1. Though our applications are to smooth foliations of smooth mani-
folds, here we work in a broader setting.

To motivate the results in this section, we state one corollary of the results
of [FM2], for which Theorem 2.11 is a key ingredient in the proof. We call
an action ρ of a group Γ on Tn linear if it is defined by a homomorphism
from Γ to GL(n,Z), the full group of linear automorphisms of Tn .

Corollary 2.9 ([FM2]). Let G be a semisimple Lie group with all simple
factors of real rank at least 2 and let Γ < G be a lattice. Then any linear
action of Γ on Tn is C∞,∞ locally rigid and there exists a positive integer
k0 depending on the action, such that the action is Ck,k− n

2 −2 locally rigid
for all k ≥ k0.

This result follows from a more general local rigidity theorem in [FM2]
whose proof uses both Theorem 2.11 and our results from [FM1].

Throughout this section X will be a locally compact, second countable
metric space and F will be a foliation of X by n dimensional manifolds.
For background on foliated spaces, their tangent bundles, and transverse
invariant measures, the reader is referred to [CC] or [MS]. Recall that F
is a partition of X, satisfying certain additional conditions, into smooth
manifolds called leaves of the foliation. We will often refer to the leaf
containing x as Lx .

We let Diff k(X,F) be the group of homeomorphisms of X which pre-
serve F and restrict to Ck diffeomorphisms on each leaf with derivatives
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depending continuously on x in X. For 1 ≤ k ≤ ∞, there is a natural Ck

topology on Diff k(X,F). The definition of this topology is straightforward
and we sketch it briefly. As is usual, the topology on Diff ∞(X,F) is the
inverse limit of the topologies on Diff k(X,F) so we now restrict to the case
of k finite. If X is compact, we fix a finite cover of X by charts Ũi which are
products, such that there are proper subsets Ui ⊂ Ũi which are also products
and which cover X. Without loss of generality, we can identify each Ui as
B(0, r) × Vi where B(0, r) is standard Euclidean ball and Vi is an open set
in the transversal and identify Ũi as B(0, 2r)× Ṽi where Ṽi is an open set in
the transversal such that Vi � Ṽi . (See Proposition 7.2 below for a precise
description of such charts.) A neighborhood of the identity in Diff k(X,F)

will consist of homeomorphisms φ which map each Ui inside Ũi and which
are uniformly Ck small as maps from each B(0, r) × {v} to B(0, 2r) × {v′},
where v′ is the point in Ṽi such that φ(B(0, r) × {v}) ⊂ B(0, 2r) × {v′}.
When X is non-compact, there are two possible topologies on Diff k(X,F).
The weak topology is given by taking the inverse limit of the topologies
described above for an increasing union of compact subsets of X. To define
the strong topology, we cover X by a countable collection of neighborhoods
Ui ⊂ Ũi as described above, and take the same topology. When X is not
compact, we will always consider the strong topology. Though non-compact
foliated spaces arise in the proofs, for the remainder of this subsection, we
consider only compact X.

We now define the type of perturbations of actions that we will consider.

Definition 2.10. Let Γ be a compactly generated topological group and ρ
an action of Γ on X defined by a homomorphism from Γ to Diff ∞(X,F).
Let ρ′ be another action of Γ on X defined by a homomorphism form Γ to
Diff k(X,F). Let U be a (small) neighborhood of the identity in Diff k(X,F)
and K be a compact generating set for Γ. We call ρ′ a (U, Ck)-foliated
perturbation of ρ if:

(1) for every leaf L of F and every γ ∈ Γ, we have ρ(γ)L = ρ′(γ)L and,
(2) ρ′(γ)ρ(γ)−1 is in U for every γ in K.

We fix a continuous, leafwise smooth Riemannian metric gF on TF,
the tangent bundle to the foliation, and note that gF defines a volume form
and corresponding measure on each leaf L of F, both of which we denote
by νF. (Metrics gF exist by a standard partition of unity argument.) Let Γ be
a group and ρ an action of Γ on X defined by a homomorphism from Γ to
Diff k(X,F). We say the action is leafwise isometric if gF is invariant under
the action. When Γ = Z and Z =< f >, we will call f a leafwise isometry.

For the remainder of the paper, we will assume that the foliation has
a transverse invariant measure ν. By integrating the transverse invariant
measure ν against the Riemannian measure on the leaves of F, we obtain
a measure µ on X which is finite when X is compact. In this case, we
normalize gF so that µ(X) = 1. We will write (X,F, gF, µ) for our space
equipped with the above data, sometime leaving one or more of F, gF and
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µ implicit. We will refer to the subgroup of Diff k(X,F) which preserves ν
as Diff k

ν(X,F). Note that if ρ is an action of Γ on X defined by a homo-
morphism into Diff k

ν(X,F) and ρ is leafwise isometric, then ρ preserves µ.
Furthermore if ρ is an action of Γ on X defined by a homomorphism into
Diff k

ν(X,F) and ρ′ is a (U, Ck)-leafwise perturbation of ρ, then it fol-
lows easily from the definition that ρ′ is defined by a homomorphism into
Diff k

ν(X,F) since the induced map on transversals is the same.
The following foliated version of Theorem 1.1 is one of the key steps

in the proof of the main results in [FM2]. We denote by BF(x, r) the ball
in Lx about x of radius r. For a sufficiently small value of r > 0, we can
canonically identify each BF(x, 2r) with the ball of radius 2r in Euclidean
space via the exponential map from TFx to Lx . To state our results, we
will need a quantitative measure of the size of the k-jet of Ck maps. We
first consider the case when k is an integer, where we can give a pointwise
measure of size. Recall that a Ck self map of a manifold Z acts on k-jets of Ck

functions on Z. Any metric on TZ defines a pointwise norm on each fiber of
the bundle of Jk(Z) of k-jets of functions on Z. For any Ck diffeomorphism
f we can define ‖ jk( f )(z)‖ as the operator norm of the map induced by
f from Jk(Z)z to Jk(Z) f(z). For a more detailed discussion on jets and an
explicit construction of the norm on Jk(Z)z , see Sect. 4. We say that a map
f has Ck size less than δ on a set U if ‖ jk( f )(z)‖ < δ for all z in U . If k
is not an integer, we say that f has Ck size less than δ on U if f has Ck′

size less than δ on U where k′ is the greatest integer less than k and jk′
( f )

satisfies a (local) Hölder estimate on U . See Sect. 4 for a more detailed
discussion of Hölder estimates.

Remark. This notion of Ck size is not very sharp. The size of the identity
map will be 1, as will be the size of any leafwise isometry. We only use
this notion of size to control estimates on a map at points where the map
is known to be “fairly large” and where we only want bounds to show it is
“not too large”.

For the following theorem, we assume that the holonomy groupoid of
(X,F) is Hausdorff. This is a standard technical assumption that allows us
to define certain function spaces on “pairs of points on the same leaf of
(X,F)”. See Subsect. 7.1, [CC] and [MS] for further discussion. All the
foliations considered in [FM2] are covered by fiber bundles, in which case
it is easy to show that the holonomy groupoid is Hausdorff.

Theorem 2.11. Let Γ be a locally compact, σ -compact group with prop-
erty (T ). Let ρ be a continuous leafwise isometric action of Γ on X defined
by a homomorphism from Γ to Diff ∞

ν (X,F). Then for any k ≥ 3, κ > 0 and
any ς > 0 there exists a neighborhood U of the identity in Diff k(X,F) such
that for any continuous (U, Ck)-foliated perturbation ρ′ of ρ there exists
a measurable Γ-equivariant map φ : X → X such that:

(1) φ ◦ ρ(γ) = ρ′(γ) ◦ φ for all γ ∈ Γ,
(2) φ maps each leaf of F into itself,
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(3) there is a subset S ⊂ X with µ(S) = 1 − ς and Γ·S has full measure in
X, and a constant r ∈ R+, depending only on X,F and gF, such that, for
every x ∈ S, the map φ : BF(x, r) → Lx is Ck−1−κ-close to the identity;
more precisely, with our chosen identification of BF(x, 2r) with the ball
or radius 2r in Euclidean space, φ − Id : BF(x, r) → BF(x, 2r) has
Ck−1−κ norm less than ς for every x ∈ S, and

(4) there exists 0 < t < 1 depending only on Γ and K such that the set of
x ∈ X where the Ck−1−κ size of φ on BF(x, r) is not less than (1+ς)m+1

has measure less than tmς for any positive integer m.

Furthermore, for any l ≥ k, if ρ′ is a C2l−k+1 action, then by choosing U
small enough, we can choose φ to be Cl on BF(x, r) for almost every x in X.
In particular, if ρ′ is C∞ then for any l ≥ k, by choosing U small enough,
we can choose φ to be Cl on BF(x, r) for almost every x in X.

Remarks. (1) The map φ constructed in the theorem is not even C0 close
to the identity on X. However, the proof of the theorem shows that for
every 1 ≤ q < ∞, possibly after changing U depending on q, we have∫

X(d(x, φ(x))qdµ ≤ ς.
(2) This theorem implies a version of Theorem 1.1, but with lower regular-

ity.
(3) In some special cases it is possible to slightly improve the regularity

of φ. It is possible to show that φ is Cl for some given choice of l even
if ρ′ is only Cl+1 provided U is small enough, see Sect. 6 for more
discussion. Unlike in Theorem 1.1, it does not seem possible to show
that φ is C∞ without some assumption on the action transverse to F.
Again see Sect. 6 for more details.

In the case when X is a direct product, we can prove slightly greater
regularity.

Theorem 2.12. If X = Y × Z and the foliation F has leaves of the form
{{y} × Z|y ∈ Y }, then φ in Theorem 2.11 is Ck−κ and all estimates in that
theorem for the Ck−1−κ topology can be replaced by analogous estimates in
the Ck−κ topology.

Remark. We do not give a proof of Theorem 2.12 here. The proof of
Theorem 1.1 given in Subsect. 5.1 can be combined with the techniques
of Sect. 7 to give such a proof, which we leave as an exercise for the
interested reader.

3. Proof of Theorem 2.5 and variants

In this section we prove Theorem 2.5. In the first subsection, we give a proof
of the analogue of Theorem 2.5 for isometric actions of groups with prop-
erty (T ) on Hilbert spaces. In the second subsection we develop a general
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method of constructing limit actions from sequences of actions. In the third
subsection, we prove Theorem 2.5 modulo some observations contained
in the appendix to this paper, which are required only when the action is
not affine and Γ is not discrete. In the final subsection we recall some re-
sults from [BFGM] and some facts about Banach spaces of type L p

n and
indicate the modifications to prior arguments needed to prove the results in
Subsect. 2.2.

3.1. Finding fixed points for isometric actions of groups with property (T )

Theorem 2.5 is a generalization of the following consequence of prop-
erty (T ). Though this fact is a variant of well-known consequences of
property (T ), we did not find a prior reference for this precise statement
and so give a detailed proof.

We first fix some notation. As in Subsect. 2.1 we fix a locally com-
pact, σ -compact group Γ with a compact generating set K ⊂ Γ contain-
ing a neighborhood of the identity, and a (left) Haar measure µ on Γ.
Given a function h ∈ Cc(Γ) and γ0 ∈ Γ we write γ0·h for the function
γ → h(γ−1

0 γ). The subsets U(Γ) and U2(Γ) of Cc(Γ) are as in Sub-
sect. 2.1.

Proposition 3.1. If Γ has property (T ) and f ∈ U2(Γ) and 0 < C0 < 1
there exist positive integers M = M( f, C0) and m = m( f, C0), such that,
letting h = f ∗m, for any Hilbert space H , any continuous isometric action
ρ of Γ on H , and any x ∈ H we have

(1) dH (x, ρ(h)(x)) ≤ MdispK (x)
(2) dispK (ρ(h)(x)) ≤ C0dispK (x).

Given a unitary representation σ of Γ on H , we let Hσ be the σ invariant
vectors and H⊥

σ it’s orthogonal complement. We recall a fact about groups
with property (T ).

Lemma 3.2. Let H be a Hilbert space and σ a continuous unitary rep-
resentation of Γ on H . Then for any f ∈ U2(Γ), we have σ( f )|H⊥

σ
is

a contraction. More precisely, there exists a constant 0 < D < 1 such that
‖σ( f )(x)‖ < D‖x‖ for any x ∈ H⊥

σ .

This lemma is an immediate consequence of Kazhdan’s definition of
property (T ) and the characterization of the Fell topology in Lemma III.1.1
of [M]. Though explicitly stated there only for some f , the proof is valid
for any f ∈ U2(Γ). For a proof of a more general fact see Lemma 3.16
below. The following lemma is elementary from the fact that isometries of
Hilbert spaces are affine [MU].

Lemma 3.3. Let Γ be a group, H a Hilbert space and ρ an isometric Γ
action on H . Then for any measures µ, λ ∈ P (Γ), we have ρ(µ)ρ(λ) =
ρ(µ ∗ λ).
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Lemma 3.4. If Γ has property (T ) and f ∈ U(Γ) and 0 < C0 < 1, there
exist positive integers M = M( f, C0) and m = m( f, C0) such that, letting
h = f ∗m, for any Hilbert space H , any continuous unitary representation
σ of Γ on H , and any v ∈ H we have

(1) dH (v, σ(h)(v)) ≤ MdispK(v)
(2) dispK (σ(h)(v)) ≤ C0dispK (v).

Proof. Since if v = (v1, v2), where v1 ∈ Hσ and v2 ∈ H⊥
σ , dispK (v) =

dispK(v2), it suffices to assume H = H⊥
σ . Since Γ has property (T ) this

implies that there exists ε such that there are no (K, ε)-invariant vectors
in H , i.e.

ε‖v‖ < ‖σ(k)v − v‖ ≤ 2‖v‖
for any k ∈ K and any v ∈ H . Let D be the contraction factor from 3.2 and
choose m such that 2Dm ≤ C0ε and let h = f ∗m. Note that Lemma 3.3 im-
plies that σ(h) = σ( f ∗m) = σ( f )m . Let v be a vector with K -displacement δ.
It follows from the equation above that δ > ε‖v‖. Direct computation shows
that ‖σ(k)σ(h)(v) − σ(h)(v)‖ < 2‖σ(h)v‖ < 2Dm‖v‖ ≤ C0ε‖v‖ < C0δ
which is the second conclusion of the lemma. Letting M be the smallest
value such that supp(h) ⊂ K M , the first conclusion follows as well. 
�
Proof of Proposition 3.1. Fix the function h ∈ U(Γ) and the constant
0 < C0 < 1 from the conclusion of Lemma 3.4. As any continuous affine,
isometric action of a group with property (T ) on a Hilbert space has a fixed
point, Γ fixes some point x in H [De]. Viewing H as a vector space with x
as origin allows us to view our action ρ as a unitary representation, and the
proposition is now an immediate consequence of Proposition 3.4 with the
same h, M and C0. 
�

3.2. Limits of sequences of actions

In this subsection we give a very general process for constructing a limit
action from a sequence of actions, or partially defined actions. The reader
primarily interested in actions of discrete groups may compare this with
the discussion of scaling limits in [Gr2] and the references cited there.
Throughout this subsection Γ is a group and K is a generating set for Γ.

Let Xn be a sequence of complete metric spaces, with distinguished
points xn ∈ Xn , and let ρn be (rn, sn, εn, δn, K )-almost actions of a group
Γ on Xn at xn . We construct our limit space X as a quotient of a certain
subspace X̃ in

∏
Xn . We will use ultrafilters and ultralimits to define X̃,

and a pseudo-metric on X̃, and then let X be X̃ modulo relation of being at
distance zero in the pseudo-metric.

Definition 3.5. A non-principal ultrafilter is a finitely additive probability
measure ω defined on all subsets of N such that

(1) ω(S) = 0 or 1,
(2) ω(S) = 0 if S is finite.
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This definition is the one given by Gromov in [Gr1], at the beginning
of Sect 2.A. on p. 36. It is not clear with this definition that non-principal
ultrafilters exist. To show existence, one defines an ultrafilter as a maximal
filter, and shows that maximal objects exist using Zorn’s lemma. For a more
traditional definition of ultrafilters, see [BTG, I.6.4]. In the context of group
theory ultrafilters were first used to construct limits of sequences of metric
spaces in [vDW], though their use in the study of Banach space theory is
much older than that, see [BL] and [He] for more history. In what follows,
we fix a non-principal ultrafilter ω.

Let {yn} be sequence inR, the ω-limit of {yn} is ω-lim yn = y if for every
ε > 0 it follows that ω{n|d(yn, y) < ε} = 1. The following well-known
proposition can be proven easily by mimicking the proof that bounded
sequences have limit points.

Proposition 3.6. Any bounded sequence of real numbers has a unique
ω-limit.

More generally, if X is a Hausdorff topological space, and {yn} is a se-
quence of points in X, the ω-limit of {yn} is ω-lim yn = y if every neigh-
borhood of y has measure 1 with respect to the pushforward of ω under
the map n → yn. The following, almost tautological proposition, is from
[BTG, I.10.1]:

Proposition 3.7. The space X is compact if and only if, for every ultrafil-
ter ω, every sequence {yn} has a unique ω-limit.

We let X̃ = {y ∈ ∏
Xn|ω-lim dn(yn, xn) < ∞}. We put a metric on X̃

by letting d̃({vn}, {wn}) = ω-lim dn(vn, wn). It is easy to check that d̃ is
a pseudo-metric on X̃. We can define an equivalence relation on X̃ by letting
v ∼ w if d̃(v,w) = 0. We let X = X̃/ ∼ with the metric d defined by d̃.
For an arbitrary sequence y ∈ X̃, we refer to the image of y = {yn} in X
as yω and write yω = ω-lim yn. The space X has a natural basepoint given
by xω = ω-lim xn . The space (X, d) is often called the ω-ultraproduct,
or simply the ultraproduct, with ω implicit, of (Xi, di, xi). The following
straightforward proposition is standard.

Proposition 3.8. The space (X, d) is complete.

