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Abstract 

We compute upper and lower bounds on the VC dimension of 
feedforward networks of units with piecewise polynomial activa­
tion functions. We show that if the number of layers is fixed, then 
the VC dimension grows as W log W, where W is the number of 
parameters in the network. This result stands in opposition to the 
case where the number of layers is unbounded, in which case the 
VC dimension grows as W 2 • 

1 MOTIVATION 

The VC dimension is an important measure of the complexity of a class of binary­
valued functions, since it characterizes the amount of data required for learning in 
the PAC setting (see [BEHW89, Vap82]). In this paper, we establish upper and 
lower bounds on the VC dimension of a specific class of multi-layered feedforward 
neural networks. Let F be the class of binary-valued functions computed by a 
feed forward neural network with W weights and k computational (non-input) units, 
each with a piecewise polynomial activation function. Goldberg and Jerrum [GJ95] 
have shown that VCdim(F) :s Cl(W2 + Wk) = O(W2), where Cl is a constant. 
Moreover, Koiran and Sontag [KS97] have demonstrated such a network that has 
VCdim(F) ~ C2 W 2 = O(W2), which would lead one to conclude that the bounds 
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are in fact tight up to a constant. However, the proof used in [KS97] to establish 
the lower bound made use of the fact that the number of layers can grow with W. 
In practical applications, this number is often a small constant. Thus, the question 
remains as to whether it is possible to obtain a better bound in the realistic scenario 
where the number of layers is fixed. 

The contribution of this work is the proof of upper and lower bounds on the VC 
dimension of piecewise polynomial nets. The upper bound behaves as O(W L2 + 
W L log W L), where L is the number of layers. If L is fixed, this is O(W log W), 
which is superior to the previous best result which behaves as O(W2). Moreover, 
using ideas from [KS97] and [GJ95] we are able to derive a lower bound on the VC 
dimension which is O(WL) for L = O(W). Maass [Maa94] shows that three-layer 
networks with threshold activation functions and binary inputs have VC dimension 
O(W log W), and Sakurai [Sak93] shows that this is also true for two-layer networks 
with threshold activation functions and real inputs. It is easy to show that these 
results imply similar lower bounds if the threshold activation function is replaced by 
any piecewise polynomial activation function f that has bounded and distinct limits 
limx-t - oo f(x) and limx-too f(x). We thus conclude that if the number oflayers L is 
fixed, the VC dimension of piecewise polynomial networks with L ~ 2 layers and real 
inputs, and of piecewise polynomial networks with L ~ 3 layers and binary inputs, 
grows as W log W. We note that for the piecewise polynomial networks considered 
in this work, it is easy to show that the VC dimension and pseudo-dimension are 
closely related (see e.g. [Vid96]), so that similar bounds (with different constants) 
hold for the pseudo-dimension. Independently, Sakurai has obtained similar upper 
bounds and improved lower bounds on the VC dimension of piecewise polynomial 
networks (see [Sak99]). 

2 UPPER BOUNDS 

We begin the technical discussion with precise definitions of the VC-dimension and 
the class of networks considered in this work. 

Definition 1 Let X be a set, and A a system of subsets of X. A set S = 
{ Xl, . .. ,xn} is shattered by A if, for every subset B ~ S, there exists a set A E A 
such that SnA = B. The VC-dimension of A, denoted by VCdim(A), is the largest 

integer n such that there exists a set of cardinality n that is shattered by A. 

Intuitively, the VC dimension measures the size, n, of the largest set of points for 
which all possible 2n labelings may be achieved by sets A E A. It is often convenient 
to talk about the VC dimension of classes of indicator functions F. In this case we 
simply identify the sets of points X E X for which f(x) = 1 with the subsets of A, 

and use the notation VCdim(F). 

A feedforward multi-layer network is a directed acyclic graph that represents a 
parametrized real-valued function of d real inputs. Each node is called either an 
input unit or a computation unit. The computation units are arranged in L layers. 
Edges are allowed from input units to computation units. There can also be an 
edge from a computation unit to another computation unit, but only if the first 
unit is in a lower layer than the second. There is a single unit in the final layer, 
called the output unit. Each input unit has an associated real value, which is One 

