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Abstract. Let X and Y be real Banach spaces. A map f between X and Y is
called an ε-bi-Lipschitz map if (1− ε)‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ (1 + ε)‖x− y‖
for all x, y ∈ X. In this note we show that if f is an ε-bi-Lipschitz map
with f(0) = 0 from X onto Y , then f is almost linear. We also show that if
f : X −→ Y is a surjective ε-bi-Lipschitz map with f(0) = 0, then there exists
a linear isomorphism I : X → Y such that

‖I(x)− f(x)‖ ≤ E(ε, α)(‖x‖α + ‖x‖2−α)

where E(ε, α)→ 0 as ε→ 0 and 0 < α < 1.

1. Introduction

It is a well-known classical result of Mazur and Ulam [4] that an isometry f from
a real Banach space X onto a real Banach space Y with f(0) = 0 is automatically
linear. A map f between Banach spaces X and Y is called an (m,M)-rigid map if

m‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤M‖x− y‖

for all x, y ∈ X . We denote a (1 − ε, 1 + ε)-rigid map by ε-bi-Lipschitz map. The
following theorem follows from [1, Proposition 2].

Theorem. Let f be an ε-bi-Lipschitz map from a real Banach space X onto a real
Banach space Y , with f(0) = 0 and 0 ≤ ε < 1

3 . Then

‖f(x+ y)− f(x)− f(y)‖ ≤ c1(3ε)c2(‖x‖+ ‖y‖), for x, y ∈ X

where
c1 = (8/3)((α/8)(α2 + 4α− 1)/(α− 1) + 1)

and
c2 = (log(2/α))(log((α+ 7)/(α− 1)) + log(2/α))−1

for 1 < α < 2.
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Note that c2 attains its maximum for α ∈ (1, 2) at α = 1.1572 . . . and for this
value of α, c1 and c2 have values 5.5704 . . . and 0.1216 . . . , respectively.

Jarosz [2] conjectured that if f is an ε-bi-Lipschitz map from a real Banach space
X onto a real Banach space Y , then X and Y are linearly isomorphic for sufficiently
small ε. Throughout, R represents the real number field. There is an ε-bi-Lipschitz
map f on R which is not a linear map on R.

Example. We define an ε-bi-Lipschitz map f : R→ R such that

f(x) =

{
(1 + ε)x, if x ≤ 2,

(1− ε)(x− 2) + 2(1 + ε), if x > 2.

Throughout this paper, X and Y shall denote real Banach spaces. The r-
neighborhood of a set A is denoted by B(A, r) and we abbreviate B({x}, r) and
B({0}, r) by B(x, r) and B(r), respectively. The corresponding closed balls are
denoted by B(x, r) and B(r). As usual, [x, y] denotes the closed segment deter-
mined by x and y. A bound subset A of X is said to be symmetric with respect
to a point a if x in A implies that 2a − x is also in A. If A is bounded and
symmetric with respect to a, we define radA to be inf{r > 0 : A ⊂ B(a, r)}.
We denote the Blaschke distance function on sets by D; that is, for A1, A2 ⊂ X ,
D(A1, A2) = inf{r > 0 : A1 ⊂ B(A2, r) and A2 ⊂ B(A1, r)}. For A ⊂ X and α > 0
we define T (A,α) = {x ∈ X : A ⊂ B(x, α)} =

⋂
{B(y, α) : y ∈ A}. For x, y ∈ X we

define S(x, y, α) = T ([x, y], α) = T ({x, y}, α) = B(x, α) ∩ B(y, α). We also define
C(A,α) = A ∩ T (A,α). The following lemmas are due to Gevirtz [1] and John [3].

Lemma 1 [1, Lemma 2]. Let x, y ∈ X and let β, γ > |x− y|/2. Then

D(S(x, y, β), S(x, y, γ)) ≤ |β − γ|
1− |x− y|/2β .

Lemma 2 [1, Lemma 3]. Let δ > 0. For every bounded convex symmetric subset
A 6= ∅ of X with center a and all β, γ for which B(a, δ) ⊂ C(A, β) and γ > radA
there holds

D(C(A, β), C(A, γ)) ≤ (1 +
radA

δ
)|β − γ|.