Proof. Let x j
ω be a Cauchy sequence in X, where x j

ω = ω-lim x j
n . Let

N1 = N. Inductively, there is an ω-full measure subset N j ⊆ N j−1 such
that n ∈ N j implies that |dn(xk

n, xl
n) − d(xk

ω, xl
ω)| ≤ 1

2n for 1 ≤ k, l ≤ j. For

n ∈ N j\N j−1, define yn = x j
n . Then x j

ω converge to yω. 
�
We record here one additional fact about limits of sequences of Hilbert

spaces that we will use in the proof of Theorem 2.5, compare [He].

Proposition 3.9. If the spaces Xn are Hilbert spaces with xn = 0 and inner
product <,>n, then the space (X, d) is Hilbert space with xω = 0 and
inner product defined by < vω,wω >= ω-lim < vn, wn >.
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Proof. Since we already know X is complete, we need only check that X
is a vector space and that < ·, · > is a positive definite symmetric bilinear
form. Letting V = {v ∈ X̃|d(v, {xn}) = 0}, it is immediate that V is
a sub-vector space of the vector space X̃ and that X̃/V = X̃/ ∼.

That <,> is symmetric and bilinear is immediate. The definition implies
that < vω, vω >= d(vω, xω)2 > 0 if vω �= xω, so the form is positive definite.


�
We now proceed to define a Γ action ρ on X. If δn and εn were bounded

sequences and each ρn were globally defined, we could define a Γ action ρ̃

on X̃ simply by acting on each coordinate. Instead we define ρ̃(γ)(y) to be
the sequence whose nth coordinate is ρn(γ)(yn) when ρn(γ)(yn) is defined
and whose nth coordinate is xn otherwise. Though this is not an action, we
have:

Proposition 3.10. If ω-lim εn = ε < ∞, ω-lim δn = δ < ∞ and
ω-limn→∞ rn = ω-limn→∞ sn = ∞, then for every γ in Γ, the map
ρ̃(γ) descends to a well-defined bilipschitz map ρ(γ) of X and the map
ρ : Γ × X → X is an action of Γ on X. Furthermore, ρ(k) is an ε-almost
isometry of X for every k in K and the K-displacement of xω is at most δ.

Remark. For our applications, we will have δn uniformly bounded,
limn→∞ εn = 0, limn→∞ rn = ∞ and limn→∞ sn = ∞.

Proof. To verify that ρ̃(γ) descends to X and that it is bilipschitz, it suffices
to verify that ρ̃(γ) is an almost isometry of the pseudo-metric d̃. Let u, v ∈ X̃
and γ ∈ Γ. We fix the minimal s such that γ ∈ Ks. By ignoring an ω-measure
zero finite set of indices, we may assume ρn(γ)un and ρn(γ)vn are defined.
By definition

d̃(ρ̃(γ)u, ρ̃(γ)v) = ω-lim dn(ρn(γ)un, ρn(γ)vn).

Since ρn(k) acts by εn-almost isometries for all k ∈ K , we have

(1 − εn)
sdn(un, vn) ≤ dn(ρn(γ)un, ρn(γ)vn) ≤ (1 + εn)

sdn(un, vn).

By taking the ω-limit of the above equation, we have

(1 − ε)sd̃(u, v) ≤ d̃(ρ̃(γ)u, ρ̃(γ)v) ≤ (1 + ε)sd̃(un, vn).

Which shows that ρ̃(γ) preserve the equivalence relation of being at d̃
distance zero as well as showing that the map ρ(γ) on the quotient X is
bilipschitz and in fact an ε-almost isometry when γ ∈ K .

That these maps form a Γ action is almost obvious. Fix γ1, γ2 ∈ Γ

and v ∈ X̃. By ignoring a finite set Sγ1,γ2,v of ω-measure zero, we can
insure that ρn(γ1γ2)vn, ρn(γ2)vn and ρn(γ1)(ρn(γ2)vn) are well-defined
and that ρn(γ1γ2)vn = ρn(γ1)(ρn(γ2)vn) for n /∈ Sγ1,γ2,v. This implies
ρ(γ1γ2)vω = ρ(γ1)(ρ(γ2)vω). Since this verification (though not the set
Sγ1,γ2,v) is independent of γ1, γ2 and v, it follows that ρ is an action. That
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the K -displacement of xω is less than δ follows since d(ρ(k)xω, xω) =
ω-limdn(ρn(k)xn, xn) ≤ δ for all k ∈ K . 
�
Remark. As shorthand for the construction above, we will write ρ =
ω-lim ρn.

3.3. Proof of Theorem 2.5

In this subsection Γ and K are as in Subsect. 3.1. We fix the function
h ∈ U(Γ) and the constant C0 given by Proposition 3.1. We also fix an
arbitrary C with C0 < C < 1.

Proof of Theorem 2.5 for Γ discrete. Fix η0 = C − C0. The proof proceeds
by contradiction, so we assume the theorem is false. Let rn = 2n, sn = n
and εn = 1

n and 0 < δn < δ0. By the assumption that Theorem 2.5 is
false there exists a sequence of Hilbert spaces Hn , points xn ∈ Hn and
(rn, sn, εn, δn, K )-almost actions ρn at xn such that dispK (ρn(h)(x)) > Cδn.
By conjugation by a homothety at xn , it suffices to consider the case
where δn = 1 for all n. Conjugating by this homothety makes ρn a
(rn

1
δn

, sn, εn, 1, K )-almost action at xn and it remains true that rn → ∞
as n → ∞. We will denote the distance on Hn as dn and the inner
product as < ·, · >n. Letting H̃ ⊂ ∏

Hn be as in the paragraph fol-
lowing Proposition 3.7 and d̃ = ω-lim dn and V the set of points in H̃
with d̃(v, {xn}) = 0 as above, it follows from Proposition 3.10, the fact
that limn→∞ εn = 0, and Proposition 3.9 that the action ρ = ω-lim ρn of
Γ on H = H̃/V is an isometric action on a Hilbert space. It also follows
from Proposition 3.10 that dispK (xω) ≤ 1. By Proposition 3.1, this im-
plies that dispK (ρ(h)(xω)) ≤ C0. It is immediate from the definitions that
ρ(h)(xω) = {ρn(h)xn}ω and that d(ρ(k)yω, yω) = ω-lim dn(ρn(k)y, y) for
any k ∈ K and y ∈ H̃ . Letting y = ρ(h)(xω), we have a set Sk of full
ω-measure such that dn(ρn(k)ρn(h)(xω), ρn(h)(xω)) ≤ C0 + η0 for all n
in Sk. Letting S = ∩k∈K Sk we see that dispK (ρn(h)(xn)) ≤ C = C0 + η0
for any n ∈ S. Since K is finite, ω(S) = 1, and we have a contradiction. 
�

Before proving the theorem for more general groups, we state some addi-
tional results needed because the limit action we construct is not necessarily
continuous.

For the remainder of this subsection, we assume that each ρn is contin-
uous and that ρn satisfy the conditions of Proposition 3.10. We can then
define a limit action ρ = ω-lim ρn as in Proposition 3.10. In general it is not
true that ρ is continuous, but we now describe a (possibly trivial) continuous
subaction of ρ.

Given yn ∈ Xn, we have an orbit map ρ
yn
n : Ksn → Xn defined by

ρ
yn
n (γ) = ρn(γ)(yn). We call a sequence {yn} ω-equicontinuous on compact

sets if for any compact subset D of Γ, there exists a subset S ⊂ N with
ω(S) = 1 such that the orbit maps ρ

yn
n are equicontinuous on D for n in S.

Since the collection of actions ρn are uniformly bilipschitz, to prove a se-
quence is ω-equicontinuous on compact sets, it suffices to prove that it is
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ω-equicontinuous at the identity in Γ, i.e. given ε > 0, there is a neighbor-
hood U of the identity in Γ such that ρ

yn
n (U) ⊂ B(yn, ε) for n in a set S

with ω(S) = 1. We denote by Ω the set of ω-equicontinuous sequences in
X̃ and by Ω̄ the image of Ω in X. Keeping in mind that ρ is an action by
bilipschitz maps, it is straightforward to verify the following.

Proposition 3.11. The set Ω̄ is closed and Γ invariant. The restriction of ρ

to Ω̄ is continuous.

We state a result giving sufficient conditions for Ω̄ to be an affine Hilbert
subspace when the Xn are all Hilbert spaces.

Proposition 3.12. Let Hn be a sequence of Hilbert spaces with base-
points xn. Let ρn be a sequence of continuous (rn, sn, εn, δn, K )-almost
actions of Γ on Xn at xn with ω-lim εn = 0, ω-lim δn = δ < ∞ and
ω-limn→∞ rn = ω-limn→∞ sn = ∞. Then the set Ω̄ ⊂ H is an affine
Hilbert subspace of H . Furthermore if f ∈ U(Γ), then for any sequence
{yn} ∈ H̃ , the point ω-lim ρn( f )yn is in Ω̄.

We will also need the following generalization of Lemma 3.3 for almost
isometric actions on Hilbert spaces.

Proposition 3.13. Let H be a Hilbert space. Then for every r, η > 0 there
is a ε > 0 such that for any continuous (r, s, ε, δ, K )-almost action of Γ
on H at x and any measures µ, λ ∈ P (Γ) with supp(µ), supp(λ) and
supp(µ ∗ λ) contained in Ks and sδ < r

2 , we have

d(ρ(µ)ρ(λ)x, ρ(µ ∗ λ)x) ≤ η.

Remark. For our applications to local rigidity, it suffices to prove Theo-
rem 2.5 for affine ε-almost isometric actions. In this case, the proof of
Theorem 2.5 is almost the same, but we can assume ρn is affine for all n.
We will therefore only prove those cases of Propositions 3.12 and 3.13 here.
Only readers interested in Theorem 2.5 for the case of ρ not affine and Γ not
discrete, need refer to Appendix A of this paper for proofs of the general
cases of Propositions 3.12 and 3.13.

Proof of Propositions 3.12 and 3.13 for affine actions. It is immediate that
Ω̄ is an affine Hilbert subspace and that ρn(µ)ρn(λ) = ρn(µ ∗ λ). We now
prove that ρn( f )yn is ω equicontinuous. To do so we use the following
estimate:

d(ρn(γ0)ρn( f )yn, ρn( f )yn) ≤
‖ρ(γ0· f − f )yn‖ ≤
‖γ0· f − f ‖L1 Dγ0, f

where Dγ0, f = supsupp(γ0· f − f ) d(ρn(γ)x, x). This estimate, our assumptions
on ρn, the fact that K contains a neighborhood of the identity in Γ, and
continuity of the Γ action on L1(Γ) imply that for any η > 0 there is
a neighborhood U of the identity in Γ such that whenever γ0 ∈ U , we have
d(ρn(γ0)ρn( f )yn, ρn( f )yn) ≤ η. 
�
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Remark. The proof of the first assertion of Proposition 3.12 for non-affine
actions occurs in Subsect. A.1 and the proof of the second assertion is
found following the proof of Lemma A.3 in Subsect. A.2. The proof of
Proposition 3.13 for non-affine actions is found at the end of Subsect. A.3.

In the discrete case, we implicitly used finiteness of K to show that
the K -displacement of the ω-limit of a sequence is equal to the ω-limit of
the K -displacements. This is true more generally for sequences which are
ω-equicontinuous on compact sets.

Proposition 3.14. Let {yn} ∈ Ω. Then dispK (yω) = ω-lim dispK (yn).

Proof. We let kn be the sequence of elements in K such that the K -dis-
placement of yn is d(ρn(kn)yn, yn). By Proposition 3.7, there is a unique
kω = ω-lim kn. Since yn ∈ Ω, we know that d(ρn(k)yn, yn) are equi-
continuous functions of k ∈ K . This implies ω-lim d(ρn(kω)yn, yn) =
ω-lim d(ρn(kn)yn, yn) which suffices to prove the proposition. 
�

Lastly, we need the following trivial lemma.

Lemma 3.15. Let X be a metric space and ρ an (r, s, ε, δ, K )-almost action
of Γ on X at x. Then if d(x, y) = η, then dispK(y) ≤ δ + 2η + εη.

Proof of Theorem 2.5 for non-discrete Γ. The proof begins as in the discrete
case, we assume the theorem is false and let Hn, xn be a sequence of
Hilbert spaces and ρn be as in the proof for Γ discrete, assuming we have
already renormalized so δn = 1. We note that to prove the theorem it
suffices to show the existence of some h ∈ U(Γ), so we may assume
that dispK (ρ(h)xn) > CdispK (xn) for every h ∈ U(Γ). Arguing as in the
discrete case, we can produce a isometric limit action ρ on Hilbert space
H where the K -displacement of xω = ω-lim xn is 1. By Proposition 3.12,
ρ is continuous on a closed affine subspace H ′ ⊂ H and for any sequence
{yn} ∈ H̃ and any g ∈ U(Γ), the point ω-lim ρn(g)yn is in H ′. Together with
Proposition 3.14, the arguments for the discrete case imply that for any {yn}
with yω ∈ H ′, we have dispK (ρ(h)yn) ≤ CdispK (yn) for ω-almost every n.
If xω ∈ H ′ this completes the proof. Otherwise let x ′

n = ρ( f )xn where
f ∈ U(Γ) with supp( f ) ⊂ K and supp( f ) containing a neighborhood of
the identity in Γ.

In this case, we will prove the theorem with h replaced by h∗d ∗ f for
a positive integer d such that 4Cd ≤ C. We know from Proposition 3.12
that the sequence {ρn( f )xn} is equicontinuous, as is {ρn(h)iρn( f )xn} for
every positive integer i. Since ρn( f )xn is in the ball of radius 1 about x,
Lemma 3.15 implies that dispK (ρn( f )xn) ≤ 3+εn . Therefore, we know that
dispK (ρn(h)dρn( f )xn) ≤ Cd(3+εn). Choosing η < Cd

10d by d applications of

Proposition 3.13, we have that dn (ρn(h)dρn( f )xn, ρn(h∗d∗ f )xn) < Cd

10 for ω

almost every n. Then by Lemma 3.15, we know that dispK (ρn(h∗d ∗ f )xn) <
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Cd(3+εn + 2+εn
10 ) for ω almost every n. Since for n large enough, Cd(3+εn

+ 2+εn
10 ) < 4Cd, this implies that, for ω almost every n, dispK (ρn(h∗d ∗ f )xn)

< 4Cd < C, contradicting our assumptions. 
�
Remark. In the discrete case, it is possible to prove Theorem 2.5 for the
same function h as in Proposition 3.1 and any C > C0 from that proposition.
The reader should note that this is no longer possible when Γ is not discrete,
but that h can be replaced by h∗l where l is a constant depending only
on Γ, K and h.

3.4. Proofs of Theorem 2.6

We indicate the modifications to the proof of Theorem 2.5 needed to prove
Theorem 2.6.

For detailed discussion and definitions about properties of Banach spaces,
the reader should refer to [BL, Chap. 8] for positive definite functions and to
[BL, Appendix A] for uniform convexity. We recall some consequences and
definitions here. We will let B be a uniformly convex Banach space. Let B1,
respectively B∗

1 , be the unit ball. Then there is a map j : B1 → B∗
1 , called

the duality map defined by letting j(x) be the unique functional such that
‖ j(x)‖ = 1 and < j(x), x >= 1 such that j−1 is uniformly continuous. (For
a proof of uniform continuity and estimates on the modulus of continuity in
terms of the modulus of convexity see [BL, Appendix A].) An easy conse-
quence of the definitions is the existence of a strictly increasing function ζ
on [0, 1] with ζ(0) = 0 such that for any pair of vectors v,w ∈ B1 we have
< j(w), v >≤ 1 − ζ(ε) if and only if d(v,w) ≥ ε.

The following lemma is used in place of Lemma 3.2 above. For any
representation σ of Γ on a Banach space B, we denote by Bσ the set of σ
invariant vectors.

Lemma 3.16. Let Γ be a locally compact, compactly generated group and
K a compact generating set. Let B be a uniformly convex Banach space.
Then for any unitary representation σ of Γ on B the following are equiva-
lent:

(1) there exists M > 0 such that for any δ ≥ 0, any (K, δ)-almost invariant
vector v is within Mδ of Bσ ;

(2) for any function f ∈ U2(Γ) there exists 0 < C < 1 such that for any
v ∈ B we have d(σ( f )v,Bσ ) ≤ Cd(v,Bσ ).

Proof. The proof that (2) implies (1) and the reverse implication in the
discrete case are straightforward and similar to the proof of [M, Lemma
III.1.1]. Therefore we only give an argument for (1) implies (2).

Fix a function f ∈ U2(Γ), then there exists η > 0 such that f(γ) > η for
every γ ∈ K2. Fix a vector v with d(v,Bσ ) > 0. By re-scaling and changing
basepoint, we can assume d(v,Bσ ) = 1 and in fact that d(v, 0) = 1 where
0 is the origin in B. This uses the fact that B is uniformly convex which
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implies that there is a point in Bσ realizing d(v,Bσ ). There exists γ0 ∈ K
for which d(γγ0v, γv) ≥ 1

M . This implies that

µ

{

γ ∈ K2
∣
∣d(γv,w) ≥ 1

2M

}

≥ µ(K )

for any unit vector w. Applying j(w) to σ( f )v we have that
∫

j(w)( f(γ)σ(γ)v) ≤ 1 − ζ

(
1

2M

)

µ(K )η.

Since this is true for any w, this implies that d(σ( f )v, 0) ≤ 1− ζ 1
2M µ(K )η.


�
We now state a replacement for Proposition 3.1.

Proposition 3.17. If Γ has property (T ) and f ∈ U2(Γ) and 0 < C0 < 1,
there exist positive integers M = M( f, C0) and m = m( f, C0) such that,
letting h = f ∗m, for any generalized L p space B with p > 1, any continuous
isometric action ρ of Γ on B, and any x ∈ B we have

(1) dB(x, ρ(h)(x)) ≤ MdispK (x)
(2) dispK (ρ(h)(x)) ≤ C0dispK (x).

As this is essentially contained in [BFGM], we only provide a sketch.

