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ALMOST KENMOTSU METRIC AS
A CONFORMAL RICCI SOLITON

DIBAKAR DEY AND PRADIP MAJHI

ABSTRACT. In the present paper, we characterize (k, u)” and generalized (k, p)’-
almost Kenmotsu manifolds admitting the conformal Ricci soliton. It is also
shown that a (k, p)’-almost Kenmotsu manifold M2"+! does not admit con-
formal gradient Ricci soliton (g, V, A) with V' collinear with the characteristic
vector field €. Finally an illustrative example is presented.

1. INTRODUCTION

Hamilton [9] introduced the concept of Ricci flow in 1982 and proved its existence.
The Ricci flow is an evolution equation for metrics on a Riemannian manifold
given by

2% = 25,
where ¢ is the Riemannian metric and S denotes the Ricci tensor.

A self-similar solution to the Ricci flow [9], [14] is called a Ricei soliton [10] if
it moves only by a one parameter family of diffeomorphism and scaling. The Ricci
soliton equation is given by

£yvg+25=2)\g,

where £ x is the Lie derivative, .S is the Ricci tensor, g is the Riemannian metric, V'
is a vector field, and A is a scalar. The Ricci soliton is denoted by (g, V, A) and said
to be shrinking, steady, and expanding according to whether A is positive, zero,
and negative, respectively.

In [8], Fischer developed the concept of conformal Ricci flow which is a variation
of the classical Ricci flow equation that modifies the unit volume constraint of that
equation to a scalar curvature constraint. The conformal Ricci flow on M where
M is considered as a smooth, closed, connected, oriented n-manifold is defined by
the equation [§]

99

§+2(S+%):—pg and r=—1,

where p is a non-dynamical scalar field which is time dependent, r is the scalar
curvature of the manifold, and n is the dimension of the manifold.
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In 2015, Basu and Bhattacharyya [1] introduced the notion of the conformal
Ricci soliton equation on Kenmotsu manifold M?2"*! as

)9,

1.1 £ 25 =2\ —
(1) vg+25 = [2A- 0+ 3

where A is constant.

The equation is the generalization of the Ricci soliton equation and it also sat-
isfies the conformal Ricci flow equation. It was later studied by Dutta et al. [7]
in Lorentzian a-Sasakian manifolds and Nagaraja and Venu [12] in f-Kenmotsu
manifolds.

A conformal Ricci soliton is said to be a conformal gradient Ricci soliton if the
vector field V' is a gradient of some smooth function on a manifold M. In this case,
the conformal gradient Ricci soliton is given by

(1.2) VVf+S:[2)\—(p+2n+1)]g,

where f is the gradient of the potential vector field V.

The paper is organized as follows.

After preliminaries, in Section [2] we consider a conformal Ricei soliton on (k, 1)’
and generalized (k, u)-almost Kenmotsu manifolds. Section B deals with a con-
formal gradient Ricci soliton on (k, u)-almost Kenmotsu manifolds. Finally, in
Section [l an example is presented which verifies our theorem.

2. PRELIMINARIES

A (2n 4 1)-dimensional differentiable manifold M is said to have a (¢,¢&,n)-
structure or an almost contact structure if it admits a (1, 1) tensor field ¢, a char-
acteristic vector field £, and a 1-form 7 satisfying ([2], [3]),

(2.1) P*=-I+n®E nE) =1,

where I denote the identity endomorphism. Here also ¢£ = 0 and 1 o ¢ = 0; both
can be derived from (2] easily.

