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Let C(X) and C(Y) be the supremum normed Banach spaces
of continuous complex valued functions on the compact Hausdorff
spaces X and Y respectively. Let A and B be closed subspaces
of C(X)and C(Y) respectively. A map from A to B will mean
a continuous invertible linear map of A to B. The set of all
such maps will be denoted by L(A, B). For T in L(A, B) define
(Ty=1/QI Tl T7*}). A generalization of the Banach-Stone
theorem is proved which shows that there is a constant d <1
such that if A and B satisfy certain additional technical restric-
tions and there is a T in L(A, B) with ¢(T)> d then Xand Y
are homeomorphic. Furthermore, 7T is, roughly, composition
with this homeomorphism.

For S a connected subset of C bounded by a finite number
of disjoint Jordan curves, denote by A(S) the Banach space of
functions in C(S) which are analytic on the interior of S. For
two such domains, S and S, set d(S,S’) =inf{—loge(T); T a
linear map of A(S) onto A(S’)}. By analyzing maps T for which
¢(T) is nearly one, it is shown that d(-,:) is a metric on the
space of moduli of such domain (considered as Riemann surfaces)
and that this metric induces the classical moduli topology.

If T in L(4, B) preserves norms, i.e., if ||Tf||=||f]|| for all f
in A, T is called an isometry. If there is an isometry between A
and B then A and B are called isometric. If T is of norm one then
¢(T) is the largest constant such that ¢(T) || FI S TSN It
is immediate that 0 < ¢(T) =1 for all T in L(4, B) and that T/} T ||
is an isometry if and only if ¢(7') = 1. Maps, T, for which ¢(T) is
nearly one will be called almost isometries.

Using this notation, the Banach-Stone theorem can be stated as
follows.

THEOREM. If there is a T in L(C(X)), C(Y)) with o(T) = 1 then
X and Y are homeomorphic. Furthermore, any such T is of the
form Tf = g-foh where h is a homeomorphism from Y to X and ¢
18 a comtinuous function on Y of constant modulus.

More recently, Cambern ([2], [3]) has extended this result to

THEOREM. If there is a T in L(C(X), C(Y)) with ¢(T) > 1/2 then
X and Y are homeomorphic.

In § 2 we show that if A and B are closed subspaces (nof neces-
sarily subalgebras) of C(X) and C(Y) respectively which satisfy certain
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446 RICHARD ROCHBERG
additional technical restrictions then the following is true.

THEOREM A. There is a constant d <1 so that if A and B are
allowable subspaces of C(X) and C(Y) respectively and if there is a
T in L(A, B) with ¢(T) > d, then X and Y are homeomorphic. Fur-
thermore, there is a function e(x) which decreases continuously to zero
as « increases to one so that given such a T there is a homeomorphism
hof Y to X and a function g of constant modulus so that for all f

wm A, || Tf — g-foh|l = e(e(T)II Il

If A and B are any two Banach spaces then the quantity
D(A, B) = inf {—~log ¢(T); T in L(A, B)} is a measure of how close A
and B are to being isometric. Define D(A4, B) = - when L(A, B) is
empty. This function was first studied by Banach and Mazur ([1])
who observed that it is symmetric, positive semi-definite and satisfies
the triangle inequality. Furthermore, if A and B are isometric then
D(A, B) = 0.

This function, applied to certain algebras of analytic functions on
planar Riemann surfaces, will be shown to define a metric on the
moduli space of those surfaces. Specifically, we denote by . the set
of conformal equivalence classes of Riemann surfaces realizable as
connected subsets of the complex plane bounded by two or more (but
a finite number of) disjoint Jordan curves. For n = 2 denote by &
the class of surfaces in .&” with » boundary contours. For any S in
& we define A(S) to be the subalgebra of C(S) consisting of all func-
tions in C(S) which are analytic on the interior of S. It is known
that this definition is independent of the particular realization of S.
For S and S in &4 define d(S, S") = D(A(S), A(S)).

In § 8 we introduce a particular set of classical moduli for the
sets &4.

In §4 we introduce a set of conformal invariants for Riemann
surface in & and study the relationship between these invariants
and the function d(-, -).

Sections 5 and 6 contain the major parts of the proof of the
following.

THEOREM B. For any integer n = 2, d(-, -) is a metric on the
space . This metric induces the same topology as the classical
moduli topology.

A significant portion of the arguments use specific realizations of
the Riemann surfaces in question as subsets of the complex plane.
It is not clear to what extent these result can be extended to non-
planar surfaces or to surfaces of infinite connectivity. (Some results
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for nonplanar surfaces are presented in [7].)

These results are new, however, results very similar in spirit
have been obtained by Nakai ([5]) using different methods. He shows
that for a certain class of Riemann surfaces, the extent to which the
Royden algebras of two surfaces are almost isometric is directly re-
lated to the minimal dilitation of quasiconformal maps between the
two surfaces.

In addition to the notation previously introduced and that intro-
duced in the individual sections we will use the following notation.

If @ is an element of C(X) and K is a subset of X, we set
llallx = sup{|f(z); x in K}. We will use this notation even though
|| - llx may not be a norm.

Let D be the unit disk of the complex plane. For z and 2’ in D
we define 6(z,2) = |(z — 2)/1 — Z#')|. If S is a Riemann surface
which is conformally equivalent to D and w and w’ are any two points
of S, we set ds(w, w') = 6(t{w), t{(w')) where ¢t is a conformal map of S
onto D. It is well known that this last definition is independent of
the choice of t.

2. Properties of almost isometries of Banach spaces. When
working with an invertible linear map, 7, between the Banach spaces
we will often use the following notational convention. The spaces
will be denoted by two capital Latin letters. Elements of the spaces
will be denoted by the corresponding lower case letters. Finally, ele-
ments of the spaces will be individuated so that elements with cor-
responding individuation marks will be elements that correspond under
T. For example, given T in L(A, B), without further mention cur
convention guarantees that e, o/, and a, are in A; b, b/, and b” are in
B; and T(a) = b, T(a;) = b,, ete.

Given an element a in the Banach space C(X) and a point x in
X we will say that a peaks at x if ¢ attains its maximum modulus

at z, i.e., |a{w)| = ||a]l. We will say that a peaks only at x if x is
the only point of X at which a peaks, i.e., |a(’)| < | a]|] for all 2’ in
X, x = x. We will say that a sequence of functions a, @, --+ in

C(X) is a fumdamental sequence at x if

(@) all of the a; are of norm one and peak only at x, and

(b) for any % in X, y = x, the sequence of numbers |a,(y)|,
| ax(y) |, -++ converges monotonically to zero.
It follows from this definition that if a, a, --- is a fundamental
sequence at z then the a, converge uniformly to zero off every open
neighborhood of # and that for any k& between zero and one the set
on which |a,(y) | > k shrinks to x as n becomes infinite. Let A be
a closed subspace of C(X). We will call A an allowable subspace if
for every x in X, one can find in A a fundamental sequence at =x.
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We have not required that an allowable subspace be a subalgebra.
It follows from the definition that a closed subalgebra of C(X) is an
allowable subspace of C(X) if and only if for any z in X there isan
a in A which peaks only at z (i.e., every point of X is a peak point
for A). If S is a finite bordered Riemann surface and A(S) is the
algebra of functions continuous on the bordered surface and analytic
on the interior of S, then A(S), regarded as a subalgebra of C(3S),
satisfies this condition and hence is an allowable subspace of C(3S).

