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ABSTRACT. Let X and Y be real Banach spaces. A map f between X and Y is
called an e-bi-Lipschitz map if (1 —¢)|lz —y|| < ||f(z) = fF@W)|| < A +¢€)||lz -yl
for all z,y € X. In this note we show that if f is an e-bi-Lipschitz map
with f(0) = 0 from X onto Y, then f is almost linear. We also show that if

f: X — Y is a surjective e-bi-Lipschitz map with f(0) = 0, then there exists
a linear isomorphism I : X — Y such that

[1(z) = f@)Il < E(e, a)([l2]|* + [|l=]*~*)

where E(e,a) = 0ase—0and 0 < a < 1.

1. INTRODUCTION

It is a well-known classical result of Mazur and Ulam [4] that an isometry f from
a real Banach space X onto a real Banach space Y with f(0) = 0 is automatically
linear. A map f between Banach spaces X and Y is called an (m, M)-rigid map if

mllz =yl <|[If(z) = F)I < Mz —y]|

for all z,y € X. We denote a (1 — €, 1 + €)-rigid map by e-bi-Lipschitz map. The
following theorem follows from [1, Proposition 2].

Theorem. Let f be an e-bi-Lipschitz map from a real Banach space X onto a real
Banach space Y, with f(0) =0 and 0 < e < 1. Then

1f (2 +y) = @) = Fl < @)= (lel + llyl), for 2,y € X

where
a1 = (8/3)((e/8)(a® +4a—1)/(a—=1) + 1)
and
ez = (log(2/a))(log((e +7) /(e — 1)) + log(2/e)) ™
forl<a<?2.
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218 KIL-WOUNG JUN AND DAL-WON PARK

Note that co attains its maximum for o € (1,2) at @ = 1.1572... and for this
value of a, ¢; and ¢y have values 5.5704... and 0.1216. .., respectively.

Jarosz [2] conjectured that if f is an e-bi-Lipschitz map from a real Banach space
X onto a real Banach space Y, then X and Y are linearly isomorphic for sufficiently
small e. Throughout, R represents the real number field. There is an e-bi-Lipschitz
map f on R which is not a linear map on R.

Example. We define an e-bi-Lipschitz map f : R — R such that

B (1+6).’L’, lfLL'SQ,
f(x)—{ (I—e)(x—2)+2(1+¢), ifz>2.

Throughout this paper, X and Y shall denote real Banach spaces. The r-
neighborhood of a set A is denoted by B(A,r) and we abbreviate B({x},r) and
B({0},r) by B(x,r) and B(r), respectively. The corresponding closed balls are
denoted by B(x,r) and B(r). As usual, [z,%] denotes the closed segment deter-
mined by = and y. A bound subset A of X is said to be symmetric with respect
to a point a if x in A implies that 2¢ — z is also in A. If A is bounded and
symmetric with respect to a, we define radA to be inf{r > 0 : A C Bfa,r)}.
We denote the Blaschke distance function on sets by D; that is, for Ay, A2 C X,
D(A;1,Ay) =inf{r >0: A; C B(Az2,r) and Az C B(A1,r)}. For AC X and o > 0
we define T(A,a) = {r € X : AC B(z,a)} = ({B(y,a) :y € A}. Forx,y € X we
define S(x,y,a) = T([z,y],a) = T({x,y},a) = B(z,a) N B(y,a). We also define
C(A,a) = ANT(A, «). The following lemmas are due to Gevirtz [1] and John [3].

Lemma 1 [1, Lemma 2]. Let z,y € X and let 8,y > |x —y|/2. Then

1B — I
D(S’(;{;’y,ﬂ), S(%%V)) S W

Lemma 2 [1, Lemma 3|. Let 6 > 0. For every bounded conver symmetric subset
A # @ of X with center a and all 8,7 for which B(a,6) C C(A, ) and v > radA

there holds
rad A

D(C(A, §),C(A) < (1+ 7%

N8B =l

Lemma 3 [1, Lemma 4]. Let § > 0. For every bounded convex symmetric subset
A # & of X with center a and F C X and 3 for which C(F, () # & and B(a,$) C
C(A, B) there holds

D(C(A, B),C(F, B)) < (1 + LradA

)D(A, F).