Sketch of proof. Let g be the positive definite function on B. Then g defines
maps Tt : B → H1 where H is a Hilbert space and H1 is the unit sphere.
The map Tt satisfies < Tx, Ty >= g(t(x − y)) where g(x) = exp(−‖x‖p).
One can then apply the standard proof that any affine action of a group
with property (T ) on a Hilbert space has a fixed point, see for example
[HV] or [De], to produce a Γ fixed point on B. In fact, the proof shows
more. It produces a constant C, depending only on Γ and K such that the Γ
displacement of any point y in B is bounded by C times the K displacement.
This then implies that the distance from y to a fixed point (the barycenter
of Γ·y) is bounded by a constant times the K displacement of y. To verify
these facts one uses the fact that dH (Tt x, Tt y)2 = 2tdB(x, y)p + O(t2) for
all t. The existence of h then follows from Lemma 3.16 and an argument as
in the proof of Proposition 3.4. 
�

The following fact about ultra-product spaces is left to the reader, com-
pare [He].

Proposition 3.18. Let pi be sequence of numbers with 1 < pi < 2 and
Bi be a sequence of generalized L p spaces. Let ω be an ultra-filter and
p = ω-lim pi . Then the function f(x) = exp(−‖x‖p) is positive definite
on the ultra-product B of Bn. Furthermore, if p > 1 then B is uniformly
convex with the same modulus of convexity as L p.
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Proof of Theorem 2.6. In the discrete case, the proof is a verbatim repetition
of the proof of Theorem 2.5 with Proposition 3.1 replaced by Proposi-
tion 3.17 and Proposition 3.9 replace by Proposition 3.18.

For non-discrete Γ, one needs to verify that versions of Proposition 3.11
and 3.13 still hold, but modifying the proofs of those statements is straight-
forward if we assume all Γ actions are affine. 
�

4. Inner products on tensor spaces and existence of invariant metrics

In this subsection we define intrinsic leafwise Sobolev structures on spaces
of tensors on TF. For our applications, we need these structures on the
space of functions and the space of symmetric two forms, but we develop
it more generally. We define a family of norms on leafwise Cr tensors and
then complete with respect to the corresponding metric. For us the key fact
about the norms we use is that they are invariant under isometries of the
leafwise Riemannian metric. To illustrate the utility of this construction, we
prove Theorem 1.3 using this construction and results from Subsects. 2.1
and 2.2.

As in Subsect. 2.3 we let X be a locally compact, σ -compact, metric
space, F a foliation of X by manifolds of dimension n, and gF a leafwise
Riemannian metric. We also let νF denote the Riemannian volume (and
corresponding measure) on leaves of F and assume a transverse invariant
measure ν. We define norms on the set of tensors which are continuous
globally and Cr along leaves of F. The definitions given below are standard
when X is a single leaf. To make the norms intrinsic, we work with k-jets
of sections of tensor bundles. The special case of functions, particularly
important in our applications, is sections of the trivial one dimensional
vector bundle which corresponds to tensors of the form ⊗0TF. Here TF
is the tangent bundle to the foliation F. We will denote by ξ an arbitrary
bundle of tensors in TF and Sectk(ξ) the space of sections of ξ that are
globally continuous and Ck along leaves of F. By globally continuous
(resp. measurable) and Ck along leaves of F we will always mean that an
object is Ck along leaves and varies continuously (resp. measurably) in the
Ck topology transverse to leaves. Particular examples include vector fields
ξ = TF, symmetric two tensors ξ = S2(TF∗) or functions ξ = X × R.

Remark. For our first proof of Theorem 1.1, we allow one additional choice
for ξ . Let ξ = X × Rn be a trivial bundle. Given an action ρ of Γ on X,
we normally would associate the trivial action on ξ . Instead we allow the
possibility of the existence of finite dimensional unitary representation σ of
Γ on Rn, and define the action of ρ on ξ by ρ(γ)(x, v) = (ρ(γ)x, σ(γ)v).
Similarly for any perturbation ρ′ of ρ, we define the action ρ′ on ξ by
ρ′(γ)(x, v) = (ρ′(γ)x, σ(γ)v).

Given gF, there is a canonical Levi-Civita connection on TF which we
denote by ∇T associated to the metric. For any choice of ξ , this defines
a connection on ξ , see for example III.2 of [KN], which we will view
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as ∇ξ : Sect(TF) × Sect(ξ) → Sect(ξ). Note that ∇ is always invariant
under isometries of gF. There is also a natural metric on ξ associated to the
metric on TF (see for example Sect. 20.8.3 in [D]). In the particular case
of functions, the metric is any metric given by identifying all fibers with R,
the connection is given by ∇X f = X f , and invariance of the connection is
immediate.

We will let Jk(ξ) denote the bundle of leafwise k-jets of sections of ξ .
This is a bundle where the fiber over a point x is the set of equivalence classes
of continuous, leafwise Ck sections where two sections are equivalent if they
agree to order k at the point x. We will denote the fiber by Jk(ξ)x . There is
a natural identification:

Jk(ξ) �
k⊕

j=0

(S j(TF∗) ⊗ ξ).

As a special case of the discussion above, a metric on T(F) defines one
on S j(TF∗) for all j and together with the metric on ξ , this identification
induces a metric on Jk(ξ). We briefly review the identification above to show
that this metric is indeed invariant under isometries of gF. The exposition
that follows draws mostly from Sect. 9 of [P1], where the interested reader
can find more proofs and explicit constructions.

We can view the leafwise Levi-Civita connection on TF as a map ∇T :
Sect(TF) → Sect(TF∗)⊗Sect(TF). By the discussion above, we also have
a connection ∇T∗ : Sect(TF∗) → Sect(⊗2TF∗). Similarly the connection
on ξ can be viewed as a map ∇ξ : Sect(ξ) → Sect(TF∗ ⊗ ξ) by viewing
∇Xσ as a one form with X as the variable.

Similarly, we can define a canonical covariant derivative

∇(i) : Sect(⊗i(TF∗) ⊗ ξ) → Sect(⊗i+1(TF∗) ⊗ ξ)

via the formula

∇(i)(V1 ⊗ · · · ⊗ Vi ⊗ f )

=
i∑

j=1

(V1 ⊗ · · · ⊗ ∇T∗Vj ⊗ · · · ⊗ Vi ⊗ f ) + V1 ⊗ · · · ⊗ Vi ⊗ ∇ξ f

where f is a section of ξ and the Vi are elements of TF∗. The composition
∇(k−1)· · ·∇(1)∇ : Sect(ξ) → Sect(⊗k(TF∗) ⊗ ξ) is called a kth covariant
derivative.

We now define the total covariant derivative. First let S(k) be the nat-
ural symmetrization operator from the kth tensor power of TF to Sk(TF)
the kth symmetric power. We define the kth total differential
Dk = S(k)∗ ∇k−1· · ·∇(1)∇. In other words, the kth total differential is the
symmetrization of the kth covariant derivative. The isomorphism men-
tioned above Jk(ξ) � ⊕k

m=0(S j(TF∗) ⊗ ξ) is given by the map jk(v) =
{Dm(v)}0≤m≤k. We then define the metric on Jk(F) via this isomorphism
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and abuse notation by calling it g. Define a family of norms on Sect(Jk(ξ))
via:

‖u‖p
p =

∫

X
g(ux, ux)

p
2 dνFdν,

for every u ∈ Sect(Jk(ξ)). Since elements of Sectk(ξ) define elements of
Sect(Jk(ξ)) we can restrict this to an inner product on Sectk(ξ) defined by

‖u‖p
k,p =

∫

X
< jk(u), jk(u) >

p
2 dνFdν,

for all u ∈ Sectk(ξ).

Notational convention: Throughout this paper when f is leafwise smooth
homeomorphism of (X,F) and therefore induces a map on functions or
sections of a tensor bundle ξ over X, we abuse notations by writing f for
the map on functions or sections. This remark also applies to group actions.

Proposition 4.1. Let f be a leafwise isometry of (X,F, gF) which preserves
the transverse invariant measure ν. Then the action of f on Sectk(ξ) and
Sect(Jk(ξ)) preserves all of the norms defined above.

Proof. This is clear from the definition of the inner product and the fact
that isometries of gF commute with all the differential operators used in the
construction and that f preserves the measure in the integral above. 
�

We now have norms defined Sect(Jk(ξ)) which restrict to norms defined
on Sectk(ξ). We define distance functions on Sect(Jk(ξ)) by dp(u, v) =
‖u − v‖p and refer to the completion with respect to this metric as L p (Jk(ξ)).
Note that dp restricts to a metric dp,k on Sectk(ξ) that is exactly the metric
induced by ‖·‖k,p. Completing Sectk(ξ) with respect to dp,k we obtain a stan-
dard Sobolev completion of that space, a Banach subspace of L p(Jk(ξ)),
which we denote by L p,k(ξ,F). If the foliation is the trivial foliation by
a single leaf X, we omit the F and simply write L p,k(ξ) and L p(Jk(ξ)). In
the special case of functions, we use the notation L p,k(X,F), L p(Jk(X)) or
L p,k(X) in place of L p,k(X ×R,F), L p(Jk(X ×R) or L p,k(X ×R) respec-
tively. It is clear that if f is a homeomorphism of X as in Proposition 4.1
then the action of f on Sect(Jk(ξ)) and Sectk(ξ) extend to isometric ac-
tions on L p(Sect(Jk(ξ)) and L p,k(ξ). Since any u ∈ L p,k(F, ξ) is a limit of
ui ∈ Sectk(ξ) with respect to the norm above, it follows that jk(ui) converge
in L p(Jk(ξ)) to a section we denote by jk(u) and call the weak k-jet of u.

We also have the following fact about perturbations of isometric actions
which will be used heavily in the next section.

Proposition 4.2. Let f be a leafwise isometry of (X,F, gF) which preserves
ν and let s ∈ Sectk(ξ) be f invariant. If ξ is a trivial bundle, we let l = k,
if ξ is non-trivial, we let l = k + 1. For any p0 > 1, ε > 0 and δ > 0 there
exists a neighborhood U of the identity in Diff l

ν(X,F) such that if f ′ is an
(U, Cl)-foliated perturbation of f then
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(1) for any p ≤ p0, the action of f ′ on L p(Jk(ξ)) (and therefore L p,k(ξ,F))
is by ε-almost isometries,

(2) the f ′ displacement of s in L p,k(ξ,F) is less than δ,
(3) if V ⊂ X is any f ′ invariant set of positive measure, then the action of f ′

on L p(Jk(ξ))|V (and therefore L p,k(F, ξ)|V ) is by ε-almost isometries,
(4) if V ⊂ X is any f ′ invariant set of positive measure, then the f ′

displacement of s|V in L p,k(F, ξ)|V is less than δµ(V ).

Furthermore if H is a topological group and ρ is a continuous leafwise
isometric action of H on X, then the resulting H action on L p(Jk(ξ)) (and
therefore L p,k(ξ,F)) is continuous. The same is true for any continuous
(U, Ck)-foliated perturbation ρ′ of ρ.

Remarks. (1) The choice of l is required since while Cl diffeomorphisms
act on Cl functions on X, they only act on Cl−1 sections of any non-
trivial tensor bundle ξ . It is easy to verify that if f is a Cl diffeomorphism
and s is a Cl−1 section of ξ , then jl−1(s ◦ f ) = jl−1(s) ◦ jl( f ).

(2) Since if s is in Sect∞(ξ) then s is in Sectk(ξ) we can use Proposition 4.2
to study translates of C∞ sections inside Sobolev spaces.

(3) There is no better statement for the C∞ case, since a C∞ neighborhood
of f is exactly a Cn neighborhood of f for some large integer n. If f ′
is close to f in the Cn topology but not the Cn+1 topology, then even if
f ′ is C∞, f ′ is not be an ε-almost isometry on any space defined using
more than n derivatives. Therefore we can only obtain an estimates
for the f ′ action on spaces whose norms depend on no more than n
derivatives.

Proof. First given ε, we find U such that (1 − ε)‖s‖p ≤ ‖s ◦ f ′‖p ≤
(1 − ε)‖s‖p for any s ∈ L p(Sect(ξ)) and for any f ′ which is (U, Cl)-close
to f . Since continuous sections are dense in L p(Sect(ξ)) (this follows from
the fact that continuous functions are dense in L p), we can assume that s is
continuous. We can write s ◦ f ′ as s ◦ ( f ◦ f −1) ◦ f ′ = (s ◦ f ) ◦ ( f −1 ◦ f ′).
Since f is an isometry of L p(Sect(ξ)) it suffices to show that (1− ε)‖s‖p ≤
‖s ◦ ( f −1 ◦ f ′)·‖p ≤ (1 − ε)‖s‖p for leafwise smooth s. For any η > 0, we
can choose U , an open set in Diff l(X,F) containing the identity, such that
1 − η < ‖ jl( f −1 ◦ f ′)(x)‖ < 1 + η for all x. Then the chain rule implies
the pointwise bound

(1−η)‖ jk(s)(x)‖ ≤ ‖ jk(s ◦ ( f −1 ◦ f ′))( f −1( f ′(x))‖ ≤ (1+η)‖ jk(s)(x)‖.
We further restrict U so that the Jacobian of f ′ along F is bounded between
1 + η and 1 − η, and then the result follows from the fact that f ′ preserves
the transverse measure ν provided ε < (1 + η)p+1 − 1. This argument also
verifies that f ′ acts by ε-almost isometries on L p(Sect(ξ))|V for any V ⊂ X
of positive measure.

The remaining conclusions follow from the fact that Diff k(X,F) acts
continuously on Sect(Jk(ξ)) and Sectk(ξ) and therefore on L p(Jk(ξ)) and
L p,k(ξ). 
�
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In order to obtain optimal results, we need to make precise some notions
of Hölder regularity in order to have a norm on Sectk(ξ) where k is not
integral. For the remainder of this section, we allow the possibility that k
is not integral and let k′ to denote the greatest integer less than k. Given
x ∈ X, y ∈ Lx and a piecewise C1 curve c in Lx joining x to y, for any
natural vector bundle V over X, we denote the parallel translation of v ∈ Vy
to Vx by Px

y v and by l(c) the length of c. We then define

‖s‖k = ‖s‖k′ + sup

∥
∥Px

y jk′
(s)(y) − jk′

(s)(x)
∥
∥

l(c)k−k′

where k′ is the least integer not greater than k and the supremum is taken
over x ∈ X, y ∈ Lx and piecewise C1 curves c in Lx joining x to y. It is
easy to verify that this definition agrees with the usual one in the Euclidean
case.

We now also make precise the Ck size of a Ck map f : Z → Z where Z is
a Riemannian manifold and k is not an integer. This notion is needed to make
precise the conclusion (4) of Theorem 2.11. We already have a notion of
pointwise Ck′

size, defined in Subsect. 7.2, which we denote by ‖ jk′
( f )(x)‖.

Recall that jk′
( f )(x) : Jk′

(Z,R)x → Jk′
(Z,R) f(x) is a linear map between

vector spaces. Given a curve c in Z, we can compose jk′
( f )(x) with parallel

translation Px
f(x) along c to obtain a self-map Px

f(x) ◦ jk′
( f )(x) of Jk′

(Z,R)x .
We define the Ck size of f to be

‖ f ‖k = sup
x

∥
∥ jk′

( f )(x)
∥
∥ + sup

∥
∥Px

f(x) ◦ jk′
( f )(x)

∥
∥

l(c)k−k′

where the supremum is taken over x ∈ X, y ∈ Z and piecewise C1 curves
c in Z joining x to y. We can also measure the Ck′

size of f on any subset
U of Z by restricting the above supremum to x ∈ U .

Proposition 4.3. Let (X,F) be a compact foliated space and gF a continu-
ous, leafwise smooth metric on (X,F). Then for any ξ and any p > 1, there

are uniformly bounded inclusions L p,k(L̃x, ξ) ⊂ Sectk−
d
p (ξ|L̃x

) for all x,

where d = dim(Z) and L̃x is any covering space of the leaf through x.

Proof. The standard Sobolev embedding theorems provide an bounded in-

clusion of L p,k(Rd) in Ck− d
p (Rd) which easily implies a bounded embedding

of L p,k(Rd,Rn) in Ck− d
p (Rd,Rn). Compactness of X and the fact that gF

is continuous and leafwise smooth, imply that we can cover X with a finite
collection of charts (Ui, φi) with φi(Ui) = Vi × B(0, c) and such that there
is a uniform bound on the resulting inclusions

L p,k(F, ξ|BF(vi,c)) ⊂ L p,k(B(0, c),Rn)
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and
Ck− p

d (B(0, c),Rn) ⊂ Sectk−
d
p (ξ|BF(vi,c))

for every Ui and every vi ∈ Vi , where BF(vi, c) = φ−1(vi × B(0, c)). So
we have uniformly bounded embeddings

L p,k(F, ξ|BF(vi,c)) ⊂ L p,k(B(0, c),Rn) ⊂ Ck− d
p (B(0, c),Rn)

⊂ Sectk−
d
p (ξ|BF(vi,c))

for every Ui and every vi ∈ Vi which suffices to complete the proof. It is
easy to see that the same bound holds for any cover L̃x → Lx . If k − d

p
is not integral, this does not immediately yield the desired result, since
we only have a Hölder bound at small scales. However, since we have
a global bound on the C0 norm, it is easy to convert this small scale Hölder
bound to a worse Hölder bound on all scales. More precise estimates can
be obtained by following the standard proofs of Hölder regularity in the
Sobolev embedding theorems. 
�

If we are studying perturbations ρ′ of an action ρ, in order to obtain
optimal regularity in all proofs, we will need to know that a certain section
s′ invariant under ρ′ is close in L p,k type Sobolev spaces to certain ρ invariant
section s. The difficulty here is to show that s′ is both invariant under ρ′ and
close in L p,k for p > 2 simultaneously. To show this, we will require the
following elementary fact.

Lemma 4.4. Let (X, µ) be a measure space and V a finite dimensional
vector space. Assume that fn ∈ L p(X, µ, V ) converge in L p to a function f .
Further assume that ‖ fn − fn+1‖p ≤ Cn where 0 < C < 1. Then fn
converges pointwise almost everywhere to f .

