ALMOST LINEARITY OF ϵ -BI-LIPSCHITZ MAPS BETWEEN REAL BANACH SPACES

KIL-WOUNG JUN AND DAL-WON PARK

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let X and Y be real Banach spaces. A map f between X and Y is called an ϵ -bi-Lipschitz map if $(1-\epsilon)||x-y|| \leq ||f(x)-f(y)|| \leq (1+\epsilon)||x-y||$ for all $x, y \in X$. In this note we show that if f is an ϵ -bi-Lipschitz map with f(0) = 0 from X onto Y, then f is almost linear. We also show that if $f : X \longrightarrow Y$ is a surjective ϵ -bi-Lipschitz map with f(0) = 0, then there exists a linear isomorphism $I : X \to Y$ such that

$$||I(x) - f(x)|| \le E(\epsilon, \alpha)(||x||^{\alpha} + ||x||^{2-\alpha})$$

where $E(\epsilon, \alpha) \to 0$ as $\epsilon \to 0$ and $0 < \alpha < 1$.

1. INTRODUCTION

It is a well-known classical result of Mazur and Ulam [4] that an isometry f from a real Banach space X onto a real Banach space Y with f(0) = 0 is automatically linear. A map f between Banach spaces X and Y is called an (m, M)-rigid map if

$$m\|x - y\| \le \|f(x) - f(y)\| \le M\|x - y\|$$

for all $x, y \in X$. We denote a $(1 - \epsilon, 1 + \epsilon)$ -rigid map by ϵ -bi-Lipschitz map. The following theorem follows from [1, Proposition 2].

Theorem. Let f be an ϵ -bi-Lipschitz map from a real Banach space X onto a real Banach space Y, with f(0) = 0 and $0 \le \epsilon < \frac{1}{3}$. Then

$$||f(x+y) - f(x) - f(y)|| \le c_1(3\epsilon)^{c_2}(||x|| + ||y||), \text{ for } x, y \in X$$

where

$$c_1 = (8/3)((\alpha/8)(\alpha^2 + 4\alpha - 1)/(\alpha - 1) + 1)$$

and

$$c_2 = (\log(2/\alpha))(\log((\alpha+7)/(\alpha-1)) + \log(2/\alpha))^{-1}$$

for $1 < \alpha < 2$.

Key words and phrases. ϵ -bi-Lipschitz map, almost linear map, real Banach spaces.

©1996 American Mathematical Society

Received by the editors August 8, 1994.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46B20.

This work was partially supported by KOSEF, Grant No 91-08-00-01.

Note that c_2 attains its maximum for $\alpha \in (1, 2)$ at $\alpha = 1.1572...$ and for this value of α , c_1 and c_2 have values 5.5704... and 0.1216..., respectively.

Jarosz [2] conjectured that if f is an ϵ -bi-Lipschitz map from a real Banach space X onto a real Banach space Y, then X and Y are linearly isomorphic for sufficiently small ϵ . Throughout, R represents the real number field. There is an ϵ -bi-Lipschitz map f on R which is not a linear map on R.

Example. We define an ϵ -bi-Lipschitz map $f: R \to R$ such that

$$f(x) = \begin{cases} (1+\epsilon)x, & \text{if } x \le 2, \\ (1-\epsilon)(x-2) + 2(1+\epsilon), & \text{if } x > 2. \end{cases}$$

Throughout this paper, X and Y shall denote real Banach spaces. The r-neighborhood of a set A is denoted by B(A, r) and we abbreviate $B(\{x\}, r)$ and $B(\{0\}, r)$ by B(x, r) and B(r), respectively. The corresponding closed balls are denoted by $\overline{B}(x, r)$ and $\overline{B}(r)$. As usual, [x, y] denotes the closed segment determined by x and y. A bound subset A of X is said to be symmetric with respect to a point a if x in A implies that 2a - x is also in A. If A is bounded and symmetric with respect to a, we define radA to be $\inf\{r > 0 : A \subset B(a, r)\}$. We denote the Blaschke distance function on sets by D; that is, for $A_1, A_2 \subset X$, $D(A_1, A_2) = \inf\{r > 0 : A_1 \subset B(A_2, r) \text{ and } A_2 \subset B(A_1, r)\}$. For $A \subset X$ and $\alpha > 0$ we define $T(A, \alpha) = \{x \in X : A \subset \overline{B}(x, \alpha)\} = \bigcap\{\overline{B}(y, \alpha) : y \in A\}$. For $x, y \in X$ we define $S(x, y, \alpha) = T([x, y], \alpha) = T(\{x, y\}, \alpha) = \overline{B}(x, \alpha) \cap \overline{B}(y, \alpha)$. We also define $C(A, \alpha) = A \cap T(A, \alpha)$. The following lemmas are due to Gevirtz [1] and John [3].