For the remainder of this section we will be considering the fol-
lowing situation. X and Y will be compact Hausdorff spaces and 4
and B will be allowable subspaces of C(X) and C(Y) respectively.
T will be an element of L(A, B) of norm one. We set ¢ = ¢(T) =
I T7H||™. Our goal will be to develop properties of 7 which follows
from the assumption that ¢ is sufficiently near one.

If ¢ =1 then some of the proofs in this section are not valid.
However, in that case, the results remain valid and are simply known
results and their direct corollaries.

2.1. We begin by showing that if ¢ is large enough then, given
2 in X, there is a y in Y so that if ¢ in A peaks at x then b = Ta
“almost” peaks at y.

THEOREM. There is a ¢, < 1 such that +f ¢ > ¢, then given %, in
X there is a unique y, tn Y so that if a peaks at x, then |b(yy)| =
(2¢ — Dllal], and hence |b(y,) | = (2¢ — 1)i|b||.

Proof. We begin with a lemma.

LEMMA. Given a, a, in A, if |a.(x)| = |a(x) | for all 2 in X and
if by peaks at y, then |b,(y)| = ¢ a. || — (A — ¢)/o)][a, .

Proof of lemma. The result is immediate if b, peaks at y. As-
sume this is not the case. Given ¢ positive, pick U an open neigh-
borhood of y so that |b(w) — b(y)| <& for all w in U. Pick b, so
that || 8:]] = |[b.]] — |b.(w) |, arg (bs(y)) = arg (b.(¥)), bs peaks only at y,
and | b,| <e off U. Hence, for appropriate 4, since b, peaks at y,

e(] b2l + 1105 I) = e([] b2 + bs ) < e(il @ + as)
< el e’ay + as]) < || €%b, + bs]| .
But, by the construction of b,,

1€%b, + bs || < [|b.f] + ¢
hence

ellbo ]l = [[bull + & — ellbsll = 1Dl + & — el b]l — [b:(m) ]) -
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Since ¢ was arbitrary we have

bz llbl - (A=2) )b 2 el - (22l

Proof of theorem. For any bin B we define P, = {yin Y: [b(y)| =
(4c — 3)||b]l}. Pick a,, ---, a,, -+ a fundamental sequence at z,. We
can assume a,(x,) = 1. Let Q.= N, P;,. Q. is the required point
Y, We prove this by verifying a series of claims.

Clavm A. Q. is not empty. The P, are closed subsets of the
compact set Y. Hence it suffices to show that they have the finite
intersection property. Given N, we must show that Qv = N P,
is not empty. Pick y in Y so that b, peaks at y. Since a, is of
norm one, [by(y)|=ec. By construction y is in P, . Since the a,
form a fundamental sequence, the previous lemma can be applied.
For k<N, |bwp|=cllay ]| — (A —=¢)/o)|la,]| = ¢+ 1 — 1/c. Hence, if
¢ is greater than 1/3 we have [b,(y) | = 4¢ — 3. Soyisin P,,. Hence
y is in @y, and thus Q. = ©&.

Claim B. Q. is a single point. Suppose Q.. contains two distinct
points ¢ and y"”. Choose a small positive ¢. Choose b' and 4" from
fundamental sequences at ¥’ and y” so that sup, || + €70 || <1 + e.
Since b peaks in @., for each n we can find a 6 so that 4c — 2 <
[|b, + € b’||. Hence 4¢c — 2 < ||a, + €?a’||. Let &’ be any point at
which |a,(@') + ¢?a’(x’) | = 4¢ — 2. We must have |o/(&')| = 4c — 3
and |a,(@)|=4c— 2 — |a'(@)| = 4¢ — 2 — 1/c. Pick ¢ so large that
for some positive ¢’ we have

2.1 de—-2—1jceze >0.

Hence o' takes a value of modulus greater than or equal to 4¢ — 3
at a point %’ where the modulus of a, is greater than ¢’. The a, are
a fundamental sequence at x,. Letting n go to infinity, the set on
which g, is of modulus greater than & shrinks to the point x, and
thus the points 2’ which were chosen depending on % converge to x,.
By continuity of o, |a'(x,) | = 4¢ — 3. Similarly, |a”(x,)| = 4c — 3.
So, for some ¢

la" + e’a” || = |a' (@) | + |a" (o) | = 2(4¢ — 3) = 8¢ — 6.

So

8¢ — 6 < sup|la’ + e’a" || < %Supr' + e || < %(1 + €) .

Since ¢ was arbitrary we must have 1/¢ = 8¢ — 6. This is impossible
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if ¢ > .89. This contradiction shows that Q. is a single point. Denote
the point by ..

Claim C. If [b,(y)| > 2¢ — 1 then |b.(y)| > 4¢c — 3 for all k less
than N. Assume |b,(w)| > 2¢ — 1 and |b(w)| < 4¢ — 3 for some w
and some k less than N. Pick b’ peaking at w, | b'(w) | = ¢, arg b'(w) =
arg by(w), and modulus of b’ less than some preassigned ¢ on P, .
(The assumption implies that w is not in P,,.) Hence || by + b'|| = 2¢,
and sup, || b, + €’V || < 4¢ — 2. So, 2¢ < |lay + ' ]l. Let z be a point
at which 2¢ < [a(2)]| + |a'(z)]. So

4e — 2z sup || b, + €7 || = csup || a, + eYa’ ||
& 4

Z ol (@) | + /(@) ]) .

The a, are a fundamental sequence, hence |ay(x) | < |a,(®)]. So, 4¢ —
2= ceflay(x)| + |d'(x} ) = ¢-2¢ which is impossible if ¢ # 1.

Claim D. Given an open set U in Y with y, in U, then for all
but finitely many =, |5, |ly_y < 2¢ — 1. If not, then there are integers
7; increasing to infinity and points y; in ¥ — U with | b, (¥) | = 2¢ — 1.
Let 9’ be an accumulation point of the y;,. By Claim C, |b,(v,) | =
4c¢ — 3 for n < m,. Hence, for each =, by the continuity of b,,
[b,(y)| = 4¢— 3. Thus % is in @. = U. But % is not in U. This
contradiction establishes the claim.