Proof. Let Xn = {x|| fn(x)− fn+1(x)| > Cn/2p}, since ‖ fn − fn+1‖p ≤ Cn,
it follows that µ(Xn) < Cn/2. Then { fn} converges pointwise on the com-
plement of X∞ = ∩∞

n=1∪∞
k=n Xn. The lemma follows from the Borel-Cantelli

lemma, since
∑

n µ(Xn) converges, so µ(X∞) = 0. 
�
Many of our uses of this fact could, with slight rewording, be deduced

from the fact that if a sequence of functions { fn} converges to a function
f p L p and converges to a function f q in Lq then f p = f q almost every-
where. However, the full strength of Lemma 4.4 is required in the proof of
Theorem 2.11.

Lemma 4.5. Let Γ be a locally compact, σ -compact group with property
(T ) generated by a compact set K, and let ρ be a leafwise isometric action
of Γ on (X,F, gF) and s a ρ invariant section in Sectk(ξ). Let l be as in
Proposition 4.2. For any p ≥ 2, η > 0, F > 0 and 0 < C < 1, there exists
a neighborhood U of the identity in Diff l

ν(X,F) and a function h = h(p)

in U(Γ) such that if ρ′ is a (U, Cl)-foliated perturbation of ρ,
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(1) ρ′(h)ns converge pointwise almost everywhere to a ρ′ invariant section
s′ in L p,k(ξ),

(2) ‖ρ′(h)ns − s′‖p,k ≤ η for all n ≥ 0 and,
(3) ‖ρ(h)n+1s − ρ(h)ns‖p,k < Cn F for all n ≥ 0.

Remarks. (1) For many applications we only need conclusion (1) and the
case of (2) where n = 0, i.e. that ‖s′ − s‖p,k ≤ η.

(2) The reason we do not obtain these estimates in L p,k for all p, k when
ρ′ is C∞ close to ρ is explained following Proposition 4.2.

Proof. Given p ≥ 2, ε > 0 and δ = min( F
M ,

η(1−C)

MC ) for M to be specified
below, by Proposition 4.2 there is a neighborhood U in Diff l(X) such that
for any (U, Cl)-perturbation ρ′ of ρ, it follows that ρ′(k) is an ε-almost
isometry of L p(Sectk(ξ,F)) (and therefore of L p,k(ξ,F)) for any p < p0
and the dispK(s) < δ′ in any of these spaces.

We choose h ∈ U(Γ) satisfying both Theorem 2.1 and Corollary 2.8.
Then Theorem 2.1 shows that ρ′(h)ns converges exponentially to s′ in
L2,k(ξ,F), which by Lemma 4.4, implies that ρ′(h)ns converges pointwise
almost everywhere to s′. Then applying Corollary 2.8 there is a constant
M = M(h, C, p), such that ‖ρ(h)n+1s − ρ(h)ns‖p,k < Cn Mδ and therefore
s′ ∈ L p,k(ξ,F) and ‖ρ(h)ns − s′‖p,k ≤ MC

1−C δ for all n ≥ 0. By our choice
of δ we have ‖ρ(h)ns − s′‖p,k ≤ η and ‖ρ(h)n+1s − ρ(h)ns‖p,k < Cn F for
all n ≥ 0 as desired. 
�

To illustrate the application of the results in Sect. 2.1 to perturbations of
isometric and leafwise isometric actions, we now prove Theorem 1.3 from
the introduction.
Proof of Theorem 1.3. We have an action ρ of a group Γ with property
(T ) on compact manifold X preserving a Riemannian metric g. We view g
as a section of the (positive cone in) the bundle of symmetric two tensors
S2(TX). Fix a generating set K of Γ and a choice of η > 0 to be specified
below. Given ε > 0 satisfying the hypotheses of Theorem 1.6 and δ > 0
to be specified below, by Proposition 4.2 there is a neighborhood U in
Diff k+1(X) such that for any (U, Ck+1)-perturbation ρ′ of ρ, it follows
that ρ′(k) is an ε-almost isometry of L2,k(S2(TX)) and the K displacement
of g is less than δ in this space. Theorem 1.6 then implies that there is
a number C > 0 depending only on Γ and K and a ρ′(Γ) invariant section
g′ ∈ L2,k(S2(TX)) with ‖g − g′‖2,k ≤ η where η = Cδ is specified below.
To obtain optimal regularity, we choose p > d

κ
and let U satisfy Lemma 4.5

for p and η specified below and then Lemma 4.5 implies that there is a ρ′
invariant section g′ such that ‖g − g′‖p,k < η.

By Proposition 4.3, this implies that ‖g − g′‖k− d
p

≤ C ′η where d =
dim(X) and C ′ depends only on X and g. Since the cone of positive definite
metrics is open in S2(TX), we can choose η depending only on p and g,

so g′ is a Ck− d
p Riemannian metric on X, invariant under ρ′(Γ) and Ck− d

p

close to g. 
�
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5. Property (T ) and conjugacy

In this section we prove Theorem 1.1 using Theorem 1.6 and Lemma 4.5. In
this section, we only consider Ck perturbations. The additional arguments
required for the C∞ case are in Sect. 6.

5.1. A proof of Theorem 1.1

We begin by noting a classical fact about isometric actions.

Proposition 5.1. Let 0 ≤ k ≤ ∞, let X be a compact Ck manifold and ρ a
Ck action of Γ on X such that the image of Γ in Diff k(X) is pre-compact.
Then there is a positive integer n, a homomorphism σ : Γ → O(n) and a Γ
equivariant Ck embedding s : X → R

n.

Remark. For our applications, the fact that Γ is precompact in Diff k(X)
follows from the fact that the isometry group of a compact Riemannian
manifold is compact.

Proof. Let C be the closure of Γ in Diff k(X). For C this is the Mostow-
Palais theorem [Mo,P2]. More precisely, for all k, Mostow has proven that,
for some n, there is a map C → O(n) and a Ck equivariant embedding of
X into the Euclidean space Rn. For k = 0 this is the main result of [Mo],
for k > 0, it is proven in Sect. 7.4 of that paper by a different method. For
k = ∞, the same result is proven in [P2] using the fact that C preserves a C∞
Riemannian metric. (Mostow’s proofs do not explicitly use the existence of
an invariant metric. In the Ck case, Palais’ method produces an equivariant
embedding of lower regularity.) 
�
Remark. If k ≥ 2, and Γ preserves a Ck,α Riemannian metric g, then one can
prove the Ck version of the above theorem by approximating any embedding
of Γ in Rn with an embedding defined by eigenfunctions of the Laplacian.

Given σ and n as in Proposition 5.1, we define a trivial bundle ξ =
X × Rn with Γ action ρ(γ)(x, v) = (ρ(γ)x, σ(γ)v). The conclusion of
Proposition 5.1 is then equivalent to the existence of a Γ invariant section
s : X → ξ . We will show that the perturbed action preserves a section s′
close to s and then use the following lemma to produce the conjugacy. Given
a compact manifold Y ⊂ Rn, there is a neighborhood U of Y in the normal
bundle of Y in Rn such that the exponential map exp : U → R

n defined by
exp(x, v) = x + v is a diffeomorphism. The closest point projection φ from
exp(U) to Y is then C∞ (resp. Cn−1) when Y is C∞ (resp. Cn). This yields
the following:

Lemma 5.2. Let s : X → R
n be a C∞ embedding, then there exists η such

that for any integers l ≥ k ≥ 1 and any s′ : X → R
n a Cl map with

‖s′ − s‖k ≤ η, the map ψ = s−1 ◦ φ ◦ s′ is a Ck small, Cl diffeomorphism
of X. Furthermore as η → 0, the map ψ tends to the identity map in the Ck

topology.
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We now prove Theorem 1.1. The reader who is only interested in a result,
and not a result with optimal regularity, may ignore the last sentence of each
paragraph and read the second paragraph assuming p = 2. For any pertur-
bation ρ′ of ρ, we define an action ρ′ on ξ by ρ′(γ)(x, v) = (ρ′(γ)x, σ(γ)v).

Proof of Theorem 1.1. Fix a generating set K for Γ and a constant η > 0
to be specified below. By Proposition 4.2, given ε > 0 satisfying the hy-
potheses of Theorem 1.6 and δ > 0 specified below, we can choose a neigh-
borhood of the identity U ⊂ Diff k(X) such that for any ρ′ that is (U, Ck)
close to ρ, the map ρ′(γ) is a ε-almost isometry of L2,k(ξ) for any γ ∈ K
and such that dispK (s) < δ in L2,k(ξ). Theorem 1.6 then implies that there
is a ρ′(Γ) invariant section s′ ∈ L2,k(ξ) with ‖s − s′‖2,k ≤ η where η = Cδ
and C > 0 depends only on Γ and K . To obtain a Ck−κ conjugacy, we
choose p < d

κ
and choose U to satisfy Lemma 4.5 for our choices of η and

p and then Lemma 4.5 implies that there is a ρ′ invariant section s′ with
‖s − s′‖p,k < η.

Proposition 4.3 then implies that s′ is Ck− d
p and that ‖s − s′‖k− d

p
< C0η

where C0 is an absolute constant depending only on X, p and g. We can

view s′ : X → R
n as a Γ equivariant Ck− d

p map from X to Rn where the
action on X is given by ρ′ and the action on Rn is given by σ . By choosing

η (and therefore U) sufficiently small, the map s′ : X → R
n is Ck− d

p close

to s. Then by Lemma 5.2, the map ψ = s−1 ◦ φ ◦ s′ is a Ck− d
p small

diffeomorphism of X. Since s, s′ and φ are all equivariant, ψ is a conjugacy
between the ρ′(Γ) action on X and the ρ(Γ) action on X. 
�

5.2. Another proof of Theorem 1.1

In this section we give another proof of Theorem 1.1 which gives somewhat
lower regularity, but which generalizes to prove Theorem 2.11.

We will denote points in X × X by (x1, x2) and denote the diagonal
in X × X by ∆(X). Given any group Γ acting on a manifold X, we will
denote by ρ̄ the diagonal action of Γ on X × X given by ρ̄(γ)(x1, x2) =
(ρ(γ)x1, ρ(γ)x2).

We begin with two elementary facts. Recall that a normal neighborhood
of x is the image under the Riemannian exponential map of an open ball B in
Tx X, such that expx |B is a diffeomorphism and dX(x, exp(v)) = dTx X(0, v).
It is immediate that d(x, ·)2 is a smooth function on any normal neighbor-
hood of x. Let N(x) be the maximal radius of a normal neighborhood of x
in X. On X × X we have a Riemannian metric on g × g and the induced
distance function. By B(x, ε) we denote the ball of radius ε around x in X,
by B((x, y), ε) the ball of radius ε around (x, y) in X × X. Since {x} × X is
totally geodesic in X × X, we have B((x, x), ε)∩{x} × X = B(x, ε).

Proposition 5.3. Let ρ be an isometric action of any group Γ on any Rie-
mannian manifold X. If we further assume the function N(x) > d for some



52 D. Fisher, G. Margulis

d > 0 and all x ∈ X, then for any 0 < ε < d
2 , there exists an invariant

smooth function f on X × X such that:

(1) f takes the value 0 on ∆(X),
(2) f ≥ 0 and f(x, y) > 0 if x �= y,
(3) for any x ∈ X, the restriction of f to {x} × X satisfies f ≥ 1 outside of

B((x, x), ε),
(4) the Hessian of f restricted to {x} × X is positive definite on the closure

of B((x, x), ε)

Proof. The action ρ̄ leaves invariant any function on X × X which is a func-
tion of d(x1, x2) and we define f as such a function. To define f we first
define fx0 : X → R by 1

ε2 d(x, x0)
2. Our assumptions on ε imply that

B(x0, 2ε) is contained in a normal neighborhood of x0 and so d(x, x0)
2

is a smooth function of x and x0 inside B(x0, 2ε), see for example [KN,
IV.3.6]. It is clear that f(x1, x2) = fx1(x2) satisfies all the requirements
except smoothness on points at distance greater than 2ε from ∆(X). We
merely need to change fx0 outside B(x0, ε) to produce a smooth fx0 while
keeping f0 ≥ 1 outside B(x0, ε). This is easily done by choosing any
smooth function g : R → R such that g agrees with 1

ε2 x2 to all orders for
all x ≤ ε with g ≥ 1 for all x > ε and g = 1 for all x ≥ 2ε. We then let
f(x1, x2) = g(d(x1, x2)). 
�
Proposition 5.4. Let X be a Riemannian manifold and f a function on
X × X such that:

(1) f takes the value 0 on ∆(X),
(2) f ≥ 0,
(3) for any x ∈ X, the restriction of f to {x} × X satisfies f ≥ 1 outside

B((x, x), ε),
(4) the Hessian of f restricted to {x} × X is positive definite on the closure

of B((x, x), ε).

Let f ′ be a function which is Ck close to f where k ≥ 2. Then for every x,
the restriction of f ′ to {x} × X has a unique global minimum at a point
(x, x ′) which is close to the point (x, x). Furthermore, if we let X ′ =
{(x, x ′)| f ′(x ′) is the global minimum of f ′ on {x} × X then X ′ is a Ck−1

embedded copy of X which is Ck−1 close to ∆(X).

Remark. The last statement of the proposition means that X ′ is close to
∆(X) in the Ck−1 topology on Ck−1 submanifolds of X × X. This actually
suffices to imply that X ′ is diffeomorphic to X by a normal projection
argument like the one used to prove Lemma 5.2.

Proof. Let B = {x} × B(x, ε) ⊂ {x} × X. We first verify the existence
of (x, x ′) in B. Since f ′ is Ck close to f we have that f ′ ≥ 1

2 outside B
and f ′ is close to zero near (x, x). We look at all local minima of f ′ on B̄,
the closure of B. Since f ′ is close to f , at least one such minimum occurs
in B. Since k ≥ 2, if f ′ is sufficiently Ck close to f , the Hessian of f ′ is
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positive definite on B, which implies there is exactly one local minimum
on B, say at (x, x ′). Since f ′ is Ck close to f , it is easy to see that f ′(x, x ′)
must be close to zero and that f ′(x, y) must be close to one if f ′|{x}×X has
a local minimum at (x, y) and y is not in B̄. Therefore x ′ is the unique global
minimum of f ′ on {x} × X.

Given a function g : X × X → R we denote by D2g the derivative with
respect to the second variable, which is naturally a map from X × TX to R.
To see that X ′ is a smooth submanifold Ck−1 we note that X ′ is the set of
zeros of D2 f ′ : X × TX → R in a neighborhood Nε(∆(X)) ⊂ X × TX.
Our assumption on the Hessian implies that these are regular values so X ′
is Ck−1 submanifold since D2 f ′ is Ck−1. That X ′ is diffeomorphic to X
follows from the fact that X ′ is Ck−1 close to ∆(X). This is immediate since
D2 f ′ is Ck−1 close to D2 f . 
�

For the remainder of this section X will be a compact Riemannian mani-
fold, Γ will be a locally compact group with property (T ) and K will
be a fixed compact generating set, ρ will be an isometric action of Γ on
X and ρ′ will be a Ck perturbation of ρ, where k > 2. We will denote
by ρ̄′ the Γ action on X × X given by perturbing in the second factor:
ρ̄′(γ)(x1, x2) = (ρ(γ)x1, ρ

′(γ)x2). This induces actions on various spaces
of functions which we also denote by ρ̄′.

We now prove Theorem 1.1. We only give a proof with small loss of
derivatives. The reader interested in lower regularity results depending only
on Hilbert space techniques can produce a proof by combining this one with
the proof in Subsect. 5.1.

Proof of Theorem 1.1. We first choose a function f invariant under ρ̄
as in Proposition 5.3. Given κ > 0, we choose p with κ < d

p where
d = dim(X × X) = 2 dim(X). We make a choice of η > 0, depending
on p, to be specified below. We choose U satisfying Lemma 4.5 for our
choices of p and η and then Lemma 4.5 implies that there is a ρ̄′ invariant
function f ′ with ‖ f − f ′‖p,k < η.

Proposition 4.3 implies that ‖ f − f ′‖k− d
p

< C0η where C0 depends

only on g and p. Choosing η small enough and applying Proposition 5.4,
we see that we have a submanifold X ′ ⊂ X × X which is diffeomorphic

to X, Ck− d
p −1 close to ∆(X) and ρ̄′(Γ)-invariant. The first two claims are

contained in that proposition, the last follows from the definition X ′ =
{(x, x ′)| f ′(x ′) is the global minimum of f ′ on {x}×X}. We let pi : X ′ → X
be the restriction to X ′ of the projection πi : X × X → X on the ith factor
where i = 1, 2. Note that each πi and therefore each pi is an equivariant
map, where we view the first projection as to X equipped with the action

ρ and the second as to X equipped with the action ρ′. Since X ′ is Ck− d
p −1

close to the diagonal, each pi is a Ck− d
p −1 diffeomorphism, and the map

p−1
1 ◦ p2 is a Ck− d

p −1 small diffeomorphism. Therefore p−1
1 ◦ p2 is a Ck− d

p −1

conjugacy between ρ and ρ′. 
�
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6. Additional estimates and C∞,∞ local rigidity

In this section, we prove key lemmas on regularity in the context of isometric
actions and their perturbations. From this, we deduce C∞,∞ local rigidity
in Theorem 1.1. In all that follows Γ will be a locally compact group with
property (T ) of Kazhdan and K will be a fixed, compact generating set
for Γ, containing a neighborhood of the identity in Γ. Furthermore, for
simplicity of exposition, the letters k and l below always denote integers.

The strategy of the proof of the C∞,∞ version of Theorem 1.1 is moti-
vated by analogy with the iterative methods of K AM theory but does not
follow a K AM algorithm, see Appendix D.1 for discussion.

Remark. In order to prove optimal regularity, we make use here of Corol-
lary 2.8 and the resulting estimates in L p type Sobolev spaces. This allows
us to give proofs that imply that, in the context of Theorem 1.1, a C∞ action
ρ′ that is sufficiently C2 close to an isometric action ρ is conjugate back to
ρ by a C∞ map which is C2−κ small, for κ depending on the C2 size of the
perturbation. The reader only interested in obtaining a C∞ conjugacy under
some circumstances, rather than optimal circumstances, can easily modify
the proofs to use only L2 type Sobolev spaces and Theorem 2.1 instead.