Lemma 1 [1, Lemma 2]. Let $x, y \in X$ and let $\beta, \gamma > |x - y|/2$. Then

$$D(S(x, y, \beta), S(x, y, \gamma)) \le \frac{|\beta - \gamma|}{1 - |x - y|/2\beta}.$$

Lemma 2 [1, Lemma 3]. Let $\delta > 0$. For every bounded convex symmetric subset $A \neq \emptyset$ of X with center a and all β, γ for which $B(a, \delta) \subset C(A, \beta)$ and $\gamma > radA$ there holds

$$D(C(A,\beta), C(A,\gamma)) \le (1 + \frac{rad A}{\delta})|\beta - \gamma|.$$

Lemma 3 [1, Lemma 4]. Let $\delta > 0$. For every bounded convex symmetric subset $A \neq \emptyset$ of X with center a and $F \subset X$ and β for which $C(F,\beta) \neq \emptyset$ and $B(a,\delta) \subset C(A,\beta)$ there holds

$$D(C(A,\beta),C(F,\beta)) \le (1 + \frac{4 \operatorname{rad} A}{\delta})D(A,F).$$

Lemma 4 [1, Lemma 5]. Let $A \subset U \subset X$ and let $f : U \longrightarrow Y$ be (m, M)-rigid. Then for all $\alpha > 0$

$$f(U \cap T(A, \alpha)) \subset f(U) \cap T(f(A), M\alpha) \subset f(U \cap T(A, \frac{M}{m}\alpha)).$$

Lemma 5 [3, Theorem II]. Let $f : X \to Y$ be (m, M)-rigid. Then $f(B(a, r)) \supset B(f(a), mr)$.

2. The results

Definition 6. A map f from a real Banach space X into a real Banach space Y is an almost linear map if it satisfies

$$||f(x+y) - f(x) - f(y)|| \le D(\epsilon)(||x|| + ||y||), \text{ for } x, y \in X$$

and

$$||f(\lambda x) - \lambda f(x)|| \le D(\epsilon)E(\lambda)||x||, \text{ for } \lambda \in \mathbb{R}, x \in X$$

where $D(\epsilon) \to 0$ as $\epsilon \to 0$ and $E(\lambda) \to 0$ as $\lambda \to 0$.

Let $x \neq y$ be points in X and let d = ||x - y||. For $\alpha > 1$ we define $S_n = S_n(x, y, d, \alpha)$ recursively as follows : $S_1 = S(x, y, \frac{\alpha d}{2})$ and, for $n \geq 1$, $S_{n+1} = C(S_n, \frac{\alpha d}{2^n} + \sum_{i=1}^n \frac{1}{2^i} (\alpha - 1)d)$.

Lemma 7. Let $x \neq y$ be points in X, $a = \frac{x+y}{2}$ and $\alpha > 1$. Then for $n \geq 1, S_n$ is convex and symmetric with respect to a and

$$B(a, \frac{\alpha - 1}{2}d) \subset S_n \subset B(a, \frac{\alpha d}{2^n} + \sum_{i=2}^n \frac{1}{2^i}(\alpha - 1)d).$$

Proof. It is easy to verify that the assertion is true for n = 1. Assume inductively that it is true for a given $n \ge 1$. The inductive hypothesis implies that S_{n+1} is convex and symmetric with respect to a. If $z \in B(a, \frac{\alpha-1}{2}d)$ and $u \in S_n$, then

$$\begin{split} \|z - u\| &\leq \|z - a\| + \|a - u\| \\ &< \frac{\alpha - 1}{2}d + \frac{\alpha}{2^n}d + \sum_{i=2}^n \frac{1}{2^i}(\alpha - 1)d \\ &= \frac{\alpha}{2^n}d + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)d. \end{split}$$