Lemma 4 [1, Lemma 5]. Let ACU C X and let f : U — Y be (m, M)-rigid.
Then for all a > 0

FUNT(A ) C F(U)NT(F(A), Ma) C F(UNT(A, %a)).

Lemma 5 [3, Theorem II|. Let f : X — Y be (m, M)-rigid. Then f(B(a,r)) D
B(f(a), mr).
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2. THE RESULTS

Definition 6. A map f from a real Banach space X into a real Banach space Y
is an almost linear map if it satisfies

1f(@+y) = fz) = fWI < D)zl +[lyl), forz,y e X

and
If(Az) = Af(x)|| < D(e)E(N)||z||, for A€ R,x € X

where D(e) - 0ase — 0 and F(A\) - 0as A — 0.

Let  # y be points in X and let d = ||z — y||. For @ > 1 we define S,, =
Sn(z, y,d @) recursively as follows : S = S(z,y, %) and, for n > 1, S,qq =

C(Sn, 5+ 21, 37 (= 1)d).

Lemma 7. Let x # y be points in X, a = %11 and o« > 1. Then for n > 1,5, is
conver and symmetric with respect to a and

d)c S, C Bla ad+2—a—1

=2

-1
B(a, 2

Proof. 1t is easy to verify that the assertion is true for n = 1. Assume inductively
that it is true for a given n > 1. The inductive hypothesis implies that S, is
convex and symmetric with respect to a. If z € B(a, ¢ d) and u € S, then

Iz —ull < llz = all +[la — ul|

<—d+—d+z2l (a —1)d

(0]
2—nd+;§(a —1)d

This implies that z € Sp41. If u € Spy1, then |lu—2[| < 24 + 37" | L (a —1)d for
all z € S,,. Since S, 41 is symmetric with respect to a, 2a —u € S,,41 C S,. Putting
2a—u instead of z in the above formula, we have [|u—al| < ;24 +5 7 La—1)d.

i=2 27
That is, rad Spt1 < 524 + S0 L (a — 1)d.

Proposition 8. Let z,y € X, |lt —y| = d,a > 1 and 0 < m < M. Let
f: X — Y be an (m, M)-rigid map. Writing Sy, S., and u for Sy(z,y,d,a),
Su(f(z), f(y), Md, o) and 2L, respectively, there holds

D(f(Sn), ;) < K(m, M, )|z -y

— n— 013— a2 o —
where K(m, M, o) = M(p—1)(Te=t)n=-1 (2 (a_llg)(ﬁiﬂ) 2).

Proof. Replacing U, A by X, {x,y}, respectively, in Lemma 4, we obtain

(1) f(S1) € 81 C f(S(x,y,aud/2)).
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220 KIL-WOUNG JUN AND DAL-WON PARK

Since Spy1 = C(Sn, 57 d 50 7 (o — 1)d), Lemma 4 with A = U = S,, implies
that

F(Sn1) € CUH(S), Ml + 3" (o= 1)

(2) .
C HC(Sns il + 3 gola= 1))

Formula (1) gives

D(F(51),80) < DU(S (. 50), £(S(a.y, “5%)

apd

d
< MD(S(z,y, %)75(%% T>>'

Lemma 1 with 8 = % and v = O‘T“d implies that we have D(f(S1),5]) <

Ma2d5t=). Put D, = D(f(Sn),S}). Let n > 1 and

n

IV:Qﬂ&)Mﬂ%+§:%m—UU

Then (2) implies W # @, and so
(3) Dn+1 S D(f(Sn—Fl)aW)_'_D(S;L—i-le)

Formula (2) gives

n

1

D(f(Sus1). W) < D(F(Sus1), (C(Sus pdl 5 + 3 5ol = 1))

=1

"1
=D(f(C Sn,d +E §Q_1
=1

1
f( nvud +§ ?a_l
i=1

By Lemma 2 and Lemma 7,

ad/2" + 3" (o — 1)d/2i)

D(f(Sp41), W) < d(u —1)M (1 + (a —1)d/2

(@ =
< d( —1)M<1+afl) (%Jro‘;l)
< d(p — 1)1\/./(22(‘3;__13)2
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Similarly7 we may apply Lemma 3 with a = w, A =S8, F = f(Sn),
B=M[g 43" | d(a—1)d] and § = M251d.