We first state a proposition and lemma for isometric actions. We prove
Proposition 6.1 from Lemma 6.2 and some results in Subsect. 5.1, and
then use Proposition 6.1 to prove C∞,∞ local rigidity for isometric actions.
Lemma 6.2 will be proven later in this section. For notational convenience
in the statement of this proposition and the proof of the C∞ case of Theo-
rem 1.1, it is convenient to fix right invariant metrics dl on the connected
components of Diff l(X) with the additional property that if ϕ is in the
connected component of Diff ∞(X), then dl(ϕ, Id) ≤ dl+1(ϕ, Id). To fix
dl, it suffices to define inner products <,>l on Vectl(X) which satisfy
< V, V >l≤< V, V >l+1 for V ∈ Vect∞(X). Fixing a Riemannian metric g
on X, it is straightforward to introduce such metrics using the methods of
Sect. 4.

Proposition 6.1. Let X be a compact Riemannian manifold and ρ be an
isometric action of Γ on X. Then for every integer k ≥ 2 and every integer
l ≥ k and every ς > 0 there is a neighborhood U of the identity in Diff k(X)
such that if ρ′ is a C∞ action of Γ on X with ρ(γ)−1ρ′(γ) ∈ U for all
γ ∈ K then there exist a sequence ψn ∈ Diff ∞(X) such that ψn converge
to a diffeomorphism ψ in Diff l(X) and ψn ◦ ρ′ ◦ ψ−1

n converges to ρ in Cl

and dk−1(ψn, Id) < ς for all n.

This proposition is a consequence of the following lemma concerning
regularity of invariant sections. We will only use this lemma for the trivial
bundle ξ = X×Rn equipped with the Γ actions ρ(γ)(x, v) = (ρ(γ)x, σ(γ)v)
and ρ′(γ)(x, v) = (ρ′(γ)x, σ(γ)v) where σ : Γ → O(n) is fixed, so we do
not consider more general tensor bundles ξ . A similar statement is true in
the general context, though one needs to replace Diff k(X) in the statement
with Diff k+1(X).



Almost isometric actions 55

Lemma 6.2. Let Γ, X, ρ be as in Proposition 6.1, let ξ = X ×Rn and let s
be a ρ(Γ) invariant section of ξ . Then for every integer k ≥ 2, every integer
l ≥ k and every η > 0 there is a neighborhood U of the identity in Diff k(X)
such that if ρ′ is a C∞ action of Γ on X with ρ(γ)−1ρ′(γ) ∈ U for all γ ∈ K
then the sequence sn = ρ′(h)ns satisfies:

(1) ‖s − sn‖k−1 < η for all n and,
(2) sn converges in Sectl(X) to a ρ′ invariant section s′.

Remarks. We defer the proof of Lemma 6.2 until later in this section. Given
a positive integer l > k, the proof of the lemma only requires that ρ′ is
C2l−k+1 rather than C∞. By shrinking U , it is possible to show the same
result when ρ′ is Cl+1.

Proof of Proposition 6.1. The proof is very similar to the argument in
Subsect. 5.1. We apply Proposition 5.1 to the action ρ, which produces
a representation σ : Γ → R

n and an equivariant embedding s : X → R
n. We

let ξ = X ×Rn and define a action of Γ on ξ as specified before Lemma 6.2.
Then s is ρ(γ) invariant for every γ ∈ Γ. Given η > 0, Lemma 6.2 implies
that there is a neighborhood U of the identity in Diff k(X) such that for any
action ρ′ with ρ(γ)−1ρ′(γ) in U for all γ ∈ K and the action ρ′ on ξ defined
before the statement of Lemma 6.2, we have that sn = ρ′(h)ns satisfy
‖s − sn‖k−1 < η and sn converge in Sectl(X) to a ρ′ invariant section s′. It is
clear that each sn is C∞. Choosing η small enough and applying Lemma 5.2,
we see that the maps ψn = s−1 ◦φ◦sn are Ck−1 small, C∞ diffeomorphisms
of X, where φ is the normal projection from a neighborhood of s(X) in
R

n to s(X). Letting ψ = s−1 ◦ φ ◦ s′, it is clear that ψn converge to ψ in
Diff l(X) since sn converge to s in Sectl(ξ). That ψ is a conjugacy between
the actions ρ′ and ρ follows as in the proof of Theorem 1.1 in Subsect. 5.1.


�
Proof of C∞,∞ local rigidity in Theorem 1.1. If ρ′ is a C∞ perturbation
of ρ, then there exists some k > 1, such that ρ′ is Ck close to ρ. We fix
a sequence of positive integers k = l0 < l1 < l2 < · · · < li < . . . and
will construct a sequence of C∞ diffeomorphisms φi such that the sequence
{φn ◦ . . . ◦ φ1}n∈N converges in the C∞ topology to a conjugacy between ρ
and ρ′.

We let φi = φi ◦ . . . ◦ φ1 and ρi = φi ◦ ρ′ ◦ (φi)−1 and construct φi
inductively such that

(1) ρi is sufficiently Cli close to ρ to apply Proposition 6.1 to ρi and ρ with
l = li+1 and ς = 1

2i+1 ,
(2) dli (φi, Id) < 1

2i and,
(3) dli−1 (ρi(γ) ◦ ρ(γ)−1, Id) < 1

2i for every γ ∈ K .

Given φi and therefore ρi , we construct φi+1. We have assumed that ρi
is close enough to ρ in the Cli topology to apply Proposition 6.1 with
l = li+1 and ς = 1

2i+1 . Then we have a sequence of diffeomorphisms
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ψn ∈ Diff ∞(X) such that ψn ◦ρi ◦ψ−1
n converges to ρ in the Cli+1 topology

and dk−1(ψn, Id) < 1
2i+1 . We choose ni sufficiently large so that ρi+1 =

ψni ◦ρi−1◦ψ−1
ni

is close enough to ρ in the Cli+1 topology to apply Proposition
6.1 with l = li+2 and ς = 1

2i+2 and so that dli (ρi(γ)ρ(γ)−1, Id) ≤ 1
2i+1 and

then let φi+1 = ψni .
To start the induction it suffices that ρ′ is sufficiently Ck close to ρ to

apply Proposition 6.1 with l = l1 and ς = 1
2 .

It remains to show that the sequence {φn ◦ . . . ◦ φ1}n∈N converges in the
C∞ topology to a conjugacy between ρ and ρ′. Combining condition (2)
with the fact that dli (φm, Id) ≤ dj(φm, Id) for all j ≥ li , and the fact that dli

is right invariant implies that dli−1 (φm, Id) = dli+1 (φ
m, φm−1) ≤ 1

2m for all
m ≥ i. This implies that {φm} is a Cauchy sequence in Diff li (X) for all i,
and therefore φm converge in Diff ∞(X). Similarly, condition (3) implies
ρm converges to ρ in the C∞ topology. 
�
Remark. The proof above can be made to work in a more general setting.
Given an action ρ such that for any large enough k and any l larger than
k and any action ρ′ which is sufficiently Ck close to ρ, we can find a
conjugacy between ρ and ρ′ which is Cl and Ck−n small for a number n
which does not depend on l or k, then we can use the method above to
produce a C∞ conjugacy. More precisely, we need a bound on the Ck−n size
of the conjugacy that depends only on the Ck size of the perturbation. To
apply the argument in this setting, one produces a Cl conjugacy ϕ and then
approximates it in the Cl topology by a C∞ map ϕ̃ which will play the role
of ψn in the argument above. We use this argument to prove C∞,∞ local
rigidity in [FM2].

Before we proceed to prove Lemma 6.2, we need two additional esti-
mates. Similar estimates are used in KAM theory. The first is a convexity
estimate on derivatives, which is also used in the proof of Hamilton’s C∞
implicit function theorem, and which we take from [Ho]. To be able to
prove a foliated variant of Lemma 6.2 below, we state these estimates in
the context of foliated spaces. For the next two lemmas, let (X,F, gF) be
a foliated space equipped with a leafwise Riemannian metric as described
in Sect. 4. For our applications in Subsect. 7.3, it is important that X need
not be compact in either of the following lemmas.

Lemma 6.3. Let a, b, c be integers and 0 < λ < 1 such that c = a(1 −λ)
+ bλ and let f ∈ Sectk(ξ,F). Then there is a constant B depending only
on X,F and gF and b such that:

‖ f ‖c ≤ B‖ f ‖1−λ
a ‖ f ‖λ

b.

For a, b, c not necessarily integral, this lemma is proven for functions
on Rn in Appendix A of [Ho]. This implies the proposition as stated by
standard manipulations as in the proof of Proposition 4.3.

Given a collection elements φ1. . ., φn ∈ Diff ∞(X,F) we require a
certain type of bound on the norm of the composition φ1 ◦ · · · ◦ φn as
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an operator on k-jets of tensors. Recall that we have a pointwise norm
‖ jk(φ)(x)‖ defined to be the operator norm of

jk(φ)(x) : Jk(X,F)x → Jk(X,F)φ(x).

Then we can define the k norm of φ by ‖φ‖k = supX ‖ jk(φ)(x)‖. Though
we did not find the following precise estimate in the literature, this type of
estimate is typical in KAM theory. In Appendix B, we give a proof that may
be new, at least in that it makes no reference to coordinates.

Lemma 6.4. Let φ1, . . ., φn ∈ Diff k(X,F). Let Nk = max1≤i≤n ‖φi‖k and
N1 = max1≤i≤n ‖φi‖1. Then there exists a polynomial Q depending only on
the dimension of the leaves of the foliation and k such that:

‖φ1 ◦ . . . ◦ φn‖k ≤ Nkn
1 Q(nNk)

for every n ∈ N.

This lemma has immediate consequences for the operator norms of ρ′(h)
on Ck(X,F) which we denote by ‖ρ′(h)‖k.

Corollary 6.5. Under the assumptions of Lemma 6.2, for any h ∈ U(Γ),
we have the following estimates:

‖ρ′(h)n‖k ≤ Nkn
1 Q(nNk)

where Q is the same polynomial as in Lemma 6.4 above and Ni =
maxsupp(h) ‖ρ′(γ)‖i .

Remark. We require this estimate to be able to estimate the size of ρ′(h)ns
in the Cl topology, even when the group action ρ′ is only Ck close to ρ for
some k < l. We do not know of another way to obtain such an estimate.

Proof. It follows from the definition that

ρ′(h)n =
∫

Γ

h∗nρ′(g) =

∫

Γ

· · ·
∫

Γ

h(γ1). . .h(γn)ρ
′(γ1). . .ρ

′(γn).

One then applies Lemma 6.4 applied to each product of the form
ρ′(γ1). . .ρ

′(γn) and integrates. 
�
The polynomial Q is computable in a straightforward manner for any

given k and dimension as follows easily from the proof.
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Proof of Lemma 6.2. For the proof of this lemma, we let p be such that
dim(X )

p < 1. By Lemma 4.5, for any 0 < C < 1 and F > 0 and β > 0, we

can choose a neighborhood U of the identity in Diff k(X) such that if ρ′ is
a C∞ action with ρ′(γ)ρ(γ)−1 ∈ U for all γ ∈ K , there exists h ∈ U(Γ)
such that ρ′(h)ns converges to a ρ′ invariant section s′ where

‖ρ′(h)ns − s′‖p,k ≤ β

for all n and
‖ρ′(h)n+1s − ρ′(h)ns‖p,k ≤ Cn F.

Proposition 4.3 then implies that

‖ρ′(h)n+1s − ρ′(h)ns‖k−1 ≤ Cn AF(1)

and
‖ρ′(h)ns − s′‖k−1 ≤ Aβ

where A depends only on (X, g). The last inequality implies the first con-
clusion of Lemma 6.2 provided we chose β <

η

A .
We will show that, possibly after shrinking U , ρ′(h)ns satisfies

‖(ρ′(h)n+1s − ρ′(h)ns)‖l ≤ C ′n P(nFl)F(2)

where P is a fixed polynomial and Fl = Fl(l) > 0 and 0 < C ′ = C ′(C, l) < 1.
This estimate immediately implies that ρ′(h)ns converges in Sectl(X) so to
prove the lemma it suffices to prove inequality (2).

We let b = 2l − k + 1 and define Fl = supsupp(h) ‖ρ′(γ)‖b. We shrink U
so that ‖ρ′(γ)‖b

1C < 1 for every γ ∈ supp(h), let Ch = supsupp(h) ‖ρ′(γ)‖1

and fix a constant C′ with
√

Cb
hC < C ′ < 1. Let fn = ρ′(h)n+1s − ρ′(h)ns.

Then Lemma 6.3 implies that

‖ fn‖l ≤ B‖ fn‖
1
2
k−1‖ fn‖

1
2
b(3)

for B depending only on X and b. Inequality (1) provides a bound on
‖ fn‖k−1, so it remains to find a bound on ‖ fn‖b. Noting that fn =
ρ′(h)n(ρ′(h)s − s) Corollary 6.5 implies that

‖ fn‖b ≤ Cnb
h P(nFl).(4)

Inequality (2) is now immediate from inequalities (1), (3) and (4) and the
definition of C′. 
�
Remark on the choice of U. There are two constraints on the choice of U:

(1) U is small enough so that we can apply Lemma 4.5 as described in the
first paragraph of the proof for β <

η

A and some 0 < C < 1 and
(2) U is small enough so that ‖ρ′(γ)‖b

1C < 1 for every γ ∈ supp(h).

It is easy to see that we can choose U to satisfy these two conditions. An
analogous remark applies to the proof of Lemma 7.7 below.
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7. Foliated results

This section is devoted to the proof of Theorem 2.11. Though we can prove
some special cases of Theorem 2.11 by the method of Subsect. 5.1, the
general result requires that we use the method described in Subsect. 5.2 for
isometric actions. We begin by recalling some facts about foliations and
their holonomy groupoids.

7.1. Holonomy groupoids and regular atlases.

We would like to be able to apply the definitions and results of Sect. 4 to
the “foliated space” defined by taking pairs of points on the same leaf of
a foliation F of X. There is a well-known difficulty in topologizing the set of
pairs of points on the same leaf as a foliated space and it seems difficult even
to make this space a measure space in a natural way without some additional
assumption on the foliation. For product foliations X = Y × Z foliated by
copies of Z, no difficulties occur and the space is simply Y × Z × Z.
More generally, one usually considers the holonomy groupoid or graph
of the foliation, which is a, possibly non-Hausdorff, foliated space. To
avoid technical difficulties, we have assumed that our foliated spaces have
Hausdorff holonomy groupoids.

We now briefly describe the holonomy groupoid P of the foliated space
(X,F) in order to define group actions on P associated to ρ and ρ′. At each
point x in X, we fix a local transversal, Tx . Given a curve c contained in
a leaf Lx of F, with endpoints x and y, one can define the holonomy h(c)
of c as the germ of the map from Tx to Ty given by moving along (parallel
copies of) c. It is clear that h(c) depends on the homotopy class of c. We can
define an equivalence relation on paths c from x to y by saying two paths
c and c′ are equivalent if h(c) = h(c′). Then P is the set of equivalence
classes of triples (x, y, c) where c is a curve joining x to y and two triples
(x, y, c) and (x ′, y′, c′) are equivalent if x = x ′, y = y′ and h(c) = h(c′).
There is an obvious topology on P in which P is a foliated space with
leaves of the form Lx × L̃x where Lx is a leaf of F and L̃x is the cover of
Lx corresponding to homotopy classes of loops at x with trivial holonomy.
When we wish to refer explicitly to the structure of P as a foliated space, we
will use the notation (P, F̃). As mentioned above, we will always assume that
P is Hausdorff in it’s natural topology. There are two natural projections
π1 and π2 from P to X defined by π1(x, y, c) = x and π2(x, y, c) = y
both of which are continuous and leafwise smooth. A transverse invariant
measure on X defines one on P and a leafwise volume form on (X,F)
defines one on (P, F̃). Therefore, under the hypotheses of Theorem 2.11,
we have a, possibly infinite, measure µ̃ on P defined by integrating the
leafwise volume form against the transverse invariant measure. It is easy to
see that µ̃ = ∫

X ν̃Fdµ where ν̃F is the pullback of the leafwise volume form
on leaves of F to their holonomy coverings. For more detailed discussion,
the reader should see either [CC] or [MS].
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Given an action ρ of Γ on (X,F) defined by a homomorphism ρ : Γ →
Diff k(X,F) we can define an action ρP on P as follows. Take the diagonal
action of ρ on X × X. This defines an action of Γ on curves c as above,
which then descends to an action on P. It is immediate that if ρ preserves
µ then ρP preserves µ̃. If ρ′ is a Ck foliated perturbation of ρ, then we can
define an action ρ′

P similarly, provided Γ is compactly presented. We take
the action on X × X defined by acting by ρ on the first coordinate and ρ′
on the second. As long as ρ(γ) is close to ρ′(γ), we can define ρ′

P(γ) on P,
since there is a canonical choice of a short, null homotopic, path from ρ(γ)y
to ρ′(γ)y given by the length minimizing geodesic segment. Given a path
c from x to y, we define ρ′

P(γ)(x, y, c) = (ρ(γ)x, ρ′(g)y, c′) where c′ is
the concatenation of the path ρ(g)c with the canonical path from ρ(g)y to
ρ′(g)y. Since Γ is compactly presented, if ρ is close enough to ρ′ it is easy
to verify that lifting the generating set K to P defines an action ρ′

P of Γ
on P.

It is immediate that π1 : (P, ρ′
P) → (X, ρ) and π2 : (P, ρ′

P) → (X, ρ′)
are equivariant. Note that compactness of X implies that ρP and ρ′

P are
close in the strong topology on Diff k(P, F̃).

When P is Hausdorff, we can define a family of norms on sections of
Jk(P) by ‖ f ‖p

p = ∫
X

∫
L̃x

‖ f(x, y)‖pdνF(y)dµ(x) where L̃x = π−1
1 (x). We

can complete Sect(Jk(P)) to a Banach space L p(Jk(P)) of type L p
n . Note

that Ck(P) is a linear subspace of Sect(Jk(P)) and let L p,k(P,F) be the
closure of Fk(P) in L p(Jk(P)).