This implies that $z \in S_{n+1}$. If $u \in S_{n+1}$, then $||u-z|| \leq \frac{\alpha d}{2^n} + \sum_{i=1}^n \frac{1}{2^i} (\alpha - 1)d$ for all $z \in S_n$. Since S_{n+1} is symmetric with respect to $a, 2a - u \in S_{n+1} \subset S_n$. Putting 2a - u instead of z in the above formula, we have $||u-a|| \leq \frac{\alpha d}{2^{n+1}} + \sum_{i=2}^{n+1} \frac{1}{2^i} (\alpha - 1)d$. That is, $rad S_{n+1} \leq \frac{\alpha d}{2^{n+1}} + \sum_{i=2}^{n+1} \frac{1}{2^i} (\alpha - 1)d$.

Proposition 8. Let $x, y \in X$, $||x - y|| = d, \alpha > 1$ and $0 < m \leq M$. Let $f: X \longrightarrow Y$ be an (m, M)-rigid map. Writing S_n , S'_n and μ for $S_n(x, y, d, \alpha)$, $S_n(f(x), f(y), Md, \alpha)$ and $\frac{M}{m}$, respectively, there holds

$$D(f(S_n), S'_n) \le K(m, M, \alpha) \|x - y\|$$

where $K(m, M, \alpha) = M(\mu - 1)(\frac{7\alpha - 1}{\alpha - 1})^{n-1}(\frac{31\alpha^3 - 18\alpha^2 + 10\alpha - 2}{(\alpha - 1)(6\alpha - 4)}).$

Proof. Replacing U, A by $X, \{x, y\}$, respectively, in Lemma 4, we obtain

(1)
$$f(S_1) \subset S'_1 \subset f(S(x, y, \alpha \mu d/2)).$$

Since $S_{n+1} = C(S_n, \frac{\alpha d}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)d)$, Lemma 4 with $A = U = S_n$ implies that

(2)
$$f(S_{n+1}) \subset C(f(S_n), Md[\frac{\alpha}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)]) \\ \subset f(C(S_n, \mu d[\frac{\alpha}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)])).$$

Formula (1) gives

$$D(f(S_1), S'_1) \le D(f(S(x, y, \frac{\alpha d}{2})), f(S(x, y, \frac{\alpha \mu d}{2})))$$
$$\le MD(S(x, y, \frac{\alpha d}{2}), S(x, y, \frac{\alpha \mu d}{2})).$$

Lemma 1 with $\beta = \frac{\alpha d}{2}$ and $\gamma = \frac{\alpha \mu d}{2}$ implies that we have $D(f(S_1), S'_1) \leq M\alpha^2 d \frac{(\mu-1)}{2(\alpha-1)}$. Put $D_n = D(f(S_n), S'_n)$. Let $n \geq 1$ and

$$W = C(f(S_n), Md[\frac{\alpha}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)])$$

Then (2) implies $W \neq \emptyset$, and so

(3)
$$D_{n+1} \le D(f(S_{n+1}), W) + D(S'_{n+1}, W).$$

Formula (2) gives

$$D(f(S_{n+1}), W) \le D(f(S_{n+1}), f(C(S_n, \mu d[\frac{\alpha}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)])))$$

= $D(f(C(S_n, d[\frac{\alpha}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)])),$
 $f(C(S_n, \mu d[\frac{\alpha}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)]))).$

By Lemma 2 and Lemma 7,

$$D(f(S_{n+1}), W) \leq d(\mu - 1)M\left(1 + \frac{\alpha d/2^n + \sum_{i=2}^n (\alpha - 1)d/2^i}{(\alpha - 1)d/2}\right)$$

$$\times \left[\frac{\alpha}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)\right]$$

$$\leq d(\mu - 1)M\left(1 + \frac{\alpha}{\alpha - 1}\right)\left(\frac{\alpha}{2} + \frac{\alpha - 1}{2}\right)$$

$$\leq d(\mu - 1)M\frac{(2\alpha - 1)^2}{2(\alpha - 1)}.$$

Similarly, we may apply Lemma 3 with $a = \frac{f(x)+f(y)}{2}$, $A = S'_n$, $F = f(S_n)$, $\beta = M[\frac{\alpha d}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)d]$ and $\delta = M\frac{\alpha - 1}{2}d$.