Lemma 3 [1, Lemma 4]. Let δ > 0. For every bounded convex symmetric subset
A 6= ∅ of X with center a and F ⊂ X and β for which C(F, β) 6= ∅ and B(a, δ) ⊂
C(A, β) there holds

D(C(A, β), C(F, β)) ≤ (1 +
4 radA

δ
)D(A,F ).

Lemma 4 [1, Lemma 5]. Let A ⊂ U ⊂ X and let f : U −→ Y be (m,M)-rigid.
Then for all α > 0

f(U ∩ T (A,α)) ⊂ f(U) ∩ T (f(A),Mα) ⊂ f(U ∩ T (A,
M

m
α)).

Lemma 5 [3, Theorem II]. Let f : X → Y be (m,M)-rigid. Then f(B(a, r)) ⊃
B(f(a),mr).
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2. The results

Definition 6. A map f from a real Banach space X into a real Banach space Y
is an almost linear map if it satisfies

‖f(x+ y)− f(x)− f(y)‖ ≤ D(ε)(‖x‖+ ‖y‖), for x, y ∈ X

and
‖f(λx)− λf(x)‖ ≤ D(ε)E(λ)‖x‖, for λ ∈ R, x ∈ X

where D(ε)→ 0 as ε→ 0 and E(λ)→ 0 as λ→ 0.

Let x 6= y be points in X and let d = ‖x − y‖. For α > 1 we define Sn =
Sn(x, y, d, α) recursively as follows : S1 = S(x, y, αd2 ) and, for n ≥ 1, Sn+1 =

C(Sn,
αd
2n +

∑n
i=1

1
2i (α− 1)d).

Lemma 7. Let x 6= y be points in X, a = x+y
2 and α > 1. Then for n ≥ 1, Sn is

convex and symmetric with respect to a and

B(a,
α− 1

2
d) ⊂ Sn ⊂ B(a,

αd

2n
+

n∑
i=2

1

2i
(α− 1)d).

Proof. It is easy to verify that the assertion is true for n = 1. Assume inductively
that it is true for a given n ≥ 1. The inductive hypothesis implies that Sn+1 is
convex and symmetric with respect to a. If z ∈ B(a, α−1

2 d) and u ∈ Sn, then

‖z − u‖ ≤ ‖z − a‖+ ‖a− u‖

<
α− 1

2
d+

α

2n
d+

n∑
i=2

1

2i
(α − 1)d

=
α

2n
d+

n∑
i=1

1

2i
(α − 1)d.

This implies that z ∈ Sn+1. If u ∈ Sn+1, then ‖u− z‖ ≤ αd
2n +

∑n
i=1

1
2i (α− 1)d for

all z ∈ Sn. Since Sn+1 is symmetric with respect to a, 2a−u ∈ Sn+1 ⊂ Sn. Putting

2a−u instead of z in the above formula, we have ‖u−a‖ ≤ αd
2n+1 +

∑n+1
i=2

1
2i (α−1)d.

That is, radSn+1 ≤ αd
2n+1 +

∑n+1
i=2

1
2i (α− 1)d.

Proposition 8. Let x, y ∈ X, ‖x − y‖ = d, α > 1 and 0 < m ≤ M . Let
f : X −→ Y be an (m,M)-rigid map. Writing Sn, S′n and µ for Sn(x, y, d, α),
Sn(f(x), f(y),Md, α) and M

m , respectively, there holds

D(f(Sn), S′n) ≤ K(m,M,α)‖x− y‖

where K(m,M,α) = M(µ− 1)(7α−1
α−1 )n−1(31α3−18α2+10α−2

(α−1)(6α−4) ).

Proof. Replacing U,A by X, {x, y}, respectively, in Lemma 4, we obtain

(1) f(S1) ⊂ S′1 ⊂ f(S(x, y, αµd/2)).
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Since Sn+1 = C(Sn,
αd
2n +

∑n
i=1

1
2i (α − 1)d), Lemma 4 with A = U = Sn implies

that

(2)

f(Sn+1) ⊂ C(f(Sn),Md[
α

2n
+

n∑
i=1

1

2i
(α − 1)])

⊂ f(C(Sn, µd[
α

2n
+

n∑
i=1

1

2i
(α− 1)])).