If a manifold M with a (¢, &, n)-structure admits a Riemannian metric g such
that

9(¢X,0Y) = g(X,Y) = n(X)n(Y)

for any vector fields X, Y on M, then M is said to be an almost contact metric
manifold. The fundamental 2-form ® on an almost contact metric manifold is
defined by ®(X,Y) = g(X,¢Y) for any X, Y on M. The condition for an almost
contact metric manifold being normal is equivalent to the vanishing of the (1,2)-
type torsion tensor Ny, defined by Ny = [¢, ¢]+2dn®&, where [¢, ¢] is the Nijenhuis
tensor of ¢ [2]. Recently in [], [5], [6], [13], almost contact metric manifolds such
that 7 is closed and d® = 2n A @ are studied and they are called almost Kenmotsu
manifolds. Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold.
Also Kenmotsu manifolds can be characterized by (Vx¢)Y = g(¢X,Y)é—n(Y)oX
for any vector fields X,Y. It is well known [I1] that a Kenmotsu manifold M?7+1
is locally a warped product I x ¢ N2 where N?" is a Kéhler manifold, I is an open
interval with coordinate ¢, and the warping function f, defined by f = ce? for some
positive constant c. Let us denote the distribution orthogonal to £ by D and defined
by D = Ker(n) = Im(¢). In an almost Kenmotsu manifold, since 7 is closed, D is
an integrable distribution.
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Let M?"*! be an almost Kenmotsu manifold. We denote by h = %,ngé and
I = R(-,£)¢ on M?"*1 The tensor fields [ and h are symmetric operators and
satisfy the following relations [13]:

(2.2) h§ =0, 16 =0, tr(h) =0, tr(h¢) =0, h¢ + ¢h =0,
(2.3) Vx§=X—n(X)§ - dhX(= V£ =0),
(2.4) Plp — 1 =2(h* — ¢%),

(2.5)  R(X,Y)E=n(X)(Y = ohY) —n(Y)(X — ohX) + (Vydh) X — (Vxoh)Y

for any vector fields X,Y. The (1,1)-type symmetric tensor field A’ = ho ¢ is
anti-commuting with ¢ and A'¢ = 0. Also it is clear that ([4], [16])

(2.6) h=0&h =0, W? = (k+1)¢*(e h? = (k+1)¢?).
In [4], Dileo and Pastore introduced the notion of (k, u)’-nullity distribution, on an
almost Kenmotsu manifold (M?"+1 ¢, & n, g), which is defined for any p € M and
k,pn € R as follows:

Ny(k,p) ={Z e T,(M): R(X,Y)Z = k[g(Y,Z2)X — g(X,2)Y]
(2.7) Fulg(Y, 2 X — g(X, Z)W'Y]}.
The above notion is called generalized nullity distributions when one allows k, u to
be smooth functions.

Let X € D be the eigenvector of h’' corresponding to the eigenvalue a. Then
from (ZF) it is clear that a® = —(k + 1), a constant. Therefore k& < —1 and
a = +v/—k — 1. We denote by [a]" and [—«]’ the corresponding eigenspaces related
to the non-zero eigenvalue o and —a of b/, respectively. In [, it is proved that
in a (k, u)’-almost Kenmotsu manifold M2+ with b’/ # 0, k < —1, u = —2, and
Spec(h’) = {0, a, —a} with 0 as a simple eigenvalue and o = /—k — 1. Also
(2.8) (Vxh)Y = —g(h'X +h?X,Y)¢ —n(Y)(W X + h2X).

In [15], Wang and Liu proved that for a (k, u1)’-almost Kenmotsu manifold M27+1
with h/ # 0, the Ricci operator @ of M?"*1 is given by

(2.9) Q= —2nid+2n(k+ 1)n® & —2nh'.

Moreover, the scalar curvature of M?"*! is 2n(k — 2n). From (27)), we have
(2.10)  R(X,Y)€=k[n(Y)X —n(X)Y]+ un(Y)h'X —n(X)R'Y],

where k, u € R. Also we get from ([2.10)

(2.11) R(& X)Y = klg(X,Y)E —n(Y)X] + plg(M' X, Y)E —n(Y )R X].
Contracting X in (2Z.I0]), we have

(2.12) S(Y,€) = 2nkn(Y).
Using (2.3)), we have
(2.13) (Vxn)Y =g(X,)Y) = n(X)n(Y) + g(K'X,Y).

For further details on almost Kenmotsu manifolds, we refer the reader to go through
the references ([15]-[18]).
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3. CONFORMAL RICCI SOLITON

In this section, we study the conformal Ricci soliton on (k, )" and generalized
(k, )’ -almost Kenmotsu manifolds. Before proving our main theorems, we first
prove the following lemmas.