(5)

$$D(S'_{n+1}, W) = D(C(S'_n, Md[\frac{\alpha}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)]),$$

$$C(f(S_n), Md[\frac{\alpha}{2^n} + \sum_{i=1}^n \frac{1}{2^i}(\alpha - 1)]))$$

$$\leq \left(1 + \frac{4(\alpha d/2^n + \sum_{i=2}^n (\alpha - 1)d/2^i)}{(\alpha - 1)d/2}\right) D_n$$

$$\leq \left(\frac{5\alpha - 1}{\alpha - 1}\right) D_n.$$

From (4) and (5) we get

$$D_{n+1} \le d(\mu - 1)M \frac{(2\alpha - 1)^2}{2(\alpha - 1)} + \left(\frac{5\alpha - 1}{\alpha - 1}\right) D_n.$$

Let $G = d(\mu - 1)M\frac{(2\alpha - 1)^2}{2(\alpha - 1)}$, $H = \frac{5\alpha - 1}{\alpha - 1}$. By induction we then get

$$D_n \le G(1 + H + \dots + H^{n-2}) + H^{n-1}D_1$$

= $G\left(\frac{H^{n-1} - 1}{H - 1}\right) + H^{n-1}D_1$
 $\le (\mu - 1)M\left(\frac{5\alpha - 1}{\alpha - 1}\right)^{n-1}\left(\frac{8\alpha^3 - 8\alpha^2 + 5\alpha - 1}{8\alpha(\alpha - 1)}\right) \|x - y\|.$

Proposition 9. Let $x, y \in X, 0 < m \leq M, \mu = \frac{M}{m} < 2$. Let $f : X \longrightarrow Y$ be (m, M)-rigid. Then

$$\left\|\frac{f(x)+f(y)}{2} - f\left(\frac{x+y}{2}\right)\right\| \le c_1(\mu-1)^{c_2}M\|x-y\|$$
$$\frac{3\alpha-1}{2} + \frac{(9\alpha-5)(17\alpha^3-25\alpha^2+16\alpha-4)}{8(2\alpha-1)(\alpha-1)^2} \text{ and } c_2 = \frac{\log 2}{\log \frac{2(9\alpha-5)}{2}} \text{ for } \alpha > 1.$$

Proof. Put $a = \frac{x+y}{2}$ and $p = \frac{f(x)+f(y)}{2}$. By Lemma 5 and Lemma 7, we obtain $B(f(a), m\frac{\alpha-1}{2}d) \subset f(S_n)$ and $S'_n \subset B(p, M\frac{\alpha d}{2^n} + M\frac{\alpha-1}{2}d)$. Since $D_n = D(f(S_n), S'_n), f(S_n) \subset B(S'_n, D_n)$. Thus we have

$$B(f(a), m\frac{\alpha - 1}{2}d) \subset B(B(p, M\frac{\alpha d}{2^n} + M\frac{\alpha - 1}{2}d), D_n)$$
$$= B(p, M\frac{\alpha d}{2^n} + M\frac{\alpha - 1}{2}d + D_n).$$

Hence Proposition 8 implies

where $c_1 =$

(6)
$$\|f(a) - p\| \le (M - m)\frac{\alpha - 1}{2}d + M\frac{\alpha d}{2^n} + d(\mu - 1)M\left(\frac{5\alpha - 1}{\alpha - 1}\right)^{n-1}\frac{8\alpha^3 - 8\alpha^2 + 5\alpha - 1}{8\alpha(\alpha - 1)}.$$

Let $E = \frac{1}{2}$ and $F = \frac{5\alpha-1}{\alpha-1}$. For given α , μ we use an integer n which is chosen in such a way that the last expression takes the form $c_1(\mu - 1)^{c_2}M||x - y||$, apart from negligible differences. Explicitly, we write n in the form

$$n = -\beta(\log(\mu - 1))/\log F + \xi + 1$$

where $0 < \beta < 1$ and $0 \le \xi < 1$. Since $\mu < 2$, we have that $n \ge 1$, $(\mu - 1)F^{n-1} = (\mu - 1)^{1-\beta}F^{\xi} \le (\mu - 1)^{1-\beta}F$ and $E^n = (\mu - 1)^{-\beta \log \frac{1}{2}/\log F}E^{\xi} \le (\mu - 1)^{\beta \log 2/\log F}$. If β is determined so that $1 - \beta = \beta \log 2/\log F$, then $\beta = \frac{\log F}{\log 2 + \log F}$. Put $c_2 = 1 - \beta$. Then

$$dM[\alpha \left(\frac{1}{2}\right)^{n} + (\mu - 1) \left(\frac{5\alpha - 1}{\alpha - 1}\right)^{n-1} \frac{8\alpha^{3} - 8\alpha^{2} + 5\alpha - 1}{8\alpha(\alpha - 1)}] \\ \leq dM(\mu - 1)^{c_{2}} \left(\alpha + \frac{(5\alpha - 1)(8\alpha^{3} - 8\alpha^{2} + 5\alpha - 1)}{8\alpha(\alpha - 1)^{2}}\right).$$