of the components of the input vector x E Rd. Each computation unit has an 
associated real value, called the unit's output value. Each edge has an associated 
real parameter, as does each computation unit. The output of a computation unit 
is given by (7 CEe weze + wo), where the sum ranges over the set of edges leading to 
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the unit, We is the parameter (weight) associated with edge e, Ze is the output value 
of the unit from which edge e emerges, Wo is the parameter (bias) associated with 
the unit, and a : R -t R is called the activation function of the unit. The argument 
of a is called the net input of the unit. We suppose that in each unit except the 
output unit, the activation function is a fixed piecewise polynomial function of the 
form 

for i = 1, ... ,p+ 1 (and set to = -00 and tp+1 = 00), where each cPi is a polynomial 
of degree no more than l. We say that a has p break-points, and degree l. The 
activation function in the output unit is the identity function. Let k i denote the 
number of computational units in layer i and suppose there is a total of W param­
eters (weights and biases) and k computational units (k = k1 + k2 + ... + kL - 1 + 1). 
For input x and parameter vector a E A = R w, let f(x, a) denote the output of 
this network, and let F = {x f-t f(x,a) : a E RW} denote the class of functions 
computed by such an architecture, as we vary the W parameters. We first dis­
cuss the computation of the VC dimension, and thus consider the class of functions 
sgn(F) = {x f-t sgn(f(x, a)) : a E RW}. 

Before giving the main theorem of this section, we present the following result, 
which is a slight improvement of a result due to Warren (see [ABar], Chapter 8). 

Lemma 2.1 Suppose II (.), h (.), .. , ,f m (-) are fixed polynomials of degree at 

most 1 in n ~ m variables. Then the number of distinct sign vectors 

{sgn(Jl (a)), ... ,sgn(J m (a))} that can be generated by varying a ERn is at most 
2(2eml/n)n. 

We then have our main result: 

Theorem 2.1 For any positive integers W, k ~ W, L ~ W, l, and p, consider a 

network with real inputs, up to W parameters, up to k computational units arranged 

in L layers, a single output unit with the identity activation function, and all other 

computation units with piecewise polynomial activation functions of degree 1 and 

with p break-points. Let F be the class of real-valued functions computed by this 

network. Then 

VCdim(sgn(F)) ~ 2WLlog(2eWLpk) + 2WL2log(1 + 1) + 2L. 

Since Land k are O(W), for fixed 1 and p this implies that 

VCdim(sgn(F)) = O(WLlogW + WL2). 

Before presenting the proof, we outline the main idea in the construction. For 
any fixed input x, the output of the network f(x, a) corresponds to a piecewise 
polynomial function in the parameters a, of degree no larger than (l + I)L-1 (recall 
that the last layer is linear). Thus, the parameter domain A = R W can be split 
into regions, in each of which the function f(x,·) is polynomial. From Lemma 2.1, 
it is possible to obtain an upper bound on the number of sign assignments that can 
be attained by varying the parameters of a set of polynomials. The theorem will be 
established by combining this bound with a bound on the number of regions. 

PROOF OF THEOREM 2.1 For an arbitrary choice of m points Xl, X2, ..• ,xm , we 
wish to bound 

K = I {(sgn(f(Xl ,a)), . .. ,sgn(J(xm, a))) : a E A }I. 
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Fix these m points, and consider a partition {SI, S2, ... , S N} of the parameter 
domain A. Clearly 

N 

K ~ L I {(sgn(J(xl , a», ... , sgn(J(xm, a») : a ESdi· 
i=1 

We choose the partition so that within each region Si, f (Xl, .), ... ,f (x m, .) are all 
fixed polynomials of degree no more than (1 + I)L-1. Then, by Lemma 2.1, each 
term in the sum above is no more than 

2 (2em(1;' I)L - l) W 
(1) 

The only remaining point is to construct the partition and determine an upper 
bound on its size. The partition is constructed recursively, using the following 
procedure. Let 51 be a partition of A such that, for all S E 51, there are constants 
bh,i,j E {0,1} for which 

for all a E S, 

where j E {I, ... ,m}, h E {I, ... ,kd and i E {1, ... ,pl. Here ti are the break­
points of the piecewise polynomial activation functions, and Ph,x) is the affine func­
tion describing the net input to the h-th unit in the first layer, in response to X j. 

That is, 

where ah E R d, ah,O E R are the weights of the h-th unit in the first layer. Note 
that the partition 51 is determined solely by the parameters corresponding to the 
first hidden layer, as the input to this layer is unaffected by the other parameters. 
Clearly, for a E S, the output of any first layer unit in response to an Xj is a fixed 
polynomial in a. 