Claim E. If o is in A and ||a'| = &'(x) =1 then |[b'(y)|=
2¢ — 1. If not, then there is an open set U in Y containing y, with
(] <2 —1-~¢ on U. Claim D shows that if we take n large
enough we can insure that |b,(y)| <2 — 1 — ¢ for y not in U. We
know that ||a, + ¢’|| = 2. Hence 2¢ < ||b, + b’ || < max (|| b, + V' ||,
N0, + b ily_o) < 2 — e. This contradiction establishes Claim E.

Claim E combined with Claim B shows that the point ¥, is unique
and independent of the original choices of the function o and the
fundamental sequence. The theorem is proved.

DEFINITION. For any z, in X let ¢(x,) be the point ¥, in Y such
that the previcus theorem is satisfied.

During the proof a number of restrictions were placed on ¢. The
most severe of these was (2.1). This inequality will be satisfied if
¢ > ¢, where ¢, = (8 + 1/17)/8 = .8904. There is no reason to assume
that this is the best value for which the theorem is true. The results
of Cambern referred to earlier are valid if ¢ > 1/2. It may be that
¢, = 1/2 is also adequate for Theorem A.

COROLLARY 2.2. If ¢ > ¢, thewn, given % in X, there is a number
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0(x) such that if ||a || = a(x) = 1 then cos (arg (b(i(x)) — 6(x))) = 2¢ — 1.

Proof. Let S = {b(t(x));b= Ta,lla|l =a@) =1}. Let 60() =
1/2(sup {arg (2); z in S} -+ inf {arg (); z in S}). If 2, and 2z, are in S
then |2;] < 1,7 =1, 2 and by the previous theorem |z, + z,| = 4c — 2.
Hence, by an elementary geometric argument, for any z in S,
cos (arg () — 0(x)) = 2¢ — 1.

THEOREM 2.3. If ¢ > ¢, them t is a homeomorphism of X and Y.

Proof. t is continuous. Since Y is compact it suffices to show
that if x,, n =1, 2, --. converge to 2, and v, = t(x,) converge to ¥/,
then ¢ = y, = t(x,). Forn =0,1, ... let a,,, a,., --- be a fundamen-
tal sequence at z,. Choose b’ of norm one peaking only at y'. Choose
¢ positive. By the previous theorem, for » sufficiently large and for
all &, sup,||b,,, + €0 || = 2¢c —e. Hence, for the same n and k
Supy || @, + €%a’ || = 2c — e. Fixing n sufficiently large and letting &
become infinite we conclude |a’(x,) | =2¢—1—¢. Taking the limit as
n becomes infinite and noting that ¢ was arbitrary we find | a/(z,) | =
2¢ — 1. Pick a of norm one, peaking only at x, and with arg a(z,) =
arg a’(z;). So, ||a + a'|| = 2¢c. Hence [|b + b’ || = 2¢°. Since b’ could
be any element of a fundamental sequence at ¥, this implies | b(y") | =
2¢ — 1 = 4¢ — 3. Thus, for any a peaking only at z, %' is in Pr, =
{ye Y; | Ta(y) | = 4¢ — 3}. ¥, is the intersection of all such P,,,. Thus
y = 4y, This argument also holds, mutatis mutandis, for convergence
over nets.

t is ome-to-one. Suppose t(x') = t(z"). Let a}, a; --- be a fun-
damental sequence at ' and let a, a}, --- be a fundamental sequence
a »”. Estimating sup |la, + ¢?a) || and sup || b, + €¥b] || for large =

shows &' = 2.

t is onto. If not, since #(X) is closed, we can find U a nonempty
open set in Y disjoint from #(X). Pick y in U, b in B of norm one
peaking only at ¥ and |[b]| << 2¢ — 1 off U. Let x be a point of X at
which ¢ peaks. By Theorem 2.1 |b({t(x))| = (2¢ — 1)]|b|| = 2¢ — 1.
Thus ¢(x) is in U: a contradiction.

COROLLARY. If there is a T in L(A, B) with ¢(T) = ¢, then X
and Y are homeomorphic.

Using the homeomorphism ¢ to identify X and Y, the function
8(:) of Corollary 2.2 can be regarded as a function on X or on Y.
For x in X, let 6(x) be the number produced in the proof of this
corollary. For v in Y, set &(y) = 0(t " (x)).
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THEOREM 2.4. If ¢ > ¢, then for all a in A, for all z in X,
[B(¢(@)) | — |a(@) || = 2(L — ¢)[[all.

Proof. It suffices to consider the case |[a|| =1, a(x) real and
positive. Let y = t(x). Pick a, a, --- a fundamental sequence for z
with a;z) =1 for all 7. Set r =1 — a(z). Pick ¢ positive. Let =z,
be the point at which a + (1 + ¢)ra, peaks. Let y, = t(z,). By
Theorem 2.1 |b(y,) + @ +e)rb.(¢.) | = @c— Dila+ 1 +e)ra,ll >
2¢c — 1. Hence |b(y,)|=2c—1—@Q+er=2c—2-+ |a@)]|— el —
a(x)). Letting » go to infinity, , approaches x and hence y, ap-
proaches ¥ so |b(y)| = 2¢ — 2 + |a(x)| — 2¢. Since ¢ was arbitrary

(2.2) (b)) | = 2¢ ~ 2 + [a@) | .
Also,

1+ |a(x)| = lim sup la + e?a, ||

= limsup ||b + €7b, || = Tm (|5 | + [b.(%) ]) .

n—oo 0§

So
(2.3) 1+ ja@) |z [b@)]|+2¢—1.

The last inequality by Theorem 2.1. Inequalities (2.2) and (2.3) imply
the desired conclusion.

THEOREM 2.5. Let ¢ >c¢,. Given K,0 < K <1, ande > 0, there
s a d <1 which depends only on K and € such that if ¢ > d, then
gtven a of morm omne and given x tn X with |a(x)| = K and
arg (a(x)) = 0, then |arg (b(t(x)) — 0(x)) | < e.

Proof. We may assume a(x) positive. Let y = t(x). Choose o’ = a
peaking only at x with ¢/(z) = 1. Set ¢” = (@ — a@)a)/(|la — a@)a’ ).
o is a function of unit norm and a”(x) = 0. Applying the previous
theorem to ' at the point « we find [b"(»)| £ 2(1 — ¢). So |b{y) —
a@b'(y) | = 2L — ojla — a@)d' || =4(L —¢). So [bW)/a(@) — V(y)| =
4(1 — o)/a(x) < 4(1 — ¢)/K = ¢&,. Also, by applying Theorem 2.1 and
Corollary 2.2 to o’ at 2 we find |b'(y) — exp (20(y)) | £ &, where ¢, and
¢, depend only on ¢ and K and can be chosen to be arbitrarily small
if ¢ is close enough to one. Combining the last two inequalities we
find | b(y)/a(x) — exp (10(y)) | < &; where &, can be made arbitrarily small
if ¢ is close enough to one. Since |a(x)| <1 this implies |b(y) —
exp (10(y))a(w) | < &, But a(x) is a positive real number greater than
K. By elementary geometry the previous inequality implies that the
quantity |arg (b(y)) — 6(x) | can be made arbitrarily small by requiring
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that e; be sufficiently small. This is accomplished by requiring that
¢ be larger than some constant d; and the theorem is proved.