Since $0 < c_2 < 1$ and $\mu \leq 2$

$$(M-m)\frac{\alpha-1}{2}d \le M(\mu-1)^{c_2}\frac{\alpha-1}{2}d.$$

Thus

$$\|f(a) - p\| \le M(\mu - 1)^{c_2} \left(\frac{3\alpha - 1}{2} + \frac{(5\alpha - 1)(8\alpha^3 - 8\alpha^2 + 5\alpha - 1)}{8\alpha(\alpha - 1)^2}\right)\|x - y\|.$$

Remark. It is easy to show that c_2 converges to $\log 2$ as α converges to infinity. If we choose $\alpha = 10$, then $c_1 = 6.9314...$ and $c_2 = 0.2902...$ We denote these values by K_1 and K_2 , respectively. The later value is greater than 0.1216... which is the maximum value of c_2 in [1, Proposition 2]. If $\mu \geq 2$, there exists $\delta > 0$ such that $\|\frac{1}{2}(f(x) + f(y)) - f(\frac{x+y}{2})\| \leq \delta \|x-y\|$, for $x, y \in X$.

Lemma 10. Let $f : X \longrightarrow Y$ be a continuous map such that $\|\frac{1}{2}(f(x) + f(y)) - f(\frac{x+y}{2})\| \le K \|x-y\|$, for some K > 0 and for all $x, y \in X$, with f(0) = 0. Then $\|f(\lambda x) - \lambda f(x)\| \le 2K \|x\|$, $0 \le \lambda \le 1, x \in X$.

Proof. Let $Q_n = \{\frac{p}{2^n} | p = 1, 2, ..., 2^n\}$ and $Q = \bigcup_{n=1}^{\infty} Q_n$. Then Q is dense in $\{\lambda | 0 \leq \lambda \leq 1\}$. Since f is continuous, it is sufficient to show that $\|\lambda f(x) - f(\lambda x)\| \leq \sum_{i=0}^{n-1} \frac{1}{2^i} K \|x\|$ for all $x \in X, \lambda \in Q_n$. We prove the above formula by induction. It is clearly true for n = 1, and we assume it is true if we have Q_{n-1} , for $n \geq 2$. We take $\lambda \in Q_n$, $\lambda = \frac{p}{2^n}$. If p is divided by 2, then $\lambda \in Q_{n-1}$. Otherwise there exists an integer r such that p = 2r + 1 and so $r \leq 2^{n-1} - 1$. Thus $\frac{r}{2^{n-1}}, \frac{r+1}{2^{n-1}} \in Q_{n-1}$. Hence we obtain

$$\begin{split} \|f(\frac{p}{2^n}x) - \frac{p}{2^n}f(x)\| &\leq \frac{K}{2^{n-1}}\|x\| + \frac{1}{2}\|f(\frac{r}{2^{n-1}}x) - \frac{r}{2^{n-1}}f(x) \\ &+ f(\frac{r+1}{2^{n-1}}x) - \frac{r+1}{2^{n-1}}f(x)\| \\ &\leq \frac{K}{2^{n-1}}\|x\| + K\sum_{i=0}^{n-2}\frac{1}{2^i}\|x\| \\ &= K\sum_{i=0}^{n-1}\frac{1}{2^i}\|x\|. \end{split}$$

That is, $||f(\lambda x) - \lambda f(x)|| \le 2K ||x||$ for $0 \le \lambda \le 1, x \in X$.

Theorem 11. Let $f: X \longrightarrow Y$ be an ϵ -bi-Lipschitz map with f(0) = 0, and with $\epsilon < \frac{1}{3}$. Then f is an almost linear map.