D(S}41, W) = D(C(S}, Ml + Y 5~ 1)),

aﬂ&»Mﬂ%+§j§m—nm

A(ad/2" + 37 2(&
O* (@ - 1)df2

da—1
< a—1 ) Do
From (4) and (5) we get

(2a —1)? 5a— 1
< — .
Duga < dlp = DM e+ (=1 ) Dn

—

ot
~
IN

IN

Let G = d(u — 1)MZE1" 1 = 52=1. By induction we then get

D, <GA+H+ - +H" 3+ H"'D

H™1 -1
=G| —— H" D
( -1 )—!— 1

5a0—1\""" /8a® —8a2 + 5o — 1
<(p—1)M|—— — 9|
S e R e e ) Lt
Proposition 9. Let z,y € X, 0 <m < M, u = % <2 Let f: X —Y be
(m, M)-rigid. Then

I =g (55 1< et

3a 1 (9a—5)(17a® —25a°4+16a—4)

. log 2
where ¢; = S@a—T)(a—1)2 and cy = ﬁg 2062-5) for a > 1.

Proof. Put a = u and p w By Lemma 5 and Lemma 7, we ob-
tain B(f(a), m%5= 1 d) C f(Sn) and S, C B(p, M + M25td). Since D, =

n) &
D(f(Sn),S), f(S ) C B(S),, Dy,). Thus we have
ad a—1

-1
B(f(@),m=5—d) € B(B(p. M + M=—d),Dy)
:B(p,Mg—;l+Ma_1d+Dn).
Hence Proposition 8 implies
o — ad
[[f(a) = pll <(M — m)—d Moo
(6) -1gq.3 2
da—1 8a”® — 8a” +da — 1
- 1M
Fdlp=1) (a—l) 8a(a—1)
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Let £ = % and F' = % For given a, p we use an integer n which is chosen
in such a way that the last expression takes the form c¢i1(u — 1)2M|x — y|,

apart from negligible differences. Explicitly, we write n in the form

n=—0F(log(p—1))/logF+£+1
where 0 < 3 < 1 and 0 < ¢ < 1. Since u < 2, we have that n > 1, (u — 1)F"~1 =
(M_1>1—BF£ < (M_1>1—BF and E™ = (M_1>—ﬁlog%/logFE£ < (M_1)610g2/10gF'

If 3 is determined so that 1—3 = Slog2/log F', then 8 = %. Put ey =1-0.
Then
n n—1 3 2
1 da—1 8a® —8a” +bHa—1
dM — -1
h(z)*%“ ><a—1> Sa@=1)
(5a —1)(8a3 — 8a? + 5a — 1)
< dM(p—1) .
- (n=1) <a + 8a(a — 1)2

Since 0 < cog <1 and p <2
-1
(M —m) e

2

o —

2

1
d< M(u—1)> d.

Thus

1f(a) = pll < M — 1)z 30 (5a — 1)(8a° —8a2 4+ 5a0 — 1)

Remark. 1t is easy to show that co converges to log2 as a converges to infinity.
If we choose @ = 10, then ¢; = 6.9314... and co = 0.2902.... We denote these
values by K; and K, respectively. The later value is greater than 0.1216 ... which
is the maximum value of ¢z in [1, Proposition 2]|. If u > 2, there exists § > 0 such
that [|3(£(2) + f(5) — S < 8]l — y]|, for 2,y € X.

Lemma 10. Let f : X — Y be a continuous map such that ||5(f(z) + f(y)) —
fED)| < K|z —yl, for some K >0 and for all z,y € X, with f(0) = 0. Then

[f(Az) = Af(2)| <2K]jzl|, 0<A<lzelX.

Proof. Let Qn = {&[p = 1,2,...,2"} and Q = J,_; Qn. Then Q is dense in
{A0 < XA <1}. Since f is continuous, it is sufficient to show that |\ f(z)—f(A\x)| <
ZZ:Ol > K| z|| for all z € X, A € Q,,. We prove the above formula by induction. It
is clearly true for n = 1, and we assume it is true if we have @Q,_1, for n > 2. We
take A € Qn, A = 4%. If p is divided by 2, then A € Q1. Otherwise there exists
an integer r such that p = 2r +1 and so r < 2"~! — 1. Thus 57T 22%11 € Qn-1.
Hence we obtain

r

K 1
1£(gr2) = 3o f @ < gollell + 511 £ (Grg0) = i f @)
r+1 r+1

+ 1 Ggo) = S @)

n—2

K 1

el + K Y S lel
i=0

n—1 1
~KY Lal.
=0
That is, || f(Ax) = Af(z)|| <2K||z|][ for 0 <A <1,z € X.