To obtain the required estimates for Theorem 2.11, we will also need
estimates for the size of functions with respect to certain other Γ invariant
measures. Let λ be any ρ(Γ) invariant probability measure on X. Define
an norm on Sect(Jk(P)) by ‖ f ‖p

p,λ = ∫
X

∫
Lx

‖ f ‖pdνFdλ. We can complete
Sect(Jk(P)) and Fk(P) with respect to this norm to obtain Banach spaces
L p,λ(Jk(P)) and L p,k,λ(P,F).

Except for the fact that we consider more general invariant measures
and the corresponding function spaces, the following is a consequence of
Propositions 4.1 and 4.2 above. The proofs of those propositions can be
repeated almost verbatim to prove this one.

Proposition 7.1. Let φ be a leafwise isometry of (X,F, gF, µ).

(1) The maps φP on L p(Jk(P)) and L p,k(P,F) are isometric. Furthermore
for any Γ invariant probability measure λ, the maps φP on L p,λ(Jk(P))
and L p,k,λ(P,F) are isometric.

(2) For any ε > 0 and any p0 > 1 there exists a neighborhood U of the
identity in Diff k(X,F) such that for any (U, Ck)-foliated perturbation
φ′ of φ, the map φ′

P induces ε-almost isometries on L p,k(P,F) and
L p(Jk(P)) and on L p,λ(Jk(P)) and L p,k,λ(P,F), for any Γ invariant
probability measure λ on X and any p ≤ p0.

(3) Let f be a φP invariant compactly supported function in Ck(P). Then
for every δ > 0 and every p0 > 1 there exists a neighborhood U of the
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identity in Diff k(X,F) such that any (U, Ck)-foliated perturbation φ′
of φ, we have that ‖φ′

P f − f ‖p,k ≤ δ and ‖φ′
P f − f ‖p,k,λ ≤ δ for every

φ invariant probability measure λ on X and every p ≤ p0.
(4) If H is a topological group and ρ is a continuous leafwise isometric

action of H on X, then the actions of H induced by ρP on L2,k(P,F)
and on L2,k,λ(P,F), for any Γ invariant probability measure λ on X,
are continuous. Furthermore the same is true for any continuous action
ρ′ which is an (U, Ck)-foliated perturbation of ρ.

We need a proposition concerning covers of foliated spaces by certain
kinds of foliated charts. This proposition follows from the proofs that any
foliation can be defined by a regular atlas but since we require information
not usually contained in the definition of a regular atlas, we sketch the proof
here. For more discussion of regular atlases, see Sects. 1.2 and 11.2 of [CC].
We recall that for a foliated space (X,F) there is an associated metric space
Y , such that there is a basis of foliation charts (U, φ) in X of the form
φ : U → V × B(0, r) where U is an open in X, V is an open set in Y and
B(0, r) is a ball in Rn .

Proposition 7.2. Let (X,F, gF) be a compact foliated space. Then there
exists a positive number r > 0 and a finite covering of X by foliated charts
(Ui, φi) such that:

(1) each φi : Ui → Vi × B(0, r) is a homeomorphism where Ui ⊂ X and
Vi ⊂ Y are open and φ−1

i : {vi} × B(0, r) → L∩ Ui is isometric for all
vi ∈ Vi and all i,

(2) each (Ui, φi) is contained in a chart (Ũi, φ̃i) such that each φ̃i : Ũi →
Vi × B(0, 2r) is a homeomorphism where Ũi ⊂ X and Vi ⊂ Y are open
and φ−1

i : {vi} × B(0, 2r) → L ∩ Ũi is isometric for all vi ∈ Vi and
all i.

Proof. Let W be any maximal foliated atlas for (X,F). Since X is com-
pact, we can choose a finite cover of X by (W j , ψ j)1≤ j≤k ⊂ W . Let η be
a Lebesgue number for the cover of X by W j , i.e. B(x, η) is entirely con-
tained in one W j for every x ∈ X. Let 2d be the largest number so that B(x, η)
contains a chart of the form (Wi, ψi) in W such that ψi(Wi) = Vi × B(0, 2d)
and ψi |{vi }×B(0,2d) is isometric for every vi ∈ Vi . Let Ui be φ−1

i (Vi × B(0, d)
and let φi = ψi|Ui . Clearly the charts (Ui, φi) satisfy the conclusions of the
proposition. Since X is compact, we can pick a finite subset of these charts
that cover X. 
�

7.2. Proof of Theorem 2.11

In this subsection we prove Theorem 2.11. The approach is based on the
proof of Theorem 1.1 from Subsect. 5.2. In place of working on functions on
X× X we work with functions in the spaces Ck(P) and L p,k(P, F̃) defined in
Subsect. 7.1. By Theorem 2.4, we can assume without loss of generality that
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Γ is compactly presented. Let ρ be the leafwise isometric action specified
in Theorem 2.11 and ρ′ the Ck foliated perturbation of ρ. Then we have
two Γ actions ρP and ρ′

P on P as defined in the last section. As before
we will start with an invariant function f for ρP, in this case a compactly
supported function in Ck(P) and therefore L p,k(P, F̃), and construct the
desired conjugacy from a ρ′

P invariant function f ′ close to f in L p,k(P,F).
We construct f in a manner analogous to Proposition 5.3. We first define
a subset ∆ ⊂ P which is the set of {(x, x, cx)|x ∈ X} where cx is the
constant loop at x. Given a point x ∈ X, we denote by ∆(x) = (x, x, cx).
Note that this defines canonically a point x̃ in L̃x , since the leaf of F̃ in P
through ∆(x) is Lx × L̃x and x̃ is the projection of ∆(X)∩ (Lx × L̃x) to L̃x .
Given a point x in X, we will refer to BF(x, r) as the ball of radius r about
x in the leaf through Lx and BF̃(∆(x), r) for the ball of radius r about ∆(x)
in Lx × L̃x ⊂ P. Recall that N(x) is the radius of the largest normal ball
containing x in Lx , and that N(x) is bounded below by a positive number
since X is compact. We sometimes write coordinates on P as p = (π1(p), y)
where y ∈ π−1

1 (π1(p)).

Proposition 7.3. Let ρ be a leafwise isometric action of a group Γ on
a compact foliated space (X,F, gF), then the action ρP leaves invariant any

function on P which is a function of dLx (π1(p), π2(p)) or dL̃x
(π̃1(p), y). Let

r > 0 be as in Proposition 7.2 and such that N(x) > 2r for all x ∈ X, then
for any 0 < ε ≤ r, there exists a compactly supported invariant function
f ∈ C∞(P) such that:

(1) f takes the value 1 on ∆,
(2) f ≥ 0 and f(p) = 0 if π(p) = x and p /∈ BF̃(∆(x), 2ε),
(3) f(p) < 1/2 if π(p) = x and p /∈ BF̃(∆(x), ε)
(4) the Hessian of f restricted to π−1(x) is negative definite on the closure

of BF̃(∆(x), ε) ∩ π−1(x).

Proof. The proof is very similar to the proof of Proposition 5.3.
To define f we first define fx0 : L̃x → R by 1 − 1

2ε2 d(x0, x)2. Our as-
sumptions on ε imply that B(x0, 2ε) is contained in a normal neighborhood
of x0 and so d(x, x0)

2 is a smooth function of x and x0 inside B(x0, 2ε), see
for example [KN, IV.3.6]. It is clear that f(x1, x2) = fx̃1(x2), satisfies 1, 3
and 4, but it may not be smooth, fails to satisfy 2 and may not be compactly
supported. Modifying fx outside B(x, ε) produces a smooth,positive, com-
pactly supported function satisfying all the above conditions. This is easily
done by choosing any smooth function g : R→ R such that g agrees with
1 − 1

2ε2 x2 to all orders for all x ≤ ε and g < 1/2 for all x ≥ ε and g = 0 for
all x ≥ 2ε. We then let f(x1, x2) = g(dL̃x

(x̃1, x2)) where x1 = π1(p) and
x2 is the coordinate of p in L̃x = π−1

1 (x1). 
�
Remark. We need f to be compactly supported on π−1

1 (x) for all x ∈ X.
For this reason we choose f with a global maximum along ∆(X) rather
than a minimum as in Proposition 5.3.
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One can now produce an invariant function f ′ in L2,k(P, F̃) exactly as
in the proof of Theorem 1.1 in Subsect. 5.2. In order to control the behavior
of f ′ in L2,k,λ(P, F̃) for any Γ invariant probability measure λ on X as well,
we need to produce f ′ using Theorem 2.1 rather than Theorem 1.6. The
following is a sharpening of Lemma 4.5, and as in the proof of that lemma,
we use Theorem 2.1 in conjunction with Corollary 2.8 and Lemma 4.4 to
obtain optimal regularity.

Lemma 7.4. Let ρ and Γ be as in Theorem 2.11 and f be a compactly sup-
ported ρP(Γ) invariant function in C∞(P). Given constants ς1 > 0, F > 0,
0 < C < 1 and p ≥ 2 there exists a neighborhood U of the identity in
Diff k(X,F) and a function h ∈ U(Γ) such that if ρ′ is any (U, Ck)-foliated
perturbation of ρ:

(1) ρ′
P(h)n f converges pointwise almost everywhere to ρ′

P invariant func-
tion f ′,

(2) ‖ f − f ′‖p,k < ς1 and ‖ f − f ′‖p,k,λ < ς1 for every ρ(Γ) invariant
probability measure λ on X,

(3) ‖ρ′
P(h)n+1 f − ρ′

P(h)n f ‖p,k,λ < Cn F for every ρ(Γ) invariant proba-
bility measure λ on X.

Proof. Given ς1 > 0 and p ≥ 2, we choose ε > 0 satisfying the hypotheses
of Theorem 2.1 and 2.8 and δ > 0 depending on ς1 to be specified be-
low. Choosing U small enough, Proposition 7.1 implies that dispK ( f ) < δ
for the ρ′

P action on L p,k,λ(P,F) and L2,k,λ(P,F) for every ρ(Γ) invari-
ant probability measure λ and also that ρ′

P(k) is an ε-almost isometry on
L2,k,λ(Jk(P)) and L p,λ(Jk(P)) for every k ∈ K and every ρP invariant
probability measure λ and also that ρ′

P is a continuous action on all of
these spaces. Fix a constant 0 < C < 1 and a function h ∈ U(Γ) so that
Theorem 2.1 and Corollary 2.8 are both satisfied for h and C. Each theorem
yields a constant M2 and Mp and we let M = max(M2, Mp). Note that
M and h depend only on Γ, K, p and C and some function f ∈ U(Γ).
Therefore we can choose δ such that MC

1−C δ < ς1 and δ ≤ F
M . Then the

sequence {ρ′
P(hn) f } satisfies ‖ρ′

P(hn) f −ρ′
P(hn−1) f ‖p,λ ≤ MCnδ ≤ Cn F

and ‖ρ′
P(hn) f − ρ′

P(hn−1) f ‖2,k,λ ≤ MCnδ ≤ Cn F and K -displacement of
ρ′

P(hn) f is less than Cnδ in L2,k,λ(P,F) for every ρ(Γ) invariant measure
λ on X. By Lemma 4.4, this implies that ρ′

P(h)n f converges pointwise λ

almost everywhere to a ρ′
P invariant function f ′ which is in L p,k,λ(P,F).

Furthermore, our choice of δ implies that ‖ f − f ′‖p,k,λ < ς1 for every Γ
invariant measure λ on X. 
�

To obtain control over f ′ and the resulting conjugacy on a set S as
described in Theorem 2.11, we need to consider a certain class of Γ invariant
measures on X. Let µ = ∫

P (X )
µedµ̄(e) be an ergodic decomposition for µ,

where each µe is a Γ ergodic measure on X and µ̄ is a measure on the
space P (X) of probability measures on X supported on the Γ ergodic
measures. Let P (X) be the space of regular Borel probability measures
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on X and define a Markov operator M : X → P (X) be letting Mx =
1

νF(BF(x,r))νF|BF(x,r). Then M defines an operator on continuous functions

on X by Mg(x) = ∫
X g(y)dMx(y) for g in C0(X) and dually an operator

on P (X) by Mν( f ) = ∫
X M fdν = ∫

X

∫
X f(y)dMx(y)dν(x) for ν ∈ P (X).

Note that M commutes with elements of Diff k(X,F) which are leafwise
isometric. This implies that for any ρ(Γ) invariant probability measure ν on
X, the probability measure Mν is also Γ invariant. We will be particularly
interested in measures of the form Mµe where µe is an ergodic component
of µ.

Lemma 7.5. Let f ∈ Ck(P) be compactly supported and let f ′ be a function
which is in L p,k,λ(P, F̃) for every ρ(Γ) invariant probability measure λ on X,
and such that ‖ f − f ′‖p,k,λ ≤ A for every λ. Then for any λ and λ almost

every x, the restriction of f ′ to π−1
1 (x) is in Ck− d

p . Furthermore, there exist
constants C and r depending only on (X,F) and a set S ⊂ X depending on
f ′ such that λ(S) > 1 − √

A and

‖( f − f ′)|π−1
1 (BF(x,r))‖k− d

p
≤ C

√
A

for every x ∈ S.

Proof. To see the first claim, we consider the measure Mλ. The fact that
‖ f − f ′‖p,k,Mλ < A implies that ‖ f ′‖p,k,Mλ is finite. Applying the definition
of M, this means that

∫
BF(x,r)

∫
π−1

1 (x) ‖ jk( f ′)‖pdνFdνF is finite for λ almost

every x. Then Proposition 4.3 implies that f ′ is Ck− d
p on π−1

1 (BF(x, r)).
Let v0 = minx∈X(νF(BF(x, r))) and define S to be the set of x where

∫

BF(x,d)

∫

π−1(x)
‖ jk( f ) − jk( f ′)‖p

k dνFdνF ≤ v0

√
A.(5)

We first verify that λ(S) ≥ 1 − √
A for every λ. We are assuming that

‖ f − f ′‖2,k,λ ≤ A for every ρ invariant probability measure λ on X. By
definition of L2,k,Mλ(P, F̃) this means that

∫

X

∫

π−1
1 (x)

‖ jk( f ) − jk( f ′)‖pdνFdM(λ) =

∫

X

∫

X

∫

π−1
1 (x)

‖ jk( f ) − jk( f ′)‖pdνFdM(x)dλ ≤ A.

This implies that

1

νF(BF(x, r))

∫

BF(x,r)

∫

π−1
1 (x)

‖ jk( f ) − jk( f ′)‖pdνFdνF <
√

A
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or
∫

BF(x,r)

∫

π−1
1 (x)

‖ jk( f ) − jk( f ′)‖p
k dνFdνF ≤ √

AνF(BF(x, r))

on a set of λ measure at least 1 − √
A. Therefore the set S defined by

equation (5) has λ measure at least 1 − √
A as desired.

Proposition 4.3 then implies that

‖( f − f ′)|π−1
1 (BF(x,r))‖k− d

p
< C ′v0

√
A

for every x ∈ S, where C is a constant depending only on X,F and gF and
letting C = C′v0 completes the proof. 
�

Fix p with dim(Lx)

p < κ and fix a function f as in the conclusion of
Proposition 7.3 with ε = r/2 for the remainder of this section. We choose
a constant ς1 to be specified below and let f ′ be the function produced
by Lemma 7.4. Then Lemma 7.5 combined with the definition of f and S
implies that for every x ∈ S:

(1) f ′(p) < C
√

ς1 if π1(p) = x and p /∈ BF̃(∆(x), r),
(2) f ′(p) < 1/2 + C

√
ς1 if π1(p) = x and p /∈ BF̃(∆(x), r

2)

(3) for every y ∈ BF(x, r), the Hessian of f ′ restricted to π−1
1 (y) is negative

definite on B(∆(y), r
2) ∩ π−1

1 (y)

Choosing ς1 ≤ 1
100C2 so C

√
ς1 ≤ 1

10 this implies that for x ∈ X, the
function f ′ has a maximum on π−1

1 (x) at a point φ̃(x) where the value is

at least 9
10 and that this maximum is the only local maximum with value

greater than 6
10 . Since f ′ is invariant under ρ′

P it follows that if ρ(γ)(x) ∈ S
then φ̃(ρ(g)(x)) = ρ′(g)φ̃(x) since both points will be the global maxima
of f ′ on π−1

1 (ρ(g)x). Furthermore, it follows by ρ′
P(Γ) invariance of f ′

that for every x ∈ Γ·S, there is a unique global maximum for f ′|π−1
1 (x).

Therefore we can define the conjugacy between ρ and ρ′ on a set of full
measure in X by letting φ̃(x) be the unique global maximum of f ′ on the
fiber π−1

1 (x) = L̃x and letting φ(x) = π2(φ̃(x)).
We remark that it is possible to show that dLx (x, φ(x))2 ≤ C ′√ς1r2 for

all x ∈ S directly from the definition of f, f ′ and φ, where C′ = C
v0

is as in
the proof of Lemma 7.5.

In order to make the following more readable, we let k′ = k − d
p − 1.

We now show the map φ is leafwise Ck′
for x ∈ S, and therefore, by

equivariance, leafwise Ck′
almost everywhere. Consider x ∈ S. We will

show that φ is Ck′
and Ck′

close to the identity on BF(x, r). Note that
π−1

1 (BF(x, r))) is diffeomorphic to BF(x, r) × L̃x . Let D2 f ′ : BF(x, r) ×
T(L̃x) → R be the derivative of f ′ in the second variable. Let N( r

2 , BF(x, r))
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be the r
2 neighborhood of ∆(BF(x, r)) in BF(x, r)× L̃x and TN( r

2 , BF(x, r))
the restriction of the bundleLx ×T L̃x to that set. If x ∈ S then the set of points
(x, φ̃(x)) is D2 f ′−1(0) ∩ TN( r

2 , BF(x, r)) and 0 is a regular value of D2 f ′,
since the Hessian is negative definite on L̃ ỹ ∩ B(ỹ, r

2) for every y ∈ BF(x, r).
This implies that the set (x, φ̃(x)) ⊂ N( r

2 , BF(x, r)) ⊂ TN( r
2 , BF(x, r)) is a

Ck′
submanifold and so φ̃ is Ck′

on BF(x, r). This implies that φ is Ck′
on

BF(x, r). Since f ′ is Ck′
close to f on π−1

1 (BF(x, r)), the functions D2 f and
D2 f ′ are Ck′

close on TN( r
2 , BF(x, r)). This implies that the submanifolds

D2 f −1(0) and D2 f ′−1(0) are Ck′
close, which then implies that φ is Ck′

close to the identity on BF(x, r). More precisely by choosing ς1 small
enough, we can assume that the Ck′

norm of φ − Id : BF(x, r) → BF(x, 2r)
is less than ς. We let ς̄1 be the value of ς1 required for this estimate and let
ς1 = min(ς̄1,

1
100C2v2

0
,
√

ς). We let U0 ⊂ Diff k(X,F) be the neighborhood

of the identity such that for any (U0, Ck)-foliated perturbation ρ′ of ρ, the
function f ′ produced by Proposition 5.4 satisfies ‖ f − f ′‖p,k,λ ≤ ς1 for
every ρ′(Γ) invariant measure λ on X. Then we have verified conclusions
(1), (2) and (3) of Theorem 2.11 for any (U0, Ck)-foliated perturbation ρ′
of ρ.