Proof. Let $x, y \in X$. By Proposition 9 and the above Remark

(7)
$$\|\frac{f(x) + f(y)}{2} - f(\frac{x+y}{2})\| \le \frac{4}{3}K_1(3\epsilon)^{K_2}\|x-y\|.$$

We put $C(\epsilon) = \frac{4}{3}K_1(3\epsilon)^{K_2}$. Then

$$\begin{split} \|\frac{1}{2}(f(x) + f(y)) - \frac{1}{2}f(x+y)\| &\leq \|\frac{1}{2}(f(x) + f(y)) - f(\frac{x+y}{2})\| \\ &+ \|f(\frac{x+y}{2}) - \frac{1}{2}f(x+y)\| \\ &\leq 2C(\epsilon)(\|x\| + \|y\|). \end{split}$$

That is,

(8)
$$||f(x) + f(y) - f(x+y)|| \le 4C(\epsilon)(||x|| + ||y||).$$

(7) and Lemma 10 imply

(9)
$$\|\lambda f(x) - f(\lambda x)\| \le 2C(\epsilon) \|x\|, \text{ for } 0 \le \lambda \le 1, x \in X.$$

For each $x \in X$, we define $g_x(\lambda) = \|\lambda f(x) - f(\lambda x)\|$ on R. Then for $\lambda_1, \lambda_2 \in R$

$$|g_x(\lambda_1) - g_x(\lambda_2)| = |\|\lambda_1 f(x) - f(\lambda_1 x)\| - \|\lambda_2 f(x) - f(\lambda_2 x)\||$$

$$\leq \|\lambda_1 f(x) - \lambda_2 f(x)\| + \|f(\lambda_1 x) - f(\lambda_2 x)\|$$

$$\leq 2|\lambda_1 - \lambda_2|(1 + \epsilon)||x||.$$

Putting $\lambda_2 = 0$, we obtain

(10)
$$\|\lambda f(x) - f(\lambda x)\| \le 2|\lambda|(1+\epsilon)\|x\|.$$

We define $g_1(\lambda) = 2\lambda(1+\epsilon)||x||$ and $g_2(\lambda) = 2C(\epsilon)||x||$, for $\lambda \ge 0$. Then g_1 and g_2 have the common value at $\lambda = \frac{C(\epsilon)}{1+\epsilon}$. By simple calculation for all $0 < \alpha < 1$,

$$\min\{g_1(\lambda), g_2(\lambda)\} \le \frac{8}{3}C(\epsilon)^{1-\alpha}\lambda^{\alpha} \|x\|.$$

Then (9) and (10) imply

$$\|\lambda f(x) - f(\lambda x)\| \le \frac{8}{3}C(\epsilon)^{1-\alpha}\lambda^{\alpha}\|x\|, \text{ for } 0 \le \lambda \le 1.$$

We replace x by $\frac{1}{\lambda}x$ and multiply $\frac{1}{\lambda}$ $(0 < \lambda \leq 1)$ in the above formula and we get

$$\|\frac{1}{\lambda}f(x) - f(\frac{1}{\lambda}x)\| \leq \frac{8}{3}C(\epsilon)^{1-\alpha}(\frac{1}{\lambda})^{2-\alpha}\|x\|.$$

Thus

$$\|\lambda f(x) - f(\lambda x)\| \le \frac{8}{3}C(\epsilon)^{1-\alpha}(\lambda^{\alpha} + \lambda^{2-\alpha})\|x\| \quad \text{for } \lambda \ge 0.$$

Using (8),

$$||f(x) + f(-x)|| \le 4C(\epsilon)||x||.$$

For $\lambda < 0$, put $-\lambda = \beta$. Then

$$\begin{aligned} \|\lambda f(x) - f(\lambda x)\| &= \|f(-\beta x) + \beta f(x)\| \\ &\leq 4C(\epsilon)\beta \|x\| + \frac{8}{3}C(\epsilon)^{1-\alpha}(\beta^{\alpha} + \beta^{2-\alpha})\|x\| \\ &\leq \frac{40}{3}(C(\epsilon) + C(\epsilon)^{1-\alpha})(|\lambda|^{\alpha} + |\lambda|^{2-\alpha})\|x\|. \end{aligned}$$

That is,

$$||f(\lambda x) - \lambda f(x)|| \le D(\epsilon, \alpha)(|\lambda|^{\alpha} + |\lambda|^{2-\alpha})||x||$$

where $D(\epsilon, \alpha) = \frac{40}{3}(C(\epsilon) + C(\epsilon)^{1-\alpha}), 0 < \alpha < 1$. This completes the proof of the theorem.