Lemma 3.1. In a (k,u) -almost Kenmotsu manifold M*"+1 with h' # 0, the fol-
lowing relation holds:

(VzS)(X,Y) = (Vx9)(Y, Z) = (VyS)(X, Z) = —4n(k + 2)g(h' X, Y)n(Z).
Proof. From (2Z9]), we have
(3.1)  S(X,Y)=—-2ng(X,Y)+2n(k+ 1)n(X)n)—2ng(KX,Y)

for any vector fields X, Y on M?7+1L,
Taking a covariant derivative of the foregoing equation along any vector field Z
we have

VzS8(X,Y) = —2nVzg(X,Y)+2n(k+1)(Vzn(X))n(Y)
(3.2) +2n(k + Dn(X)(Vzn(Y)) = 2nVzg(W' X, Y).
Now, we have
(Vz9)(X,)Y)=Vz5(X,Y)-S(VzX,Y) - S(X,VzY).
Using [B) and ([32) in the foregoing equation, we obtain

(VzS)(X,Y) = 2n(k+1)(Vzn)X)n(Y) + 2n(k + 1)n(X)(Vzn)Y
(3.3) —2ng((Vzh)X,Y).
Now, using ([28) and Z13)) in B3) we obtain
(Vz8)(X,Y) = 2n(k+1)n(Y)(9(X,Z) —n(X)n(Z) +g(M'X, Z))
+2n(k + Dn(X)(9(Y, Z) = (Y )n(Z) + g(h'Y, Z))
(3.4) +2ng(W Z + 02 Z, X)n(Y) + 2nn(X)g(h'Z + W Z,Y).
Similarly, we obtain the following:
(VxS)(Y.2) = 2n(k+1)n(Z2)(9(X,Y) = n(X)n(Y) +g(h'X,Y))
+2n(k + DY) (9(X, Z) = n(X)n(Z) + g(W' X, Z))
(3.5) +2ng(W X + WX, Y)n(Z) + 2nn(Y)g(h' X + h*X, Z)
and
(VyS)(X,Z) = 2n(k+1)n(Z2)(9(X,Y) = n(X)n(Y) +g(M'X,Y))
+2n(k + Dn(X)(9(Y, Z) = n(Y)n(Z) + g(h'Y, Z))
(3.6) +2ng(h'Y + h?Y, X)n(Z) + 2nnp(X)g(RK'Y + h'?Y, Z).

Using ([B4)-@.0), we infer that
(Vz9)(X,Y) = (Vx9)(Y, Z) — (VyS)(X, 2)
= —dn(k+1)n(Z2)(9(X,Y) —n(X)n(Y) + g(F'X,Y))
(3.7) —dng(h' X + h%X,Y)n(2),

where the symmetry of A’ is used. Now, using (2.6) and then (ZI) in B7) we
complete the proof. O
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Lemma 3.2. In a (k, p)'-almost Kenmotsu manifold M*"*+1, (£xh')Y =0 for any
X, Y ela) or X, Y € [—a), where Spec(h') = {0, a, —ax}.

Proof. We consider a local orthonormal basis {£, e;, pe;}, i = 1,2,...,n with e; €
[@) for M?"*! and for any X, Y € [a]’, we have

VxY = ZQ(VXK ei)ei +9(VxY, €)E

= Zg(VXY, er)ei — (1 +a)g(X,Y)E.

For details of the above equation, see Proposition 4.1 of [4]. Now,
(£xh)Y £xhY — B (£xY)
= afxY —N(£xY)
= a(VxY —VyX) -1 (VxY —VyX)
= o(VxY — Zg(VXY, ei)e;) —a(VyX — Zg(VyX, €i)e;)

= —a(l+a)g(X, )+ a(l+ a)g(X,Y)¢
0.

Similarly, one can prove the same when X, Y € [—a]’. Hence, the proof is complete.
([l

Theorem 3.3. A (k,u) -almost Kenmotsu manifold M?"*1 with b’ # 0 admit-
ting conformal Ricci soliton (g,V, \) is locally isometric to H"t1(—4) x R™ or the
conformal Ricci soliton (i) expanding, (ii) steady, or (iii) shrinking according to
whether the non-dynamical scalar field p is

(i) p < —dnk — 52

2 1’
(ii) p = —4nk — 5
) 2n+1’

(iii) p > Sn5tn=2.