Now, let WI, ... , W L be the number of variables used in computing the unit outputs 
up to layer 1, ... , L respectively (so WL = W), and let k l , . .. , kL be the number of 
computation units in layer 1, ... , L respectively (recall that kL = 1). Then we can 
choose 51 so that 1511 is no more than the number of sign assignments possible with 

mkl P affine functions in WI variables. Lemma 2.1 shows that 151 1 ~ 2 (2e~~IP) WI 

Now, we define 5n (for n > 1) as follows. Assume that for all S in 5n - 1 and all 
Xj, the net input of every unit in layer n in response to Xj is a fixed polynomial 

function of a E S, of degree no more than (1 + l)n-1 . Let 5n be a partition of A 
that is a refinement of 5n- 1 (that is, for all S E 5n, there is an S' E 5n- 1 with 
S ~ S'), such that for all S E 5n there are constants bh,i,j E {O, I} such that 

sgn(Ph,x) (a) - ti ) = bh,i,j for all a E S, (2) 

where Ph ,x) is the polynomial function describing the net input of the h-th unit in 
the n-th layer, in response to Xj, when a E S. Since S ~ S' for some S' E 5 n- 1 , (2) 
implies that the output of each n-th layer unit in response to an X j is a fixed 

polynomial in a of degree no more than l (l + 1) n-l, for all a E S. 

Finally, we can choose 5n such that, for all S' E 5n- 1 we have I {S E 5n : S ~ 
S'}I is no more than the number of sign assignments of mknP polynomials in Wn 
variables of degree no more than (l + 1)n- l, and by Lemma 2.1 this is no more than 

2 (2emkn~n+lr-I ) Wn . Notice also that the net input of every unit in layer n + 1 in 



194 P. L. Bartlett, V Maiorov and R. Meir 

response to Xj is a fixed polynomial function of a ESE Sn of degree no more than 
(l + l)n. 

Proceeding in this way we get a partition SL-l of A such that for S E SL-l the 
network output in response to any Xj is a fixed polynomial of a E S of degree no 

more than l(l + 1)L-2. Furthermore, 

JSL-d < 2 Ce;:,P) W, TI 2 eemk'p~,+ 1)'-') W , 

< TI 2 CemkiP~,+ 1)'-') W; 

Multiplying by the bound (1) gives the result 

K ~ IT 2 (2emkip(l .+ l)i-l) W. 

i=l W t 

Since the points Xl, ... ,Xm were chosen arbitrarily, this .gives a bound on the max­
imal number of dichotomies induced by a E A on m points. An upper bound on 
the VC-dimension is then obtained by computing the largest value of m for which 
this number is at least 2m , yielding 

m < L + t. w, log Cempk'~,+ 1)i-1 ) 

< L [1 + (L - l)W log(l + 1) + W log(2empk)] , 

where all logarithms are to the base 2. We conclude (see for example [Vid96] Lemma 
4.4) that 

VCdim(F) ~ 2L [(L -l)W log(l + 1) + W log (2eWLpk) + 1]. 

• 
We briefly mention the application of this result to the problem of learning a re­

gression function E[YIX = x], from n input/output pairs {(Xi, Yi)}i=l' drawn 
independently at random from an unknown distribution P(X, Y). In the case of 
quadratic loss, L(f) = E(Y - f(X))2, one can show that there exist constants Cl ;::: 1 
and C2 such that 

E L(f ~ ) 2 • f L-(f) MPdim(F) logn 
n < 8 + Cl In + C2 , 

- JET n 

where 82 = E [Y - E[YIX]]2 is the noise variance, i(f) = E [(E[YIX] - f(X))2] is 

the approximation error of f, and in is a function from the class F that approxi­
mately minimizes the sample average of the quadratic loss. Making use of recently 

derived bounds [MM97] on the approximation error, inf JET i(f), which are equal, 
up to logarithmic factors, to those obtained for networks of units with the stan­
dard sigmoidal function u{u) = (1 + e-u)-l , and combining with the considerably 
lower pseudo-dimension bounds for piecewise polynomial networks, we obtain much 
better error rates than are currently available for sigmoid networks. 

3 LOWER BOUND 

We now compute a lower bound on the VC dimension of neural networks with 
continuous activation functions. This result generalizes the lower bound in [KS97], 
since it holds for any number of layers. 
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Theorem 3.1 Suppose f : R -+ R has the following properties: 

1. limo-too f(a) = 1 and limo-t-oo f(a) = 0, and 

2. f is differentiable at some point Xo with derivative f'(xo) =1= O. 