2.6. Proof of Theorem A. If suffices to prove the theorem for T
of norm one. Let g(y) = exp (¢6(y)) and h(y) = t*(y). Theorem 2.3
shows that % is a homeomorphism. The previous two theorems com-
bine to show that ¢ and h satisfy the requisite inequality.

2.7. If the allowable subspaces 4 and B are also algebras and
if T(1) is a real positive constant, then, for ¢(7T) large enough, 7T is
almost an algebra isomorphism.

THEOREM A’. There is a function e(x) which decreases continuous-
ly to zero as x increases to one and a constant d <1 so that if A
and B are algebras and T(1) is a positive constant and c(T) > d then
there is an isometric algebra isomorphism R of C(X) onto C(Y) so
that, as linear maps on A, || T — R < e(e(T)).

Proof. Define Rf(y) = f(t7'(y)). The theorem follows from the
following lemma.

LEMMA. If 1 is tn A then given € positive there is a d < 1 which
depends only on & so that ¢ > d implies that for all a in A, for all
zin X

| b(t(x)) — exp (targ (T1)(¢@))a(@) | < ¢lla]l .

Proof. We may assume ||a|| = 1. Note that Theorem 2.1 implies
that 71 is bounded away from zero and hence has a well defined
argument. Choose d large enough so that the desired result follows
immediately from Theorem 2.4 whenever |a{x}| < ¢/3. Now, by in-
creasing d and applying Theorem 2.5 with K = ¢/3 and Theorem 2.4
we can insure |b(t(®)) — exp (¢ 0(x))a(x) | < /3. Hence it suffices to
show that |d(z) — arg (T(1)(¢(x))) | can be made small for all xz. This,
however, follows from Corollary 2.2.

COROLLARY 2.7.1. Gaven ¢ > 0 there is a d < 1 so that if ¢ > d,
A and B are algebras, and T(1) is a positive constant, then for all
a, @ in A, ||(Ta)(Td) — T(aa) || < €llall]]a |l

Proof. Let R be given by the previous theorem. 7T = R +
(T'— R). R is multiplicative and (T — R) is small. The result follows

from a direct estimate using these facts.

COROLLARY 2.7.2. Given K > 0, there is a d < 1 so that if ¢ >



454 RICHARD ROCHBERG

d, A and B are algebras, and T(1) is a positive constant, thenm, if a
is invertible in A and ||alllla™|| £ K, then b is invertible in B.

Proof. We may assume a is of norm 1. By applying the previ-
ous corollary to the functions a¢ and a™ with ¢ = 1/2K) we find
N (Ta)(Ta™) — T1|| < 1/2. But T1 is a positive constant greater than
¢. By requiring that ¢ be greater than one-half, we conclude
H(Ta)(Ta™) — 1} < 1. By a standard Banach algebra result we con-
clude that (Ta)(Ta™), and hence also Ta, are invertible.

2.8. The following theorem allows us to use the results of 2.7
to study the implications of D(A4, B) = 0 for function algebras.

THEOREM. If A and B are algebras and D(A, B) = 0, then there
18 a sequence T, T, +++« of elements wn L(A, B) such that T,(1) = 1
Sor all n and lim ¢(T,) = 1.

Proof. Since D(A, B) = 0 there is a sequence S, S,, ++- in L{A4, B)
with lime¢(S,) = 1. We can assume that ||S,|| =1 for all n. By
removing a finite number of terms from the sequence we can assume
that for all n, ¢(S,) is so large that all of the previous results hold.
Let a, = S;*(1). Applying the lemma of Theorem A’ three times to
the map S, and the functions 1, a,, and a2 produces three inequalities
which combine to show || S,(1)S,(aZ) — (S.(@,))*|| < ¢" where &' can be
made arbitrarily small if the ¢ of the lemma sufliciently small. Hence
we conclude that ||S,(1)S.(a%) — 1] < 1. Hence S,(1) is invertible in
B. Define 7, by T.a) = (S,(1))7'S,(a). It is clear that T, is in
L(A, By and that T,.(1) =1. Theorem 2.1 allows us to conclude that
HT. | < 1/2e(S,) — 1). It is a direct estimate that || 7. < 1/¢(S,).
The desired conclusion follows.

3. Moduli. We will use a specific set of moduli for surfaces
in &7 For any S in . we will say that S is in standard position
if it is realized as a subset of the complex plane bounded by % circles,
C, C, +++, C, with C, the unit circle, C, concentric with and outside
of the unit circle, and C, (if there is one) with center on the 2 axis.
Let C; have center z; + 4y; and radius 7;.

For S in standard position, we define the modulus of S, m(S), to
be the vector (@5, +««, @y, Yy, ***, Yn, 72, =+, T»). When necessary, we
denote the dependence of these quantities on S by writing #.(S), ete.
For S in &%, with n greater than 2, m(S) is a (3n — 6) — tuple.

It is known that, given S in .4 there is at least one and at most
finitely many Riemann surfaces S’ which are conformally equivalent
to S and are in standard position. (E.g. [9] 424f.)
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We define the m-topology (moduli topology) on .&° as follows.
A sequence S, S,, -+ converges to S in the m-topology if and only
if there is a sequence S], S;, --- such that S; is conformally equivalent
to S! for each ¢ and the vectors m(S;) approach m(S) in the Euclidean
topology as 7 becomes infinite.

4. Conformal invariants and almost isometries. In this section
we introduce a set of conformal invariants for the Riemann surfaces
in .54 develop some of the elementary properties of these invariants
and relate these invariants to d(-, ).

DEeFINITIONS 4.1. For a function algebra A we define ¢* =
exp(4) = {g in A4; g = ¢* for some h in A}, A™ = {gin 4; ¢ isin A}.
¢* and A~ are commutative groups with respect to multiplication and
¢* is a subgroup of A™*. For a¢ in A™, we will denote by (a) the
element of the quotient group A~'/exp (4) which contains a. For any
o in A7 we define p((a)) = inf{||g||ll¢g™" ;¢ in (a)}. Of course, we
will often write o(a) for o((a)).