Proof. From (LI)) we have

B8 (Eve)(XY)+25(X,Y) = A - 0+ 2—)lg(X. V).
Differentiating the above equation covariantly along any vector field Z we get
(3.9) (V2£vg)(X,Y) = ~2(V8)(X, V),

It is well known that ([19, p. 23])
(£vVxg—£xVvg—Vxg)Y,Z) = —g(£LvV)(X,Y), Z)—g((£vV)(X, Z),Y).

Since g is parallel with respect to the Levi-Civita connection V, then the above
relation becomes

(3.10)  (Vx£vg)(Y,Z) = g((£vV)(X,Y),Z) + g((£vV)(X, 2),Y).
Since £V is symmetric, then it follows from BI0) that

W(LvV)XY).Z) = L(Vxdvo)(¥.Z) + 4 (Vr £vg)(X, 7)

(3.11) 5 (VaLyg)(X,Y).
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Using (3.9) in (B1I) we have
3.12)  g((£vV)(X,Y), 2) = (V29)(X,Y) = (VxS)(Y, Z2) - (Vy ) (X, 2).
Now using Lemma 31l in (B12]) we have
9(£vV)(X,Y), Z) = —4n(k + 2)g(h' X, Y )n(Z),
which implies
(3.13) (£yV)(X,Y) = —4n(k+2)g(W X,Y)E.

Substituting ¥ = ¢ in BI3) we get (£yV)(X,£) = 0. From this we obtain

Vy (£yV)(X,€) = 0. This gives

(3.14)  (Vy £y V)(X, &) + (£vV)(Vy X, &) + (£vV)(X, VyE) = 0.

Using (£vV)(X,€) =0, 3I12), and (Z3) in BI4) we infer that

(3.15) (Vy £vV)(X, &) = 4n(k +2)(g(W'X,Y) + g(h"*X,Y))E.

Using the foregoing equation in the following formula ([19, p. 23])
(LvR)(X,Y)Z = (VxLvV)(Y, Z) = (Vy £y V)(X, Z),

we obtain
(3.16) (£vR)(X,§)E = (Vx £y V)(£,8) — (Ve£vV)(X,§) = 0.
Now, substituting Y = £ in (8.3)) and using (2I2)) we have

(3.17) (£vg)(X,8) =2A = (p +

o T 1) — 4dnk]n(X).

Lie-differentiating ¢g(X, &) = n(X) along V and using [BI7) we obtain

(3.18)  (LymX —g(X, Lv§) —2A - (p+

) — 4nk]n(X) = 0.

2n +1
From ([BI8), after putting X = £ we can easily obtain that
—n—(? LI
(3.19) R N e
From (210, we have
(3.20) R(X, )¢ = k(X —n(X)§) — 2h'X.

Now, using [BI8)-(320) and 2I0)-(2I1) we obtain
(LvR)(X,§)§ = LvR(X, 6§ — R(Ly X, §)§ — R(X, Lyv§)§ — R(X,§) Ly

= KA~ (5 o) — KX (X)) — 2Ly X
=222 —(p+ o+ 1) — dnk)h' X — 2nn(X)W (£v€)
(3.21) _2g(W' X, £vE)E.

Equating (3.10) and (B2I) and then taking an inner product with Y yields

) — 4nk](g(X,Y) —n(X)n(Y))

2 _
k[2X (p+2n+1

—29((£v )X, Y) =222 — (p+

. 1) —4nklg(W' X,Y)
—2nn(X)g(h' (£v€),Y) = 29(h' X, £vE)n(Y) = 0.
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Replacing X by ¢X in the above equation, we infer that

k22X — (p + ) — 4nklg(¢X,Y) — 2g((£vh")9X,Y)

2n+1
(3.22) —22X—(p+

on + 1) —4nkl|g(h'¢X,Y) = 0.