To show the final estimate in the statement of Theorem 2.11, we need
the following (well-known) quantitative refinement of [M, III.5.12].

Lemma 7.6. There exists a constant 0 < t < 1, depending only on Γ
and K, such that for any 0 < η < 1

2 and any ergodic action of Γ on a finite
measure space (X, µ) and any set S of measure 1 − η, there is k in K such
that µ((kS ∪ S)c) ≤ tη.

Proof. Assume not. Then for all t with 0 < t < 1, there exists S of measure
1 − η such that µ(kS ∪ S) ≤ 1 − tη for all k ∈ K . We will use this fact to
show that the characteristic function χS has K -displacement (1−t)η and use
this to produce a Γ invariant function which is closer to the characteristic
function of S than any constant function.

Since µ(kS)+µ(S)−µ(kS∩S) = µ(kS∪S) and µ(S) = µ(kS) = 1−η,
we have µ(kS∩S) ≥ (1−η)−(1− t)η. Therefore dispK(χS) ≤ √

(1 − t)2η
in L2(X, µ). By the standard linear analogue of Theorem 1.6 (which is an
easy consequence of Lemma 3.4) there is a constant C depending only on
Γ and K and a Γ invariant function within C

√
(1 − t)2η of χS.

Since the orthogonal complement of the constant functions are the
functions of integral zero, the distance from χS to the constant func-
tions is

√
η(1 − η). Since 1 − η > 1

2 , we have a contradiction provided

C
√

(1 − t)2η <
√

η√
2

or 2C
√

1 − t < 1. So for t > 1 − 1
4C2 we are done. 
�

Since µe(S) ≥ 1−ς for some ς > 0 for almost every ergodic component
µe of µ, it follows from Lemma 7.6 that the measure of Sn = Kn · S ∪· · ·K ·
S ∪ S is at least 1 − tnς.
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Choose a neighborhood of the identity U1 ⊂ Diff k(X,F) such that for
every x ∈ X and every γ ∈ K we have ‖ jk(ρ′(γ))(x)‖ ≤ (1 + ς) for
any (U1, Ck)-foliated perturbation ρ′ of ρ. Let U = U1 ∩ U0 and let ρ′ be
(U, Ck)-foliated perturbation of ρ. Then the fact that ‖ jk′

(φ)(x)‖ < 1 + ς
for every x ∈ S, combined with the chain rule, the definition of U0 and the
fact that µ(Sc

n) < tnς, imply conclusion (4) of the theorem.
The remaining claim of the theorem states that given a positive integer l

then, if U is small enough, φ is Cl. To prove this claim, it clearly suffices to
see that f ′ is Cl+1 on π−1

1 (BF(x, r)) for almost every x. This is exactly the
content of Lemma 7.7 in the next subsection.

7.3. Improving regularity of ϕ in Theorem 2.11

We retain all notations and conventions from the previous two subsections.
As remarked at the end of the last subsection, to complete the proof of
Theorem 2.11, it suffices to prove that f ′ is Cl+1 on π−1

1 (BF(x, r)) for
almost every x in X. This is exactly the content of the following lemma.

Lemma 7.7. Let f in Ck(P) be a compactly supported, ρP(Γ) invariant
function. For any k ≥ 3, given a positive integer l ≥ k, there exists U ∈
Diff k(X,F) such that for ρ′ a (U, Ck)-foliated perturbation of ρ defined
by a map from Γ to Diff 2l−k+1(X,F), the sequence {ρ′

P(h)n f } converges
pointwise almost everywhere to a (measurable) function f ′ on P such that
for almost every x ∈ X, the restriction of f ′ to π−1

1 (BF(x, r)) is Cl.

To simplify the argument, we will use the operator M on P (X) defined
in Subsect. 7.2 and consider the measure Mµ.

We also introduce another technical mechanism to simplify the proof.
Given h ∈ U(Γ), we can define a measure on Γ by hµΓ where µΓ is
Haar measure on Γ. We can then define a probability space Ω = ∏

Z
Γ

with measure λ = ∏
Z

hµΓ and the left shift is an invertible measure
preserving transformation T of (Ω, λ). For any measure preserving ac-
tion σ of Γ on a space Y , we can define a skew product extension by
Tσ (ω, y) = (T(ω), σ(ω0)y) and T −1

σ (ω, y) = (T −1(ω), σ(ω−1)
−1 y). Identi-

fying functions on Y , or more generally, sections of bundles over Y , with
their pullbacks to Ω × Y , it is clear that

∫
Ω

Tσ fdλ = ρ(h) f for every
function f on Y .

Before proving Lemma 7.7, we state the variant of Corollary 6.5 needed
here. Since (P,F) is a foliated space, we can use the definitions of norms
on Diff k(X,F) from Sect. 6 to define norms on Diff k(P,F) and the esti-
mates from Lemma 6.4 clearly hold for maps of P as well. If ψ(x, y) =
(φ1(x), φ2(y)), then it follows from the definitions that ‖ψ‖k =
max(‖φ1‖k, ‖φ2‖k). If φ1 is a Ck leafwise isometry and φ2 is (U, Ck)-
foliated perturbation of φ1, and we let ψ = (φ1, φ2), then ‖ψ‖k = ‖φ2‖k.
Similarly for h ∈ U(Γ) we can define the operator norm of ρ′

P(h) acting
on Jk(P,F) which we denote by ‖ρ′

P(h)‖k.
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Corollary 7.8. Under the assumptions of Lemma 7.7, for any function h ∈
U(Γ) we have the following estimate:

‖ρ′
P(h)n‖k ≤ Nkn

1 Q(nNk)

where Q is the same polynomial as in Lemma 6.4 above and Ni =
maxsupp(h) ‖ρ′(γ)‖i .

Remarks. (1) The proof is identical to the proof of Corollary 6.5, so we
omit it.

(2) The fact that we need only consider ‖ρ′(γ)‖i and not ‖ρ′
P(γ)‖i in the

statement of the corollary follows from the fact that ρ′ is a (U, Ck)
foliated perturbation of ρ which implies ‖ρ′(γ)‖i = ‖ρ′

P(γ)‖i .
(3) The need for this estimate is explained following Corollary 6.5.

Proof of Lemma 7.7. Fix p such that 2 dim(Lx)

p < 1. For a choice of 0 <

C < 1 and any choice of ς1 > 0 and F > 0, choose a neighborhood U in
Diff K(X,F) and a function h in U(Γ) satisfying Proposition 5.4. Then for
any (U, Ck)-foliated perturbation ρ′ of ρ, we have that ρ′

P(h)n f converges
pointwise almost everywhere to ρ′

P invariant function f ′ with respect to
Mµ and that:

∥
∥ρ′

P(h)n+1 f − ρ′
P(h)n f

∥
∥

p,k,Mµ
≤ Cn F.

Let 0 < D = √
C < 1 and applying Lemma 7.5 shows that there exists

a set Sn such that µ(Sc
n) < Dnδ and for every point x ∈ Sn, we have that

∥
∥
(
ρ′

P(h)n+1 f − ρ′
P(h)n f

)∣
∣

BF(x,r)

∥
∥

k−1 ≤ Dn AF(6)

where A > 0 is an absolute constant depending only on (X,F, gF).
We will show that, possibly after shrinking U , ρ′

P(h)n f satisfies
∥
∥
(
ρ′

P(h)n+1 f − ρ′
P(h)n f

)∣
∣
π−1

1 (BF(x,r))

∥
∥

l
≤ D′n P(nFl)F(7)

for n > j(x) where j is an integer valued measurable function on X, where
P is a fixed polynomial, and Fl > 0 and 0 < D′ = D′(D, l, h) < 1.
This estimate immediately implies that ρ′

P(h)n f |π−1
1 (BF(x,r)) converges in

Cl(π−1
1 (BF(x, r))) which suffices to complete the proof.

We let b = 2l − k + 1 and can now define Fl = supsupp(h) ‖ρ′(γ)‖b.
We shrink U so that ‖ρ′(γ)‖b

1 D < 1 for every γ ∈ supp(h), let Dh =
supsupp(h) ‖ρ′(γ)‖1. We also fix the constant D′ = D′(l, h, D) such that
√

Db
h D < D′ < 1. Letting fn = ρ′

P(h)n(ρ′
P(h) f − f ) and f x

n = fn|BF(x,r),
Lemma 6.3 implies that

∥
∥ f x

n

∥
∥

l
≤ B

∥
∥ f x

n

∥
∥

1
2
k−1

∥
∥ f x

n

∥
∥

1
2
b

(8)

for B depending only on X,F, b.
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We now form the product Ω× X with measure µ×λ and transformation
Tρ′ as defined in the paragraph immediately preceding the proof. Define
subsets S̃n = Ω × Sn. We now define sets S̄ j = ∩∞

i= j+1T −i S̃i. This is the

set of (ω, x) ∈ X such that T i
ρ′(ω, x) ∈ S̃i for all i > j. The Borel-Cantelli

lemma implies that ∪S̄ j has full measure in Ω × X. The function j will be
defined so that j(x) is the smallest integer such that x ∈ πX(S̄ j) and we will
prove inequality (7) by fixing j and assuming x ∈ πX(S̄ j).

Applying inequality (6) to any point in π−1
X (x) ∩ S̄ j implies that

∥
∥ f x

n

∥
∥

k−1 ≤ Dn AF(9)

for every x with x ∈ πX(S̄ j) whenever n > j. It remains to find a bound on
‖ f x

n ‖b. Noting that fn = ρ′
P(h)n(ρ′

P(h) f − f ) Corollary 7.8 implies that

∥
∥ f x

n

∥
∥

b ≤ Dnb
h P(nFl)(10)

where P is a constant multiple of the polynomial occurring in Corollary 7.8.
Inequality (7) is now immediate from inequalities (8), (9) and (10) and the
definition of D′. 
�

A. “Good spaces” for continuous limit actions

The purpose of this appendix is to show how to adapt the argument given
in Subsect. 3.3 to prove the general cases of Proposition 3.12 and Proposi-
tion 3.13. The proof of Proposition 3.12 is completed in the first two sub-
sections and the third subsection ends with the proof of Proposition 3.13.
More generally, this appendix contains a series of remarks concerning the
category of spaces and actions which admit “good” limit actions, as well as
characterizations of certain of these spaces.

A.1. Triangles and convexity of continuous subactions

In this subsection we outline a proof that, under the hypotheses of Propo-
sition 3.12 ρ = ω-lim ρn is continuous on an affine subspace. To see
this it suffices to study sequences of triples An, Bn, Cn ∈ Hn such that
Cn = tAn + (1 − t)Bn and show that equicontinuity at An and Bn implies
equicontinuity at Cn. This follows from the fact that almost isometries are
almost affine, i.e. that the image of a convex combination of points under
an almost isometry is close to the same convex combination of the images
of the points. We state this fact precisely only for globally defined actions,
though a more complicated analogue is clearly true for partially defined
actions.
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Lemma A.1. For every η > 0, t0 > 0 and R > 0 there exists ε > 0 such
that if f is an ε-almost isometry of a Hilbert space H and A, B ∈ H with
d(A, B) < R and t < t0 then

d( f(tA + (1 − t)B), t f(A) + (1 − t) f(B)) < η.

As the lemma is easily proved from elementary facts concerning stabil-
ity of triples of collinear points in a Euclidean space, we only indicate what
is needed for the proof. Take three collinear points A, B, C and three arbi-
trary points A′, B′, C ′ such that d(A, B) � d(A′, B′), d(A, C) � d(A′, C ′)
and d(B, C) � d(B′, C ′). Then the triangles ∆(ABC) and ∆(A′ B′C ′) are
almost congruent. More precisely, if we move ∆(A′ B′C ′) by an isometry
so that A = A′ and so that B′ is as close as possible to B, then C will
be close to C ′. We leave precise quantification of this fact to the interested
reader. As Lemma A.1 uses only this fact about triangles, it is clear that
the lemma is true much more generally. For example, the lemma holds for
any L p-type space where 1 < p < ∞, as well as for CAT(0) spaces. The
lemma, and therefore the first conclusion of Proposition 3.12, should hold
for any geodesic metric space which is uniformly convex in any reasonable
sense, see below or [KM] for possible definitions. If the space does not
admit a linear structure, one needs to interpret affine subspaces and affine
combinations in terms of the geodesic structure.

A.2. Barycenters, uniform convexity and almost isometries

In this subsection we indicate the proof of the remaining conclusion of
Proposition 3.12. Given a metric space Y , let P (Y ) be the set of regular,
Borel probability measures on Y . Given µ ∈ P (Y ), we define fµ(x) =∫

Y d(y, x)2dµ(y). If fµ attains a global minimum at a unique point, we call
that point the barycenter of the measure, and we denote by b : P (Y ) → Y
the map taking a measure to its barycenter (when it exists). For any point
x0 in a Hilbert space H , the function fx0 = d(x0, x)2 has the property that
it’s restriction to any geodesic has second derivative 2 at every point. By
definition this property is inherited by fµ for any measure µ. This implies
that fµ has at most one minimum and easily implies that the barycenter
is defined at least when the support of µ is compact. The barycenter is
not defined for µ with non-compact support as can be seen by taking an
atomic measure supported on an infinite sequence of points {xn} which go
to infinity much faster than µ(xn) goes to zero. More generally, barycenters
will exist for measures which decay fast enough at infinity. We leave the
precise formulation to the reader.

The relevance of this discussion for Subsect. 3.3 follows from the fact
that for Hilbert spaces b(µ) = ∫

H vdµ(v). This is easily seen by showing
that

∫
H vdµ(v) is a critical point for fµ. Combined with our observation on

the second derivative of fµ along any geodesic this implies:
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Lemma A.2. For every Hilbert space H and every compactly supported
µ ∈ P (Y ), the function fµ has a unique global minimum mµ at a point yµ =∫
H vdµ(v). Furthermore, for every ε > 0 and any compactly supported

probability measure µ on any Hilbert space H the set of points where
fµ(x) < mµ + ε is contained in B(b(µ),

√
ε).

It is immediate from the definition that b is Isom(H) equivariant. We
now describe the behavior of b under ε-almost isometries.

Lemma A.3. For every D, ε > 0 there is an η > 0 such that if H is a Hil-
bert space, y0 ∈ H is a basepoint and µ ∈ P (H) with mµ < D and
supp(µ) ∈ B(y0, R) and g is a η-almost isometry from B(y0, R) to Y , then

d(g(b(µ)), b(g∗µ)) < ε.

Proof. Since g is an η-almost isometry, we know that

(1 − η)d(x, y) ≤ d(g(x), g(y)) ≤ (1 + η)d(x, y)

for every x, y ∈ B(y0, R). Since g∗µ(S) = µ(g−1(S)), squaring and in-
tegrating implies that (1 − η)2 fµ(y) ≤ fg∗µ(g(y)) ≤ (1 + η)2 fµ(y). In
particular (1 − η)2mµ ≤ mg∗µ ≤ (1 + η)2mµ and therefore fµ(b(g∗µ)) ≤
(1 + η)4mµ. Combined with Lemma A.2 this implies that

d(g(b(µ)), b(g∗µ)) <
√

((1 + η)4 − 1)D.

�

To complete the proof of Proposition 3.12 it suffices to show that {yn} is
in C whenever yn = ρn( f )zn for zn ∈ X̃ and f ∈ U(Γ). Letting µn be the
push-forward of fdµΓ under ρzn

n we need to show that for every ε > 0, there
exists a neighborhood of the identity U in Γ such that dn(γyn, yn) < ε for
every γ ∈ Γ. Note that dn(γyn, yn) ≤ dn(γyn, b(γµn)) + d(b(γµn), b(µn)).
The first term can be made arbitrary small by Lemma A.3 since ω-lim εn =0.
Bounding the second term follows as in the proof of the affine case of
Proposition 3.13.

Remarks. (1) We can define the lower second derivative of a function
f : R→ R by

f ′′(x) = lim inf
h→0

f(x + h) + f(x − h) − 2 f(x)

h2
.

For any CAT(0) space Y and any point y0, it is easy to show that the
restriction of fy0(y) = d(y, y0)

2 to any geodesic satisfies f ′′
y0

≥ 2.
Only slightly more difficult is showing that this property characterizes
CAT(0) spaces. A similar remark is made in [Gr2].

(2) A harder exercise is to show that if for every point y0 ∈ Y and every
geodesic c in Y , we have f ′′

y0
= 2 on c, then Y is Hilbert space.
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(3) An analog of Lemma A.3, and therefore Proposition 3.12, is true for
more general spaces X in place of the Hilbert space H , provided we
define ρ(h)x = b(ν) where ν is push-forward of hµΓ under the orbit
map ρ(Γ)x → X. In particular, if all spaces acted upon are CAT(0)
spaces or are L pn(Y, ν) for (Y, ν) a standard measure space and 1 <
ω-lim pn < ∞. More generally, this will be true for any uniformly
convex metric space in the sense of say [KM].

A.3. Convolutions and linear structure

We will now proceed to prove Proposition 3.13 from the following lemma
and Lemma A.3.