For n larger than one, let S be a surface in .¢%. Pick a num-
bering of the boundary contours of S. For 4 and j between one and
n, % %= 7, let 7;; be the element of A(S) which maps S conformally
onto the surface 7,;(S), a surface in standard position, so that the ith
boundary contour of S is mapped to the unit circle and the jth to
the circle concentric with the unit circle. The function p(-) is defined
on A(S). Set 0,;(S) = p;; = o((z;;)) The numbers ©;; are the con-
formal invariants we shall consider. Note that o;; = 94, thus for S
in &% we have (at most) n(n — 1)/2 distinet g;;. If S and S are con-
formally equivalent, then after some renumbering of the boundary
contours of S', 0;;(S) = 0;;(S") for all 7 and j. (Results relating to
the converse of this observation are presented in [8].)

Given S in .%” and C a boundary contour of S and fin A(S) we
denote by w(C, f) the winding number of the curve f(C) about the
origin. That is, w(C, f) is the winding number of f on C.

4.2. Elementary properties. Let H be the free commutative
group generated by the symbols ¢, ¢, -+, ¢,. Let G be the subgroup
of H which consists of those elements >\, a;c; for which 3 a; = 0.
Let S be an element of .54 with boundary contours C, G, «--, C,.

THEOREM. The map k from A(S)'/exp (A(S)) to G defined by
k() = 3, w(C;, fe; ts a group isomorphism.

Nore. If Aisafunction algebra then A™/exp(4) ~ HY(M(A), Z) =
the first Cech cohomology group of M(4) with integer coefficients
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(I6]). This theorem is just an explicit form of the isomorphism for
the case of interest.

Proof. It is clear that k is well defined. k((z;;)) = ¢; — ¢; and
elements of the form ¢; — ¢; generate G, hence k is onto. It remains
to show that %((f)) = 0 implies that f is in exp (A(S)), or equivalently,
log (f) is in A(S). f is invertible, hence by the monodromy theorem
it suffices to show that im (log (f)) is single valued. Any smooth
curve C in S is homologous to >~ n;C; for some choice of #n;,. By
direct computation the change in 1/27 im (log (f)) on traversing C is
N, w(Ci, f). Since w(C;, f) = 0 for all 4, this quantity is zero and
the proof is complete.

4.3. The following reinterpretation of p(-) helps elucidate the
elementary properties of o(-) and the relation between the invariants
0;; and the conformal structure of S. Let Cr(¢S) be the Banach space
of real valued continuous functions on the boundary of S. Let Re 4
be the subspace of C,(dS) consisting of real parts of functions in A,
and let Re A be the closure in C,(@S) of Re A. Let D be the Banach
space Cr(S)/Re A and denote by ||A ||, the norm in D of the coset
of the element & in CL(6S).

PROPOSITION. For f in A(S)™, log (0(f)) = 2||log | f] lip-

Proof. The mapping which sends f to log |f| sends A(S)™ into
Cz(0S) and exp A(S) into Re A. The equality follows directly from
the definitions.

By Theorem 4.2 the mapping @ of A(S)™'/exp A(S) to L, the
set of points in R with integer coordinates defined by @((f)) =
(w(C, f), +++, w(C,_, f)) is a group isomorphism. Let 0 be the
function o regarded via this isomorphism as a function on L, i.e.,

P(2((f)) = log o((f)).

PROPOSITION. £ s the restriction to L of a morm on R" .

Proof. The mapping of L into D which sends ! to log|@7'()]
extends to a linear map R of R™* into D. Define ¢ on R** by
o) = 2/| R(1) ||, The proposition will be established if we show that
R has kernel zero. To do this it suffices to show that & = > la;
log |7,:] in Red implies a; =0,7=1, ---, n — 1. The period of *h,
the harmonic conjugate of 2 about p;, a curve interior to S and
homotopic to C;, is 27wa;,. However % is in ReA. Hence by a standard
approximation argument this period must be zero. Thus all the q;
are zero. The proposition is proved.

4.4. Continuity of the p;;, We now show that the p;; are con-
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tinuous functions on &% with respect to the topology induced by the
metrie d(-, ).

THEOREM. Given S in &% and ¢ > 0 there is a 0 so that of S
18 in & and d(S, S') < 0 then there is a renumbering of the bound-
ary contours of S’ after which | 0,;(S) — ;8| e, 1 24,5 £ n.

Proof. An argument similar to that in the proof of Theorem 2.8
shows that for 6 small enough, d(S, §’) < ¢ implies that there is a T
in L(A(S), A(S")) with ¢(T) >1 — &', and T(1) =1, where &’ depends
on ¢ and can be made arbitrarily small if ¢ is made sufficiently small.
By choosing é to be perhaps smaller still we can also insure that such
a T determines a homeomorphism of ¢S and 0S5 in the manner de-
seribed in Theorems 2.1 and 2.2. Given S’ with d(S, S’) less than this
new 6, renumber the boundary components so as to be compatible
with this homeomorphism. Denote the boundary contours of S and
S by C, ---,C, and C}, ---, C, respectively.

Let K = 3max {0;;(S); 1 < 4,7 < n}). Since winding numbers are
integers, by choosing 6 to be perhaps smaller still, Theorem 2.5 allows
us to conclude that if f is in A(S)™ with |[|f}jf | < K then
W(C,, f) = W(C;, Tf) for i =1, ««+, n.

Given 4 and j§ between 1 and =, choose f in the coset of
A(S)'/exp (A(S)) which determines p;; so that |[f|| < || T and
N = 055 + ¢ < K for some small preassigned positive ¢’. The re-
marks of the previous paragraph imply that 7Tf is in the coset of
A(S)‘/exp (A(S')) which determines p;;(S"). Thus

(Oij(S;) S N TANIETA N = O™
But by Theorem 2.4

H(TATM = int{| Tf(2) |; z in 35"}
= inf {|f(2) |; z in 0S} + 2(¢(T) — 1)
= [+ 2(e(T) - 1) .

¢’ was arbitrary so 0,;(S") < (0;;(S)™ + 2(¢(T) — 1))7'. Hence p;(S’) =
0:4(S) +2(1 — «(T)p;; < 0;;+ K(L — ¢(T)). Hence, if 6" is small enough,
then the 0,;(S") are bounded by the same K. In this case the role of
S and & in the previous argument can be interchanged and 0;i(S) <
0::(8) + K(1 — ¢(T)). The previous two inequalities imply the desired
result.

5. Construction of elements of L(A(S), A(S")). Let S be an
element on & in standard position. The following Banach space
direct sum decomposition of A(S) will be called a standard decomposi-
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tion.
AS)=CDAD--- DA,

where A, = {f in A(S), f is the restriction to S of a function analytie
interior to C, and vanishing at 0}. For 7% 2, 4; = {f in A(S), f is
the restriction to S of a function analytic exterior to C, and vanish-
ing at oo}.