Letting X € [—a] and V € [a]’, then ¢X € [a)'. Then from (B:22]), we have

(3.23) (k=2a)2A— (p+

G 7) — dnklg(¢X,Y) - 2g((£vh")oX,Y) = 0.

Since, V, ¢X € [a]’, using Lemma[3.2] we have (£yh')¢pX = 0. Therefore, equation

B23) reduces to
(k—20)2X — (p+

T7) — dnklg(X.Y) =0,

which implies either k = 2a or 2\ = (p + ﬁ) + 4nk.

Case 1. If k = 2a, then from a? = —(k + 1) we get @ = —1 and hence k = —2.
Then from Proposition 4.2 of [4], we have

R(Xo,Yy)Z0=0
and
R(X_0,Y_o)Z 0=—-4g(Yo0, Z-0)X-a —9(X_0, Z_0a)Y_4]

for any X,,Ys,Za € [o) and X_o,Y_o,Z_ € [—a]. Also noticing p = —2 it
follows from Proposition 4.3 of [] that K(X,{) = —4 for any X € [—a] and
K(X,§) = 0 for any X € [a]. Again from Proposition 4.3 of [4] we see that
K(X,Y)= -4 for any X,Y € [-a] and K(X,Y) =0 for any X,Y € [a]. Asis
shown in [4] the distribution [£] & [@]’ is integrable with totally geodesic leaves and
the distribution [—a]’ is integrable with totally umbilical leaves by H = —(1 — a)¢,
where H is the mean curvature tensor field for the leaves of [—a] immersed in
M?*"*+1 Here o = —1; then the two orthogonal distributions [£] @ [a] and [—a]’
are both integrable with totally geodesic leaves immersed in M?"*!. Then we can
say that M>?"*! is locally isometric to H"*1(—4) x R™.

Case 2. Let 2A = (p+ ﬁ) +4nk. Now, the conformal Ricci soliton is expanding,
steady, or shrinking according to whether A < 0, A = 0, or A > 0, respectively.

Therefore, the conformal Ricci soliton is expanding when p < —4nk — —2n2+1, steady
2

when p = —4nk — 27L2T ,and shrinking when p > %, where the fact £ < —1

is used in the case of shrinking. This completes the proof. O

Theorem 3.4. If (g,&,\) is a conformal Ricci soliton in a generalized (k, 1) -almost

Kenmotsu manifold M*"**, then M?" ! is n-Einstein and A = & + ﬁ + 2nk.

Proof. Since (g,&, ) is a conformal Ricci soliton in M?"*1 we have from (L))

(3.24) (Leg)(X,Y)+25(X,)Y)=02XA— (p+ )g(X,Y).

2n+1
Now, using (233]) we obtain

(£eg)(X,Y) = g(Vx&Y) +g(Vyg, X)
(3.25) = 29(X,Y) = 2n(X)n(Y) = 29(¢h X, Y).
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Substituting (B.25)) in (B.24) we get

(3.26) = 2x—(p+ )g(X,Y).
From (Z9), we get
(327)  g(6hX,¥) = SS(X,Y) +g(X,Y) ~ (k+ Dn(X)n(¥).

Now, substituting [B.27) in (3.206) we get
n[2\ — (p + =2— ok
A=+ g2y 20
2n—1 2n—1
which shows that the manifold is n-Einstein.
Putting X =Y = £ in the foregoing equation, we obtain
e M2A o) 2nk
2n —1 2n—1
From above, it follows that A\ = & + Tlﬂ + 2nk. O

2
2n+1

S(X,Y) =

n(X)n(Y),

4. CONFORMAL GRADIENT RICCI SOLITON

In this section we consider a conformal gradient Ricci soliton in the framework
of (k, 1)’ -almost Kenmotsu manifolds. If V' is any vector field collinear with £, then
there is a smooth function b on M such that V = b¢. In this case, i’V = 0. Here
we prove the following theorem.

Theorem 4.1. A (k,u) -almost Kenmotsu manifold M*"*1 does not admit con-
formal gradient Ricci soliton (g, V,\) with V collinear with the characteristic vector

field €.
The proof of the above theorem relies on the following lemma.