Lemma A.4. Let X = {x1, . . ., xn} and Y = {y1, . . ., yn} be finite subsets of
a Hilbert space H such that d(xi, yi) < η for all i. Then for any coefficients
a1, . . ., an ∈ R, we have d(

∑n
i=1 ai xi,

∑n
i=1 ai yi) < (

∑n
i=1 |ai |)η.

Proof. All statements are easy consequences of the triangle inequality for
the norm on the Hilbert space and the fact that d(u, v) = ‖u − v‖. 
�
Proof of Proposition 3.13. Since atomic measures with finite support are
dense in P (Γ) we assume that µ = ∑

i aiδγi where the gi ∈ G and
ai are positive reals. First we note that ρ(µ ∗ λ)x = ∑

i aib(giρ
x∗λ) and

ρ(λ)x = b(ρx∗λ) where ρx : G → G · x is the orbit map. Now ρ(µ)ρ(λ)x =∑
i ai gib(ρx∗λ). By Lemma A.3 applied to each gi and the measure ρx∗λ we

have that d(gib(ρx∗λ), b(giρ
x∗λ)) ≤ η. The Proposition now follows from

Lemma A.4. 
�
Unlike Proposition 3.12, Proposition 3.13 holds in much less generality,

since it depends on the affine structure of Xn and the equation b(µ) =∫
Xn

vdµ. In fact, to prove more general variants of our results it is probably
best to simply define ρ(h)x = b(ρx∗hµΓ) and work with this averaging
operator instead of the linear one.

B. Estimates on compositions

This appendix contains a proof of Lemma 6.4. Given the definitions, it
suffices to prove the Lemma for φ ∈ Diff k(X,F). We deduce this from
some elementary facts about block upper triangular matrix.

Given a number N, we consider N × N matrices which are block up-
per triangular. By this we mean that there are number i1, . . .in such that∑n

l=1 il = N and the matrices M have il × il blocks, which we denote Al ,
along the diagonal, are zero below these blocks, and have arbitrary entries
above them. We call such M block upper triangular of type i1, · · ·, in. We
define a norm on matrices by taking the maximum of the matrix coefficients.
It is easy to see that this is equivalent to the operator norm.
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Lemma B.1. Let M1, . . ., M j be block upper triangular matrices of type
i1, . . ., in. Assume that ‖Al‖ < C1 for all l and that all other entries of each
Mk are bounded by C2. Then there exists a polynomial Q depending on the
type of the Ml such that

‖M1 M2· · ·M j‖ ≤ C j
1 Q( jC2).

Proof. It is easy to see that the diagonal blocks of M = M1M2· · ·M j satisfy
this bound, and in fact are less than C j

1. For any coefficient of the product
outside of the diagonal blocks, we can write the matrix coefficients of M
as:

Mα,β =
∑

α=η0≤η1···≤η j−1≤β=η j

(M1)α,η1(M2)η1,η2 . . .(M j)η j−1,β.

It is easy to see that at most N of the (Ml)ηl−1,ηl can be outside the diagonal
blocks of Ml (or even off the diagonal), since each entry of this form
has ηl > ηl−1. The number of choices of such sequences is

( j
N

)
which is

a polynomial Q in j of degree N. The norm of Mαβ is then bounded by
C j

1 Q( jC2) as desired. 
�
Proof of Lemma 6.4. We use the fact that Jk(X,F) � ⊕k

j=0(S j(TF∗)).
Given φ ∈ Diff k(X,F) and x ∈ X, we can write jk(φ)(x) with respect
to bases of Jk(X,F) at x and φ(x) which respects this splitting. Then it
is clear that jk(φ)(x) is block upper triangular, where the diagonal blocks
are of the form S j(Dφ)(x) = S j( j1(φ))(x) where j = 0, . . ., k. Therefore
the norm of the blocks is bounded by Nk

1 , and Lemma 6.4 is an immediate
consequence of Lemma B.1. 
�

C. Locally compact groups and free topological groups

In this appendix we sketch a proof of the following proposition. We believe
this Proposition to be well-known, and experts we consulted all provided
proofs more or less along the following lines, but none could provide a ref-
erence.

Proposition C.1. Let Γ be a locally compact, σ -compact topological group
and K a compact generating set containing a neighborhood of the identity.
Then the group Γ′, generated by K and satisfying all the relations of Γ of
the form xy = z where x, y and z are in K can be given a topology as
a locally compact, σ -compact group.

We first note the following lemma.

Lemma C.2. Let Γ be a locally compact, σ -compact group. Then Γ admits
a left invariant metric dL which defines the topology.
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Proof. It is well-known that Γ is completely regular and therefore metrizable
and so we can choose a metric d on Γ, which is not necessarily left invariant.
To find a left invariant metric we choose a continuous function f supported
on a compact neighborhood C of the identity such that f is continuous, f =
1 − d(x, y) on a smaller neighborhood of the identity and f ≡ 0 outside C.
We then define a map from Γ to continuous functions on Γ by γ → γ · f
and define a function dL on Γ×Γ by dL(γ1, γ2) = ‖γ1 · f − γ2 · f ‖C0 . This
is clearly left invariant and it is easy to check that dL is a metric and defines
the same topology as d on Γ. 
�

It is clear from the construction of dL that we can normalize so that the
ball of radius one is contained in K .

To prove the proposition, we need to define a topology on Γ′. The
group Γ′ as a group is the quotient of the free group F(K ) and we call the
projection map π. We can define a norm on F(K ) by letting ‖k1k2. . .kn‖F =∑n

i=1 dL(eΓ, ki) and then define

‖γ‖Γ′ = inf
{w∈F|π(w)=γ ′}

‖w‖F .

The fact that ‖ · ‖ is a norm is straightforward and we define a topology on
Γ′ by taking a system of neighborhoods of a point x to be sets of the form

{

y| ‖x−1 y‖Γ′ <
1

n

}

.

It remains to check that this defines a topology on Γ′ that makes Γ′ a topo-
logical group, and we will indicate a proof of this below, though it also
follows easily from results in [Ma]. For more details on norms, topologiz-
ing topological groups via norms and a construction of a topology on F(K )
which makes π continuous, see [Ma]. We now note an essentially trivial
lemma. We leave the proof to the reader.

Lemma C.3. For any γ in Γ′ with ‖γ‖Γ′ < 1, we can write γ = π(k) for
some k ∈ K such that ‖γ‖Γ′ = d(eΓ, k).

Let U be the set of words in the free group with ‖w‖F < 1. As immediate
consequences of the lemma we have:

(1) the map from Γ′ → Γ is a homeomorphism on the set π(U) in Γ′
(2) the set π(U) contains a neighborhood of the identity in Γ′.

It only remains to check that the topology we have defined on Γ′ makes Γ′
a topological group. To see this one merely needs to check that the topology
is invariant under conjugation in some neighborhood of the identity. To
check this, it suffices to check it for conjugation by elements of K , but there
it is more or less obvious, as the action of K by conjugation on a small
enough neighborhood of the identity contained in Γ′ is now easily seen to
be conjugate by a homeomorphism to the action of K by conjugation on
a small neighborhood of the identity in Γ.
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D. Historical remarks, relations to other work, and further
generalizations

This appendix attempts to clarify the relationship of our work to the work
of others and also contains some remarks that may be useful for future
generalizations of our results.

D.1. Proofs of Theorem 1.1 and 2.11 and KAM theory

This subsection first discusses the failed proof mentioned in the introduction
to this paper, and then goes one to compare that failed proof, the current
successful one, and the KAM method.

We recall our original approach to proving Theorem 1.1. Given an iso-
metric action ρ of Γ on a compact manifold X and a perturbation ρ′ of ρ,
a conjugacy is a diffeomorphism f : X → X such that ρ(γ)◦ f = f ◦ρ′(γ)
for all γ in Γ. Rearranging, the conjugacy is a fixed point for the Γ ac-
tion on the group Diff k(X) of diffeomorphisms of X defined by f →
ρ(γ) ◦ f ◦ ρ′(γ)−1. Ideally we would parameterize diffeomorphisms of X
locally as a Hilbert space and then use Theorem 2.3 above to find a fixed
point or conjugacy.

We briefly describe an approach to this parametrization and the difficulty
encountered. Let Vectk(X) be the set of vector fields on X and Ck(X, X)
be the set of Ck maps from X to X. Given a Riemannian metric on X
there is a natural exponential map Exp : Vectk(X) → Ck(X, X) defined
by taking a vector V to the time one map of the geodesic flow along V
and projecting back to X, i.e. by V → (x → expx Vx). If ρ = ρ′ and
we define Exp using the ρ invariant metric, we have a natural action of Γ
on Vectk(X) such that Exp is equivariant. As shown in Sect. 4 it is fairly
straightforward to complete Vectk(X) with respect to a Sobolev metric in
such a way that the completion Vect2,k(X) is a Hilbert space on which the
Γ action defined by ρ is isometric. We had hoped to show that if ρ′ is close
enough to ρ then we would have a partially defined Γ action on Vect2,k(X)
that was by ε-almost isometries. We would then apply Theorem 2.3 to this
partially defined action to find a fixed vector field V , and Exp(V ) would be
the desired conjugacy. While it is possible to construct a partially defined
action on a ball in Vectk(X), we were unable to show that the action is ε-
almost isometric if one considers a metric on Vect2,k(X) with k > 1. This is
important, since to show that V and Exp(V ) are smooth, and that Exp(V ) is
invertible, one needs to use the Sobolev embedding theorems, which require
a loss of derivatives proportional to the dimension of X. This method fails
even if we could use an L p type Sobolev space Vectp,k and Corollary 2.8,
since at most these results will produce a continuous invariant vector field V ,
and it is not clear that Exp(V ) is even a homeomorphism. We remark that
we cannot use Corollary 2.8 since the action on Vectk(X) is not linear.

It is worth noting that this is different than the difficulty with loss of
derivatives usually encountered by K AM type methods. Here the problem
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is that no matter what topology we assume ρ and ρ′ are close in, we cannot
prove that the action we define on vector fields satisfies any estimate of any
kind on higher derivatives. In KAM the typical problem is that estimates for
the solutions to the linearized equation are only “uniformly good” for low
order, but one has some a priori estimate at higher order.

This difficulty arises from the fact that the method suggested does not
actually involve linearizing the action on diffeomorphisms. What we had
hoped to do was to use the parametrization mentioned to provide a linear
structure in which the action constructed was “almost isometric”, and there-
fore “close enough” to linear, so as to be able to apply Theorem 2.5. The
problem is that we can only do this in function spaces where this yields no
meaningful results.

To resolve this difficulty, we linearize the problem, and in fact give two
different linearizations. Our linearizations are not very similar to the K AM
linearization, and their utility depends heavily on our results concerning
groups with property (T ). More or less our method takes advantage of the
fact that, for groups with property (T ), contracting properties of certain
operators are preserved under small perturbations for actions on a wide
variety of uniformly convex Banach spaces. The disadvantage of our method
is that to obtain such a perturbation, we need to only consider Banach spaces
whose definition involve only finitely many derivatives. For a long time, this
left a C∞,∞ result out of reach. Our proof of the C∞ case was inspired by
a study of the K AM method and particularly of the paper [DK], but the
only concrete similarities to K AM arguments is the use of an iteration and
the types of estimates used.

From the point of view of K AM theory it is surprising that we need the
estimates from Lemma 6.4 given the strong contracting properties of the
averaging operators we consider. The need for these estimates is explained
following Corollary 6.5 and Proposition 4.2. It is possible to give a proof of
the C∞,∞ case of Theorem 1.1 without using these estimates. This has been
done very recently by the first author using Hamilton’s implicit function
theorem and an approach similar to Weil’s work on local rigidity of lattices in
Lie groups [F]. This approach has applications to local rigidity of isometric
actions for some groups that do not have property (T ), but is unlikely to
yield a result in the generality of Theorem 2.11. The proof uses many facts
concerning harmonic analysis on compact manifolds that are unknown,
unlikely to be true, or known to be false in the context of general compact
foliated spaces.

D.2. Further fixed point properties and relations to the work of
M. Gromov

Examination of the proof of Theorem 2.5 shows that one can state more
general variants of the theorems discussed here. The limiting procedure
applied in the proof is quite flexible, and allows one to limit over almost
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any set of parameters. To some extent this is illustrated in the proofs of
the results from Subsect. 2.2. In another direction, one can replace H by
a non-positively curved space that is “ε-almost flat”. By this one should
mean anything that implies that, given a sequence of “ε-almost flat” spaces
with ε tending to zero, the limit space constructed by the method of Sub-
sect. 3.2 is a Hilbert space. To actually prove this variant, we need to define
the operator ρ(h) for actions (or partially defined actions) of Γ on spaces of
non-positive curvature. A method for doing this is described in Subsect. A.2
of the appendix. Theorem 2.3 can be generalized even further to “ε-almost
flat” spaces which are not non-positively curved see the discussion related
to Lemma D.1 below. For discrete groups, these more general assertions are
easy exercises from the proofs in Sect. 3 below. For non-discrete groups,
the issue of finding a continuous subaction of the limit action constructed
in Subsect. 3.2 can present non-trivial difficulties or require additional as-
sumptions.

In [Gr2], Gromov proves that certain “random” infinite, discrete groups
have a fixed point property that is stronger than property (T ). He proves
that these groups have fixed points for any isometric action on any finite
or infinite dimensional “regular” non-positively curved space. After having
completed an earlier draft of this paper, we discovered that the ideas in
[Gr2] have many points in common with ours. In particular, in Sect. 3.13B,
Gromov outlines a proof of a special case of Theorem 1.6, for a certain
class of “random” infinite, discrete groups with property (T ) and for affine
actions. This is a class of groups whose Cayley graphs “contain” a family
of expander graphs as subsets. By a graph being contained in the Cayley
graph, we mean that the Cayley graph contains an embedded copy of the
graph. Actually, the Cayley graphs of Gromov’s groups only contain “most”
of the relations that would arise from containing the collection of expander
graphs in a sense made precise in [Gr2]. By a family of expander graphs we
mean a collection of (n, k, c) expanders with k and c > 0 fixed and n going
to infinity. Although one can build a family of expander graphs of this kind
as a series of quotients of any residually finite group with property (T ), it
is far from clear that one can realize a family of expanders as subsets of
the Cayley graph for an arbitrary discrete group with property (T ), even in
Gromov’s probabilistic sense.

More generally, a central philosophy of [Gr2] is that if a collection of
spaces C is “closed under scaling limits” then for a group Γ to have almost
fixed points (i.e. sequences of points with K -displacement converging to
zero) for all isometric actions on spaces in C is equivalent to having fixed
points for all such actions. From this point of view the emphasis of our
results on groups with property (T ) is on extending the fixed point property
to (partially defined) actions that are close enough to being isometric on
spaces that are “close enough” to C. Finally, we note that it should be pos-
sible to prove a common generalization, and show that Gromov’s groups
have fixed points for partially defined ε-almost isometric actions on “regu-
lar” non-positively curved spaces.
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A primary technical difference between our work and Gromov’s is the
functional used. Where we use the K displacement, Gromov uses a K
energy. Despite this, various variants of Proposition 3.1, for discrete groups
with property (T ), permeates Sect. 3 of [Gr2], see particularly 3.8–3.13. The
precise formulations given there are somewhat more complicated because
they are phrased in terms of energy rather than displacement. For a gentler
presentation of some of the ideas in [Gr2], see the commentaries [Si] and
Sect. 6 of [Gh].

On the use of ultrafilters: It is possible to construct the limit isometric
action of ρ on a Hilbert space H “by hand” without using ultrafilters, at
least when Γ is discrete. To do this, one chooses an explicit isometric iden-
tification of the orbits ρn(Γ)xn with subsets of a fixed Hilbert space H ,
always identifying xn with 0. By passing to a subsequence were {ρn(γ)xn}
converges for every γ , we can obtain an isometric action of Γ on a count-
able set in H that extends to an action on a closed linear subspace of H .
Verifying this and then obtaining the contradiction between the proper-
ties of the Γ action on H and the Γ action on Hn is considerably more
involved than the proof above, though the argument does not use much
more than simple linear algebra and geometry. The argument is similar to
the proof of Proposition 3.13 and uses some of the same lemmas. It does
not seem possible to carry out arguments of this type in the generality of
Subsect. 3.2.

Fixed points without iterative method: If one is more interested in Theo-
rem 2.3 than Theorem 2.5, it is possible to provide an independent proof of
that theorem along the same lines. This may be useful for generalizations to
spaces where the operators ρ(h) are either not defined or not well-behaved.
To do so one needs to produce a Cauchy sequence of points with smaller
and smaller displacement for all partially defined actions which are “close
enough” to being isometric actions. The following lemma, stated by the
second author in Jerusalem in 1997, suffices:

Lemma D.1. Let Γ be a group with property (T ) and fix a compact gener-
ating set K. Given δ0 > 0 there exist ε > 0, r = r(δ0) > 0, and positive
integers s and M, such that for any Hilbert space H , any δ < δ0 and any
x ∈ H , and any continuous (r, s, ε, δ, K )-action of Γ on H one can find
a point y such that:

(1) d(x, y) ≤ MdispK (x) and,
(2) dispK (y) ≤ 1

2 dispK(x).

To prove Lemma D.1 one argues by contradiction as in the proof of
Theorem 2.5. The contradiction follows since if {xn} is our sequence of
basepoints, then there is a fixed point yω in the limit action with d(xω, yω)
less than M times the K displacement of xω, where M > 0 is a constant
depending only onΓ and K . (This fact for isometric actions on Hilbert spaces
is, for example, an easy corollary of Proposition 3.1.) To prove Theorem 2.3
one then argues as in the proof that Theorem 2.1 implies Theorem 1.6.
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Lemma D.1 suffices to prove Theorems 1.6 and 2.3, but these results do
not suffice for our applications. In particular, we need the precise iterative
method of finding fixed points:

(1) to obtain optimal regularity by finding estimates in L p type Sobolev
spaces for large p,

(2) to control the non-uniformities that arise in applying the Sobolev em-
bedding theorems on foliated spaces and,

(3) to be able to use the estimates of Sect. 6 to obtain C∞,∞ results.
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