Given f in A(S), set ff(w) = 1/27(1:8 J@)(z — w)'dz. Bet f; =
f&—f#(P,) where P,=0 and P, = o for iicé. Since f; is in 4; and f=
CofHP)) + fi+ +++ + fa the sum is all of A. Any element in 4; N
A; for ¢ = 7 would be analytic on the Riemann sphere and vanish at
oo and thus would be the zero function.

For f in A(S), define n(f) = |2 fF(P) | + 2 |[fill. n(-) is a norm
on A(S) and by the closed graph theorem the map from A(S) into
A(S) normed by m(-) is bicontinuous. The projection P(f) = f; is
clearly continuous with respect to this new norm, hence it is continu-
ous with respect to the original norm and the sum is a Banach space
direct sum.

For n = 2, the standard decomposition decomposes an element f
in A(S) into the sum of the terms of the Laurant series of F involving
positive powers of the variable, those involving the negative powers
of the variable, and the constant term.

THEOREM 5.1. If S;,1=0,1, «+« are in &% and the S; approach
S, in m-topology as i becomes infinite, then lim,., d(S;, S, = 0.

Proof. We will show that for any compact subset W of .5 there
is a continuous function A\(f) which approaches zero as ¢t goes to zero
such that if S and S are in W then d(S, &) < M| m(S) — m(S") ||..).

Let S and S’ be any two elements of .&%. We will construct a
T in L(A(S), A(S")). Let A = A(S), A’ = A(S"). Without loss of gen-
erality we can assume that S and S’ are in standard position. Thus
oS and 08’ are each a union of % disjoint circles, C, .-+, C, and
C;, -++, C, respectively. Let A=A H+:--PA.DPCand A = AP
oo @D A, P C be the standard decompositions of 4 and A’ respectively.
Let £,(z) = 2, and £,(2) = (ri/r,) 2 (r; and 7, are the radii of C; and G,
respectively). For k = 3, 4, ---, n, let ¢, be the Mobius transformation
which takes the exterior of C, to the exterior of C| fixes o and
moves C, as little as possible, i.e., subject to the two previous con-
ditions minimize sup {|z — t,(2) |: z in C.}.

For fin A we have f = ¢ + >, f; with ¢ a constant and f; in A4,.
Let (Tf)(w) = ¢ + 3, fi(t7'(w)). Note that for each 4, T restricted to
A; is a subjective isometry of A; onto A} and that the projection of
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A onto A; is continuous. Hence T is in L(A4, A’).

For each k& we have T, mapping A(S,) to A(S,) constructed accord-
ing to the prescription just given with S = S, and & = S,. It suffices
to show Iim,...log || T, 1| || T;*|| = 0. Notice that T,* is the map that
we would have constructed according to the above prescription had
we interchanged S and S before starting. We will show that
im||T,|| =1. Since T,(1) =1 we know that |{|T,||=1 for all =.
The same estimates with the requisite changes in subscripts would
also show that lim|[T;']| = 1. We will not provide the details for
this second claim.

We may limit consideration to those S, for which m(S,) lies in
W, some preassigned compact neighborhood of m(S,). This having
been done, the constants R, K, and M of the next three lemmas may
be chosen as universal constants, that is depending on W but inde-
pendent of the choice of S in &4. (This uniformity follows from the
fact that the constant R in the proof of Lemma 1 can be bounded away
from 1 for all S with m(S) in W.)

LEMMA 1. There is a positive number k such that given 7, 1 <
i =mn, and given ¢ in C, f; im A, f=c+4 >0 with |51 =1 and
e+ 2 fille, = lle + X fill (e, [ peaks on Cy), then [[¢ + 3 fil] = k.

Proof of lemma. Assume j # 2 (the case j = 2 requires minor
notational changes). Assume [[f|| = ||f|l., = k. Draw a circle I,
“hyperbolically concentric” with C;, i.e., if one maps ext (C;) conform-
ally to the unit disk and o to 0, then the image of /* will be con-
centric with the unit circle. We also require that the region between
the two circles be contained in S. By Schwarz’s lemma we have

W= Fille = WA le + If5llr =k + 1R .

The constant R which is greater than 1 is determined by the relative
positions of 77 and ¢;. Hence by the maximum modulus principle for
(int I") applied to the function f — f; we have |[f — fill,; < [/ — fillr~
So,

k= Al =101, = 15l — I = Sl

1-f-sfilbz1-k-1/R.

YA

So k= (1 — 1/R)/2. The same argument can be used for any j (with
the obvious modifications if 7 = 2). Hence taking %k to be the mini-
mum of the finite number of k’s that are produced by such arguments,
the lemma is proved.

LeEMMA 2. There is a K such that if f; s in A; and if for some
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Jylle + 2 Fl = lle + X fille, = 1 then [|f5]] < K.

Proof of lemma. Let fi = fi/||f;|| for ¢+ equal one through .
Set ¢ =c/||f;l. Apply Lemma 1 to f'=¢ + 3fi. So 1/|if;l =
11l =z k. 8o ||f;ll = 1/k = K.

LEMMA 8. There is an M such that, given f in A, ||f]] =1,
then ||f:ll £ M for all +.

Proof. Let f=c+ 2 f; with f; is A;. Assume || f|| = [[f]l,
By the previous lemma, ||f;|| < K. Let g = (f— f)/Ilf — f;ll. For
some j # 1%, [|gll = |lgll.;; Denote the projection of g in A; by g;.
By the previous lemma, [lg;|| < K. Hence |If;|| = |/ — fillllg;ll =
(1 + K)K. Continuing in this manner (i.e., next A = (9 — g;)//lg — 9;1)
gives a bound on all the f,. Taking the greatest of these bounds,
I fill < K(1 + K)* for all j.

Note. This estimate (Lemma 3) also follows from the continuity
of the projections of A onto each of the summands A;. However, the
constant produced by that observation depends on the particular sur-
face rather than on the compact set W.

LEMMA 4. There is a function M(3, 7, m(S), m(S')) such that if
fis in A; and 2, ts in ¢; for 1o g, then |fi(z) — fi(t7'(z)) | = (1S5 |
M, 7, m(S), m(8")) and M3, 7, m(S), m(S’)) approaches zero as
[| m(S) — m(S) ||l.. approaches zero with S and S’ restricted to lie in a
preassigned compact subset W of .

Proof of lemma. For simplicity we will assume that neither 4
nor j is equal to two. Let D; = (exterior of C;) U {cc}. Let fi=
fi/Ifill. By Pick’s lemma,

0(fi(20), Fiti'(20)) = 0520, 17(20)) -
Also

L 1fie) — FUE @) | < 3(Fi(2), £t @)
hence
%Ife(zo) — Ut | S (111802, 67(2)) -

We set M(3, 5, m(S), m(S")) = 2 sup [0,(7, t:'(z)): 2 in (c;)]. Since
M(i, 3, m(S), m(S’)) is continuous with respect to m(S) and m(S’) the
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lemma is proved.