Lemma 4.2. In a (k, ) -almost Kenmotsu manifold M>*"*' admitting conformal
gradient Ricci soliton (g, V, ), the following relation holds:

(4.1) R(X,Y)Df = 2n(k +2)(n(X)R'Y — (Y)W’ X),

where f : M?"*t1 — R is a smooth function such that V = Df, D is the gradient
operator.

Proof. From ([2]) we can write
D 1

(4.2) VXDf:[)\—(§+2n+1)]X—QX.
Taking the covariant derivative of the above equation along Y we get
P 1
4. Df=A—(z4+—— X — X.
(4.3) VyVxDf =[A (2 o r 1)]VY VyQ
Interchanging X and Y in (3] we get
1
(4.4) VxVyDf = -2+ VXY — VxQY,

2 2n+1

Again, from ([2) we obtain
p

4. Df=[\—(=
(4.5) VixyviDf =[A (2+2n+1

N(VxY = VyX) - Q(VxY — VyX).
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Using (@3)-(@.3) in the following:

R(X,Y)Df = VxVyDf —VyVxDf — Vixy|Df
we obtain
(4.6) R(X,Y)Df = (VyQ)X — (VxQ)Y.
Now, using (Z8), (Z9), and ([ZI3]) we obtain

(VyQ)X = VyQX -Q(VyX)
= 2n(k+1)(g(X,Y) = n(X)n(Y) + g(h'X,Y))§
+2n(k 4+ D)n(X)(Y = n(Y)E — phY) + 2ng(R'Y + h2Y, X)¢

(4.7) +2nn(X) (WY + h'2Y).

Interchanging X and Y in the above equation we obtain (VxQ)Y. Now, substi-
tuting (Vy Q)X and (VxQ)Y in ([@0) and using (Z.0) we complete the proof. O

Proof of Theorem {1l Putting X = ¢ in (@) we have
R(E,Y)Df = 2n(k + 2)1'Y,

which implies

(48) g(R(E,Y)Df, X) = 2n(k + 2)g('Y, X).
Again, using (2.I1]) we have

g(R(EY)Df, X) = —g(R(&Y)X,Df)

= —kg(X,Y)(&f) + kn(X)(Y )

(4.9) +29(W X, Y)(Ef) — 2n(X)((W'Y) f).
From ([@8) and ([@9) we get

—kg(X,Y)(&f) + kn(X)(Y f) +29(W X, Y) (£ f) = 2n(X)((R'Y) f)

= 2n(k+2)g(RY, X).

Antisymmetrizing the foregoing equation we obtain
(4.10)  kn(X)(Yf) = kn(Y)(Xf) = 2n(X)((K'Y) ) + 2n(Y)((W'X) f) = 0.

Now, (WX)f = g(MX,Df) = g(X,h' (Df)) = 0 for any vector field X as h'V =
K (Df) = 0 by hypothesis. Hence, from [{@I0) we get

n(X)(Yf) =n(Y)(Xf) =0,
as k < —1. Putting X = £ in the above equation we obtain

(4.11) Df = (£f)§.

Differentiating (£I1]) covariantly along X, we obtain

(4.12) VxDf = (X)) + (€)X —n(X)§ — ohX).

Equating ([4.2) and ([{12) we obtain

(418) QX = (A= (5 + )l + (ED)X + (ENM(X) = X(EN)E + (€)0hX.

Comparing (29) and (£I3]) we have the following:

(414) A=+l €)= -2
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(4.15) ENn(X) = X(Ef) = 2n(k + 1)n(X),

(4.16) &f) =2.

Using (£I06) in (II4) we get 2X — (p + ﬁ) = —4n — 4 which implies A =
2+ Tlﬂ —2n — 2. Again using (@I0) in @IH) we get 2n(X) = 2n(k + 1)n(X)
for any vector field X which implies k = —1 + % > —1 which is a contradiction
as k < —1. Hence, a (k, uu)-almost Kenmotsu manifold M>?"*! does not admit

conformal gradient Ricci soliton (g, V,\) such that the potential vector field V is
collinear with the characteristic vector field &.