<
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Theorem 11. Let f : X — Y be an e-bi-Lipschitz map with f(0) = 0, and with
€< % Then f is an almost linear map.

Proof. Let x,y € X. By Proposition 9 and the above Remark

™ TG p 0y < 2 e — .
We put C(e) = §K1(3¢)%2. Then
1507 @) + 7)) — 57 + 9l < 5@ + 7)) — 722
HIACEEY) - S+ )
< 20() (| + Iyl
That is,
) 17@) + 7() ~ @+ )l < 40 el + lyl).
(7) and Lemma 10 imply
) IAF(@) — fOw)] < 20 all, for 0S A< 1z € X,

For each x € X, we define g, (\) = ||Af(z) — f(Az)|| on R. Then for A\, A2 € R

192(A1) = g2 (A2)| = [[IALf (&) = fF (M) || = [[Aef (2) = F (o)
< [Af (@) = A f (@) + 1 (M) = f(Ae)]
< 2[A1 = Ao|(L+ €)=

Putting A2 = 0, we obtain
(10) [Af(z) = fA2)] < 2IA1(1 + €)l|l]|.

We define g1(A) = 2A(1 + €)||z|| and g2(A) = 2C(e)||z||, for A > 0. Then g; and g2
have the common value at A = % By simple calculation for all 0 < a < 1,

. 8 —ay«
minfgs (), 22} < S0\ .
Then (9) and (10) imply

IAf(e) = )] < 5O A Yfal, for 0 <A< 1,

We replace x by %x and multiply % (0 < A <1) in the above formula and we get

1 8 1

I55) ~ 75l < 3CE () el
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Thus

[Af(z) = fAz)]| < 20(6)1_(1()\& + AT x| for A>0.

Using (8),
£ (2) + f(==)|| < 4C(e)[]|.

For A < 0, put —A = . Then

IAf(z) = fA2)|| = [[f(=Bz) + Bf ()]

<AC(Bla] + SO (5" + 5
(Cle) + C() ™) (A + [AP7*) .
That is,
[f(Az) = Af ()| < D(e; a)(IN* + (A7) |«

where D(e,a) = 2(C(€) + C(e)'=*), 0 < a < 1. This completes the proof of the
theorem.

Let f be an e-bi-Lipschitz map from a finite dimensional Banach space X onto
a finite dimensional real Banach space Y with f(0) = 0. Then there exists a linear
map I near f.

Theorem 12. Let X andY be finite dimensional real Banach spaces. If f : X —
Y is a surjective e-bi-Lipschitz map with f(0) = 0 and € < %, then there exists a
linear isomorphism I : X — Y such that

1(z) = f(@)]| < E(e, e)([l]|* + [l]]*~*)

where E(e,a) -0 ase— 0 and 0 < a < 1.

Proof. Since f is a homeomorphism from X onto Y, there exists a basis

{61,62,...,6n}

for X such that {f(e1), f(e2),..., f(en)} are linearly independent in Y and ||e;|| =
1,2=1,2,...,n. We define a surjective linear map [ : X — Y by

I(Zaiei) :Zaif(ei), a,eER i=1,2,...,n.
=1 =1
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If z € X, there exist ay, ag,...,a, in R such that z = Z?:l a;e;. By Theorem 11,
1£(@) = I@)l| = [IF O aied) = Y aif(es)]
i=1 i=1
n n—1
<IFQ e = FO aies) = flanen)|
i=1 i=1

n—1 n—2
Q] aien) = FO aie) = fan—1en1)]
=1 i=1

+ [|f(rer + azea) — f(arer) — f(azez)||
+ [|f(eaer) — arf(er)|| + || f(aze2) — aaf(e2)l| + -+
+ [ f(anen) — anf(en)]

< (n—1)D(e, Oé)(z |ail)

+D(e,a)(Y_ (el + i)
i=1

<n’D(e,0)K

Put E(e, ) = n?D(e, ) K. This completes the proof of the theorem.

(||| + ||z]|>~), for some K > 0.
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