Formula (1) gives

D(f(S1), S′1) ≤ D(f(S(x, y,
αd

2
)), f(S(x, y,

αµd

2
)))

≤MD(S(x, y,
αd

2
), S(x, y,

αµd

2
)).

Lemma 1 with β = αd
2 and γ = αµd

2 implies that we have D(f(S1), S′1) ≤
Mα2d (µ−1)

2(α−1) . Put Dn = D(f(Sn), S′n). Let n ≥ 1 and

W = C(f(Sn),Md[
α

2n
+

n∑
i=1

1

2i
(α− 1)]).

Then (2) implies W 6= ∅, and so

(3) Dn+1 ≤ D(f(Sn+1),W ) +D(S′n+1,W ).

Formula (2) gives

D(f(Sn+1),W ) ≤ D(f(Sn+1), f(C(Sn, µd[
α

2n
+

n∑
i=1

1

2i
(α− 1)])))

= D(f(C(Sn, d[
α

2n
+

n∑
i=1

1

2i
(α− 1)])),

f(C(Sn, µd[
α

2n
+

n∑
i=1

1

2i
(α− 1)]))).

By Lemma 2 and Lemma 7,

(4)

D(f(Sn+1),W ) ≤ d(µ− 1)M

(
1 +

αd/2n +
∑n
i=2(α− 1)d/2i

(α− 1)d/2

)
× [

α

2n
+

n∑
i=1

1

2i
(α− 1)]

≤ d(µ− 1)M

(
1 +

α

α− 1

)(
α

2
+
α− 1

2

)
≤ d(µ− 1)M

(2α− 1)2

2(α− 1)
.
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Similarly, we may apply Lemma 3 with a = f(x)+f(y)
2 , A = S′n, F = f(Sn),

β = M [αd2n +
∑n
i=1

1
2i (α− 1)d] and δ = M α−1

2 d.

D(S′n+1,W ) = D(C(S′n,Md[
α

2n
+

n∑
i=1

1

2i
(α− 1)]),

C(f(Sn),Md[
α

2n
+

n∑
i=1

1

2i
(α− 1)]))

≤
(

1 +
4(αd/2n +

∑n
i=2(α− 1)d/2i)

(α− 1)d/2

)
Dn(5)

≤
(

5α− 1

α− 1

)
Dn.

From (4) and (5) we get

Dn+1 ≤ d(µ− 1)M
(2α− 1)2

2(α− 1)
+

(
5α− 1

α− 1

)
Dn.

Let G = d(µ− 1)M (2α−1)2

2(α−1) , H = 5α−1
α−1 . By induction we then get

Dn ≤ G(1 +H + · · ·+Hn−2) +Hn−1D1

= G

(
Hn−1 − 1

H − 1

)
+Hn−1D1

≤ (µ− 1)M

(
5α− 1

α− 1

)n−1(
8α3 − 8α2 + 5α− 1

8α(α− 1)

)
‖x− y‖.

Proposition 9. Let x, y ∈ X, 0 < m ≤ M, µ = M
m < 2. Let f : X −→ Y be

(m,M)-rigid. Then

‖f(x) + f(y)

2
− f

(
x+ y

2

)
‖ ≤ c1(µ− 1)c2M‖x− y‖

where c1 = 3α−1
2 + (9α−5)(17α3−25α2+16α−4)

8(2α−1)(α−1)2 and c2 = log 2

log 2(9α−5)
α−1

for α > 1.

Proof. Put a = x+y
2 and p = f(x)+f(y)

2 . By Lemma 5 and Lemma 7, we ob-

tain B(f(a),mα−1
2 d) ⊂ f(Sn) and S′n ⊂ B(p,M αd

2n + M α−1
2 d). Since Dn =

D(f(Sn), S′n), f(Sn) ⊂ B(S′n, Dn). Thus we have

B(f(a),m
α− 1

2
d) ⊂ B(B(p,M

αd

2n
+M

α− 1

2
d), Dn)

= B(p,M
αd

2n
+M

α− 1

2
d+Dn).