Let f be an ϵ -bi-Lipschitz map from a finite dimensional Banach space X onto a finite dimensional real Banach space Y with f(0) = 0. Then there exists a linear map I near f.

Theorem 12. Let X and Y be finite dimensional real Banach spaces. If $f: X \longrightarrow Y$ is a surjective ϵ -bi-Lipschitz map with f(0) = 0 and $\epsilon < \frac{1}{3}$, then there exists a linear isomorphism $I: X \longrightarrow Y$ such that

$$||I(x) - f(x)|| \le E(\epsilon, \alpha) (||x||^{\alpha} + ||x||^{2-\alpha})$$

where $E(\epsilon, \alpha) \to 0$ as $\epsilon \to 0$ and $0 < \alpha < 1$.

Proof. Since f is a homeomorphism from X onto Y, there exists a basis

$$\{e_1, e_2, \ldots, e_n\}$$

for X such that $\{f(e_1), f(e_2), \ldots, f(e_n)\}$ are linearly independent in Y and $||e_i|| = 1, i = 1, 2, \ldots, n$. We define a surjective linear map $I : X \to Y$ by

$$I(\sum_{i=1}^{n} \alpha_i e_i) = \sum_{i=1}^{n} \alpha_i f(e_i), \qquad \alpha_i \in R, \ i = 1, 2, \dots, n.$$

If $x \in X$, there exist $\alpha_1, \alpha_2, ..., \alpha_n$ in R such that $x = \sum_{i=1}^n \alpha_i e_i$. By Theorem 11,

$$\begin{split} \|f(x) - I(x)\| &= \|f(\sum_{i=1}^{n} \alpha_{i}e_{i}) - \sum_{i=1}^{n} \alpha_{i}f(e_{i})\| \\ &\leq \|f(\sum_{i=1}^{n} \alpha_{i}e_{i}) - f(\sum_{i=1}^{n-1} \alpha_{i}e_{i}) - f(\alpha_{n}e_{n})\| \\ &+ \|f(\sum_{i=1}^{n-1} \alpha_{i}e_{i}) - f(\sum_{i=1}^{n-2} \alpha_{i}e_{i}) - f(\alpha_{n-1}e_{n-1})\| \\ &\cdots \\ &+ \|f(\alpha_{1}e_{1} + \alpha_{2}e_{2}) - f(\alpha_{1}e_{1}) - f(\alpha_{2}e_{2})\| \\ &+ \|f(\alpha_{1}e_{1}) - \alpha_{1}f(e_{1})\| + \|f(\alpha_{2}e_{2}) - \alpha_{2}f(e_{2})\| + \cdots \\ &+ \|f(\alpha_{n}e_{n}) - \alpha_{n}f(e_{n})\| \\ &\leq (n-1)D(\epsilon, \alpha)(\sum_{i=1}^{n} |\alpha_{i}|) \\ &+ D(\epsilon, \alpha)(\sum_{i=1}^{n} (|\alpha_{i}|^{\alpha} + |\alpha_{i}|^{2-\alpha})) \\ &\leq n^{2}D(\epsilon, \alpha)K(\|x\|^{\alpha} + \|x\|^{2-\alpha}), \text{ for some } K > 0. \end{split}$$

Put $E(\epsilon, \alpha) = n^2 D(\epsilon, \alpha) K$. This completes the proof of the theorem.

References

- J. Gevirtz, Injectivity in Banach spaces and the Mazur-Ulam Theorem on isometries, Trans. Amer. Math. Soc. 274 (1982), 307-318. MR 84h:46024
- K. Jarosz, Ultraproducts and small bound perturbations, Pacific J. Math. 148 (1991), 81-88. MR 91m:46022
- F. John, On quasi-isometric mappings, I, Comm. Pure Appl. Math. 21 (1968), 77-110. MR 36:5716
- S. Mazur and S. Ulam, Sur les transformations isométriques d'espaces vectoriels normés, C.R. Acad. Sci. Paris Sér. 194 (1932), 946-948.

DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, TAEJON 305-764, KOREA *E-mail address*: kwjun@math.chungnam.ac.kr

Department of Mathematics Education, Kongju National University, Kongju 314-701, Korea