Then for any L ~ 1 and W ~ 10L - 14, there is a feedforward network with the 

following properties: The network has L layers and W parameters, the output unit 

is a linear unit, all other computation units have activation function f, and the set 

sgn(F) of functions computed by the network has 

VCdim(sgn(F» ~ l ~ J l ~ J ' 

where l u J is the largest integer less than or equal to u. 

PROOF As in [KS97], the proof follows that of Theorem 2.5 in [GJ95], but we 
show how the functions described in [GJ95] can be computed by a network, and 
keep track of the number of parameters and layers required. We first prove the 
lower bound for a network containing linear threshold units and linear units (with 
the identity activation function), and then show that all except the output unit 
can be replaced by units with activation function f, and the resulting network still 
shatters the same set. For further details of the proof, see the full paper [BMM98]. 

Fix positive integers M, N E N. We now construct a set of M N points, which 
may be shattered by a network with O(N) weights and O(M) layers. Let {ad, 
i = 1,2, ... ,N denote a set of N parameters, where each ai E [0,1) has an M -bit 

binary representation ai = E~l 2-jai,j, ai,j E {O, I}, i.e. the M-bit base two 

representation of ai is ai = O.ai,l ai,2 ... ai,M. We will consider inputs in B N X B M, 

where BN = {ei : 1 ~ i ~ N}, ei E {O, I}N has i-th bit 1 and all other bits 0, and 
BM is defined similarly. We show how to extract the bits of the ai, so that for 
input x = (el' ern) the network outputs al,rn. Since there are N M inputs of the 

form (el,ern ), and al,rn can take on all possible 2MN values, the result will follow. 
There are three stages to the computation of al,rn: (1) computing ai, (2) extracting 
al,k from ai, for every k, and (3) selecting al,rn among the al,ks. 

Suppose the network input is x = ((Ul,'" ,UN),(Vt, ... ,VM» = (el,e rn ). Using 

one linear unit we can compute E~l Uiai = al. This involves N + 1 parameters 
and one computation unit in one layer. In fact, we only need N parameters, but we 
need the extra parameter when we show that this linear unit can be replaced by a 
unit with activation function f. 

Consider the parameter Ck = O.al,k ... al,M, that is, Ck = E~k 2k-1-jal,j for k = 
1, ... ,M. Since Ck ~ 1/2 iff al,k = 1, clearly sgn(ck - 1/2) = al,k for all k. Also, 
Cl = al and Ck = 2Ck-l - al ,k-l' Thus, consider the recursion 

Ck = 2Ck-l - al,k-l 

al,k = sgn(ck - 1/2)' 

with initial conditions CI = al and au = sgn(al - 1/2). Clearly, we can compute 
al,l, ... ,al,M-l and C2,' .. ,CM-l in another 2(M - 2) + 1 layers, using 5(M - 2) + 2 
parameters in 2(M - 2) + 1 computational units. 

We could compute al,M in the same way, but the following approach gives fewer 

layers. Set b = sgn (2C M - 1 - al,M - l - E~~I Vi)' If m =1= M then b = O. If m = M 

then the input vector (VI, ... ,VM) = eM, and thus E~~lvi = 0, implying that 

b = sgn(cM) = sgn(O.al,M) = al,M. 
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In order to conclude the proof, we need to show how the variables al,m may be 
recovered, depending on the inputs (VI, V2, ... ,VM). We then have al,m = b V 

V';~I(al,i/\vi). Since for boolean x and y, x/\y = sgn(x+y-3/2), and V';I Xi = 

sgn(2:,;1 Xi - 1/2), we see that the computation of al,m involves an additional 5M 
parameters in M + 1 computational units, and adds another 2 layers. 

In total, there are 2M layers and 10M + N -7 parameters, and the network shatters 
a set of size N M. Clearly, we can add parameters and layers without affecting 

the function of the network. So for any L, WEN, we can set M = lL/2J and 
N = W + 7 - 10M, which is at least lW/2J provided W :2: 10L - 14. In that case, 
the VC-dimension is at least l L /2 J l W /2 J . 

The network just constructed uses linear threshold units and linear units. However, 
it is easy to show (see [KS97], Theorem 5) that each unit except the output unit can 
be replaced by a unit with activation function f so that the network still shatters the 
set of size M N. For linear units, the input and output weights are scaled so that the 
linear function can be approximated to sufficient accuracy by f in the neighborhood 
of the point Xo. For linear threshold units, the input weights are scaled so that the 
behavior of f at infinity accurately approximates a linear threshold function. • 
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