5. EXAMPLE OF A 5-DIMENSIONAL ALMOST KENMOTSU MANIFOLD

We consider the 5-dimensional manifold M = {(x, vy, z,u,v) € R®}, where (z,v, 2,
u,v) are the standard coordinates in R®. Let £, e, e3, €4, €5 be five vector fields in
R® which satisfies [4]

[5762] = _2627 [5763] = _2637 [6764] = 07 [5765] = 07

lei,ej] =0, where 4,5 = 2,3,4,5.
Let g be the Riemannian metric defined by

9(§,€) = glez,e2) = g(es, e3) = glea, e4) = g(es, e5) =1

and g(&, e;) = g(ei, e;) = 0 for i # j; 4, j = 2,3,4,5.
Let 7 be the 1-form defined by n(Z) = ¢g(Z,§), for any Z € T(M).
Let ¢ be the (1, 1)-tensor field defined by

P(§) =0, d(e2) = e, d(e3) = e5, dles) = —ea, P(es) = —es.
Using the linearity of ¢ and g, we have
(&) =1, 6°(2) = =Z +n(2)¢, 9(6Z,9U) = 9(Z,U) = n(Z)n(U)

for any Z,U € T(M).

Moreover, h'§ =0, h'es = e, h'ez = e3, h'eq = —ey, Wes = —es.

The Levi-Civita connection V of the metric tensor g is given by Koszul’s formula
which is given by

29(VxY,Z) = Xg(Y.Z)+Yg(Z X)—-Zg(X,Y)
Using Koszul’s formula we get the following:
V5€ = 0, V562 = O7 V5€3 = O7 V§€4 = O7 V§€5 = f,
v€2€ = 2627 v8262 = _257 v8263 = Oa V€264 = Oa v€2€5 = 07
v€3§ = 2637 VegeQ = 0) vege?) = _2§7 v6364 = Oa v€3€5 = 07
Ve, k=0, Ve,ea =0, Ve,es =0, Ve,eq =0, Ve,e5 =0,

V65€ = 0, ve5€2 = O7 V€563 = 0, V€564 = O7 V65€5 =0.
In view of the above relations we have

Vxé=—-*X +hWX
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for any X € T(M). Therefore, the structure (¢, £, 7, ¢g) is an almost contact metric
structure such that dn = 0 and d® = 2n A @, so that M is an almost Kenmotsu
manifold.

By the above results, we can easily obtain the components of the curvature tensor
R as follows:

R(¢, €2)€ = dez, R(S,e2)er = —4€, R(§, e3)§ = des, R(E e3)es = —4¢,
R(§,e4)§ = R(; ea)es = R(, €5)6 = R(E, e5)es = 0,
R(ea, e3)ea = des, R(eqg,es)es = —4des, R(ea,eq)ea = R(eq,eq)eq =0,
R(ea, e5)ea = R(ea, e5)es = Rl(es,eq)es = R(es,eq)eq =0,

R(eg, 65)63 = f%(e:;7 65)65 = R(64, 65)64 = R(€4, 65)65 =0.

With the help of the expressions of the curvature tensor we conclude that the
characteristic vector field £ belongs to the (k, u)-nullity distribution with k = —2
and g = —2. Therefore, from a? = —(k + 1), we get a = £1. Without lose of
generality we consider @ = —1. Then by the same argument as in Theorem [3.3] we
can say that the manifold is locally isometric to H?(—4) x R2.

Using the expressions of the curvature tensor R we have

R(X,Y)Z = —lg(Y, 2)X — (X, Z)Y].
From the above equation we obtain
S(Y,Z) = —16¢(Y, Z), which implies r = —80.
Now, it is easy to see that
(££9)(€,8) = (£¢g) (€, €a) = (£eg)(es,€5) = 0,

(£Leg)(e2,e2) = (£eg)(es, e3) = 4.
Consider V' = ¢ and then tracing (LI)) we obtain A = £ + % + ?. Hence, (g,&, )
is a conformal Ricci soliton on M. Thus Theorem [3.3] is verified.
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