Proof of the theorem. Pick S, and S,. Let S,=S8, § =2¢5.
Let T be the map of A onto A’ defined above. Pick f in A with
1]l =1. We will estimate || T'|| by estimating || Tf|l. We will as-
sume that f peaks on C; and will only estimate || 7f||;. Similar es-
timates apply to the other || Tf Hc;,. Pick 2z, in C;. Let f=c¢-+ >uf:
with ¢in Cand f; in 4,. Let 2z, = t;'(2)). Thus z,is in C;. We have
f(zo) = ¢+ 3. fiz). So

| Tf(z5) — f(zo) | = | 22 (20) — 2 FlE5 () |
= | ]}; (fi(z)) — Filt7(z0)) |
= J; [fi(20) — fi(t7 () |
= 2 [1/5 11 M(, 5, m(S), m(S")) by Lemma 4
< M'(m(8S), m(S")) 3, 1| f;1] with M’ defined the obvious way
< M'(m(S), m(S")) > M by Lemma 3
< NM'(m(S), m(S’)) for some constant N .

So | Tf(z)] < 1 f(z)| + NM'(m(S), m(S")) <1 + NM'(m(S), m(8")). Once
the compact set W in &4 has been fixed then the constant N in the
previous inequality can be chosen uniformly and hence absorbed into
the function M'(., -). 2z, was an arbitrary point on 65’. Taking the
supremum over all such 2z, we have

WIFI = 1f1 + M'(m(S), m(S")) .
Taking the supremum over all f in A of norm one we find
1Tl =1+ M(m(S), m(S)) .

Since M’ has the required properties, the proof is complete.

6. Almost isometries and moduli of domains. In this section
we prove the results necessary to complete the proof of Theorem B.
The major remaining steps are the following two theorems.

THEOREM 6.1. Given n =2, S and S in &, if d(S, S8') = 0 then
S and S' are conformally equivalent.

Proof. Set A = A(S), A’ = A(S). By Theorem 2.8 there is a
sequence of maps T; in L(A, A’) such that ¢(T;) approaches one and
T:1) = 1. Without changing notation we normalize these T; so that
they are all of norm one. Hence, T;(1) will be a positive constant
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between ¢(T;) and one. By Theorem 2.2, for sufficiently large 7, each
T; has associated with it a homeomorphism of the boundary of S with
that of S’. This homeomorphism induces a renumbering of the bound-
ary components of S’. Since there are only finitely many possible
renumbering of the boundary components of S’, we may pass to an
infinite subsequence of the T,’s with the ¢(T;)’s large enough to insure
that the conclusions of Theorem 2.2 hold and with all of the assoc-
iated boundary homeomorphisms inducing the same renumbering of
the boundary components of S§’. We will denote this new sequence
by {T;} and will assume that the boundary contours have been re-
numbered so that for all § the induced homeomorphism carries the
jth boundary ecomponent of S to the jth boundary component of §'.

The proof now consists of constructing an analytic map from S
into S, showing that the induced map between homology groups has
kernel zero and concluding that the map is a conformal equivalence.
Most of the previous results in this paper worked with the boundary
points of the surfaces being considered. In this proof we will only
show that int (S) and int (S') are conformally equivalent. The equiv-
alence of the two as bordered surfaces then follows from standard
results about the boundary behavior of conformal maps.

For convenience we will break the proof into a series of lemmas.

LEMMA 1. There is a subsequence {T.,;} of the T,s such that for
each y in the interior of S’ there is a point x(y) in S such that for
all fin Alim,.. (T, /)y = fx(y)). Furthermore, the mapping that
sends y to x(y) is analytic.

Proof of lemma. Pick y in §'. All of the T, are of norm one,
hence all of the T are of norm one. Hence, by the weak-star com-
pactness of the unit ball of A*, the set {T7(y)} has a weak-star ac-
cumulation point x(y).

We now perform two diagonalizations on the sequence {T;}. Let
Ji, fey = -+ be a countable dense subset of A. (Since A is a direct sum
of disk algebras with their constants identified, this is clearly possible.)
We know that {T7(y)(f)} has the point 2(y)(f.) as an accumulation
point. By passing to a subsequence of the T)’s and renumbering we
can insure that

(6.1) lim T5@)() = #(@)()

for this particular y and for f = f.. By passing to a further subse-
quence we can insure that (6.1) holds for this ¥ and for f,. Continu-
ing in this manner and then replacing {7T;} by the diagonal subse-
quence we insure that (6.1) holds for this ¥ and for all f;. Since the
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f; are dense we can conclude that (6.1) holds for this ¥ and for all f
in A,

Let ., %, +++ be a countable dense subset of the interior of §'.
By another diagonalization, this time with respect to the ¥;’s, we
obtain a subsequence of the 7T,’s such that (6.1) holds for all fin A
and for y equal to any of the y;. For the other y in S’ we let z(y)
be any weak-star accumulation point of the sequence {T7(y)}. In fact
(6.1) now holds for all f in A and for all ¥ in the interior of S’; for,
by construction, z(y)(f) is an accumulation point of the numbers
Tx(y)f). Hence it suffices to show that this sequence has only one
accumulation point. ¥ is an interior point of S’ and, for fixed f, the
T.(f) are uniformly bounded on S’. Hence, in a small neighborhood
of y, this set of functions is uniformly equicontinuous. But for a
dense set of points, y;, In this neighborhood, the sequences { T (y:;)(f)}
have unique accumulation points. Hence the sequence {T}(y)(f)} can-
not have more than one accumulation point.

We now show that for any y, 2(y) is a nonzero multiplicative
linear funectional on A’. a(y)(1) = lim (T}(y)Q)) = lim T.(1)y) = 1.
Hence x(y) is nonzero. It remains to show that for any f in A of
norm one z(y(f?) = (=(y)F)):. We know that lm (THy)(f))® =
(x(y)(f))* and that lim (T}()(fY)) = x(¥)(f*). We also know that
T2 — THM ] = (T — T and by Corollary 2.7.1
this last quantity must become arbitrarily small as n becomes infinite.
Combining these observations show that x(y)(f?) = (z(y)(f))’. Since
x(y) 1s a multiplicative linear functional, it can be thought of as a
point of S, the maximal ideal space of A=A(S). We will denote this
point by a(y).

We now show that this mapping from ¥ to x(y) is analytic. Fix
9 in the interior of S’. Let A be the coordinate function on S. We
know that the sequence of functions {T,k(y)} converges pointwise to
the funection A(x(y)) = x(y). We also know that the sequence of func-
tions T,k is a bounded sequence of analytic functions on S’. These
two facts allow us to conclude that a subsequence of the T,h converge
uniformly on some small neighborhood of ¥ to the limit function z.
Thus, at y, the function 2(y) is the uniform limit of the analytic
functions T,h, and hence is analytic. y was arbitrary so the lemma
is proved.

NoteE. We have not ruled out the possibility that z(y) is a con-
stant funetion. Simple examples using the disk algebra show that
this is, in fact, possible if we do not require S and S’ each have more
than one boundary component.

The presence of homology in S and S’ prevents the map from
being trivial. We have identified the integer cohomology groups
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H'(S) and H'(S') with A*/e* and A''/e* respectively. Since x maps
S’ to S there is an induced map xz* of H'(S) into HX(S').

LEMMA 2. Ker x* = 0.

Proof. For i=1,.-.,n— 1 let 7; be a simple closed curve in
the interior of S which is homotopic to the ¢th boundary contour of
S and is similarly oriented. Define v; in §' similarly. Suppose that
fis in A™ and (f) in A7'/e* is such that =*(f) = 0. We must show
that f is in e* It suffices to show that W(v, f) =0 for each <.
Choose . Since z*(f) =0, we know that 2*(f)(V)) = W(V, fox) =
0. Since 7} is a compact subset of the interior of S, W(vi, fex) =
lim W(v;, T.f). Since the winding numbers are integers this implies
that for all n sufficiently large W(v;, T.f) = 0. Let C; and C; be the
+th boundary contours of S and S respectively. W7, T.f) =
W(C;, T,f). Hence for all = sufficiently large, W(C;, T.f)=0.
Hence, by the lemma of Theorem A’ W(C, f) = 0. But W(v, f) =
W(C;, f) so the proof is complete.

Proof of theorem. Let the mapping of ¥ to z(y) be the map of
the interior of S’ into S constructed in Lemma 1. Applying Lemma 1
again in the opposite direction gives a map of the interior of S into S’
which sends « to y(x). Let K be the map of the interior S into itself
defined by K(x)=2(y(x)). The mapping of z into y(x) is only defined on
the interior of S. However, {the previous lemmas show that the map
of ¥ to x(y) is nonconstant and analytic. Hence the image of the in-
terior of S’ is contained in the interior of S. Thus K is well defined.
K induces a map K* of H'(S) into itself and K* = y*»*. By Lemma
2, Kerz* =0 and Ker y* = 0. Hence Ker K* = 0. Since HY(S) and
H,(S), the integer homology group of S, are both free on #» — 1 gen-
erators, we may conclude that K, mapping H,(S) to itself has trivial
kernel. Landau and Osserman [4] have shown that if S is a finite
planar domain and K is an analytic map of S into itself such that
K, has trivial kernel, then K is a conformal automorphism. Thus
K, and similarly H = yox mapping S’ to itself, are conformal auto-
morphisms. Hence z is a conformal isomorphism of S and S’ and the
theorem is proved.

THEOREM 6.3. If S, 4s in S, k=0,1,2, -++ and lim d(S,, S,) =
0 then {S.}7, lies in an m-topology compact subset of .&,.

Proof. Put S, in standard position. Let S, — ¢ be the set of all
points in S, of distance at least ¢ from 0S,. If ¢ is sufficiently small
then S, — & and S, — 2¢ are in .&4,. By Theorem 2.8, for k sufficiently
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large we can find T, in L(A(S,), A(S,)) with 7.(1) =1 and lim ¢(T}) = 1.
For N large and ¢ small, Theorem A’ holds and hence for all # > N,
for all x in 0S,

(6.2) | Tu(To)(ta(@)) — 70(@) | < /2

where ¢, is the boundary homeomorphism induced by 7T, in the man-
ner described in Theorem 2.3. If « is in S, — ¢ then, by (6.2), since
winding numbers are integers 1 = W(3S,, . — @) = W(3S,, T(z,) — «).
Hence 7,(7,) map a subset of S, univalently onto S,—¢. Let 4, be
the inverse of this map. Thus h, maps S, —¢ into S, and the com-
ponents of C— S, are contained in the components of C— h, (S,— ¢).
Since ¢(T,) approach one, the functions A, are uniformly bounded
by some constant K. Hence, the set of numbers {r(S,)} is bounded
for,if not, then the numbers p.(S,) = 7(S.)/K would not be bounded,
an impossibility by Theorem 4.4.

For S in &4 and ¢t a continuous function on S, define B(t, S) =
inf {| t(x) — ¢(y) |; «# and y in different boundary components of 4S}.
Let B(S) be B(t, S) with ¢ the map which puts S in standard position.

Note that if some sequence of »,(S,) approach zero as n becomes
infinite and if the B(S,) are bounded away from zero then some of
the 0,(S,) must become arbitrarily large. Again, by Theorem 4.4,
this is impossible.

The only way in which the moduli of the S, can fail to lie in a
compact subset are if the 7,(S,) are unbounded, or if some 7,S,)
become arbitrarily small, or if some B(S,) become arbitrarily small.
We have already ruled out the first possibility and shown the second
possibility cannot happen unless some B(S,) are arbitrarily small. We
must now show that the B(S,) are bounded away from zero.

Suppose that, after passing to a subsequence, B(S,) approach zero.
Since B(h,, S, — ¢) = B(S,) we would have B(h,, S, — ¢) approaching
zero. Similarly, letting &, be k, restricted to S, — 2¢ we would have
B(k,, S, — 2¢) approaching zero. The h, are a uniformly bounded
family of univalent funections on S, — ¢; hence, after passing to a
subsequence we can find % the uniform limit on S, — 3¢/2 of the A, &
is constant or univalent. Since W{(|z|=1— 2¢;h,) =1 for all n, k
is not constant. Let & be h restricted to S, — 2¢. Since k is univa-
lent on S, — 2¢, Bk, S, — 2¢) > 0. But B(k, S, — 2¢) < lim B(k,, S, —
2¢) = 0. This contradiction completes the proof.

6.4. Proof of Theorem B. It suffices to show the following:
(1) d(-, ) is a metric on .4 and
(2) Let S, S, --- be elements on .&% then
(a) if the S, approaches S, in the m-topology then d(S,, S,)
approaches zero.
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(b) if d(S,, S,) approaches zero then S, approaches S, in the
m-topology.
For 1 the only nontrivial fact is that d(S, §') = 0 implies S and
S’ are conformally equivalent. This is Theorem 6.1. 2(a) is Theorem
5.3. For 2(b) it suffices to show that the sequence S, has an m-topology
accumulation point, then by the triangle inequality for d and part 2(a),
this point must be S,, However, Theorem 6.2 guarantees that such
an accumulation point exists.

Added in proof. A result very similar to Theorem 2.3 has been
proved by B. Cengiz (Proc. Amer. Math. Soc., 40 (1973), 426-430).
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