Hence Proposition 8 implies

(6)

‖f(a)− p‖ ≤(M −m)
α− 1

2
d+M

αd

2n

+ d(µ− 1)M

(
5α− 1

α− 1

)n−1
8α3 − 8α2 + 5α− 1

8α(α− 1)
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



222 KIL-WOUNG JUN AND DAL-WON PARK

Let E = 1
2 and F = 5α−1

α−1 . For given α, µ we use an integer n which is chosen

in such a way that the last expression takes the form c1(µ − 1)c2M‖x − y‖,
apart from negligible differences. Explicitly, we write n in the form

n = −β(log(µ− 1))/ logF + ξ + 1

where 0 < β < 1 and 0 ≤ ξ < 1. Since µ < 2, we have that n ≥ 1, (µ − 1)Fn−1 =

(µ− 1)1−βF ξ ≤ (µ− 1)1−βF and En = (µ− 1)−β log 1
2/ logFEξ ≤ (µ− 1)β log 2/ log F .

If β is determined so that 1−β = β log 2/ logF , then β = logF
log 2+logF . Put c2 = 1−β.

Then

dM [α

(
1

2

)n
+ (µ− 1)

(
5α− 1

α− 1

)n−1
8α3 − 8α2 + 5α− 1

8α(α− 1)
]

≤ dM(µ− 1)c2
(
α+

(5α− 1)(8α3 − 8α2 + 5α− 1)

8α(α− 1)2

)
.

Since 0 < c2 < 1 and µ ≤ 2

(M −m)
α− 1

2
d ≤M(µ− 1)c2

α− 1

2
d.

Thus

‖f(a)− p‖ ≤M(µ− 1)c2(
3α− 1

2
+

(5α− 1)(8α3 − 8α2 + 5α− 1)

8α(α− 1)2
)‖x− y‖.

Remark. It is easy to show that c2 converges to log 2 as α converges to infinity.
If we choose α = 10, then c1 = 6.9314 . . . and c2 = 0.2902 . . . . We denote these
values by K1 and K2, respectively. The later value is greater than 0.1216 . . . which
is the maximum value of c2 in [1, Proposition 2]. If µ ≥ 2, there exists δ > 0 such
that ‖ 1

2 (f(x) + f(y))− f(x+y
2 )‖ ≤ δ‖x− y‖, for x, y ∈ X .

Lemma 10. Let f : X −→ Y be a continuous map such that ‖ 1
2 (f(x) + f(y)) −

f(x+y
2 )‖ ≤ K‖x− y‖, for some K > 0 and for all x, y ∈ X, with f(0) = 0. Then

‖f(λx)− λf(x)‖ ≤ 2K‖x‖, 0 ≤ λ ≤ 1, x ∈ X.

Proof. Let Qn = { p2n |p = 1, 2, . . . , 2n} and Q =
⋃∞
n=1Qn. Then Q is dense in

{λ| 0 ≤ λ ≤ 1 }. Since f is continuous, it is sufficient to show that ‖λf(x)−f(λx)‖ ≤∑n−1
i=0

1
2iK‖x‖ for all x ∈ X,λ ∈ Qn. We prove the above formula by induction. It

is clearly true for n = 1, and we assume it is true if we have Qn−1, for n ≥ 2. We
take λ ∈ Qn, λ = p

2n . If p is divided by 2, then λ ∈ Qn−1. Otherwise there exists

an integer r such that p = 2r + 1 and so r ≤ 2n−1 − 1. Thus r
2n−1 ,

r+1
2n−1 ∈ Qn−1.

Hence we obtain

‖f(
p

2n
x) − p

2n
f(x)‖ ≤ K

2n−1
‖x‖+

1

2
‖f(

r

2n−1
x)− r

2n−1
f(x)

+ f(
r + 1

2n−1
x) − r + 1

2n−1
f(x)‖

≤ K

2n−1
‖x‖+K

n−2∑
i=0

1

2i
‖x‖

= K
n−1∑
i=0

1

2i
‖x‖.

That is, ‖f(λx)− λf(x)‖ ≤ 2K‖x‖ for 0 ≤ λ ≤ 1, x ∈ X .
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Theorem 11. Let f : X −→ Y be an ε-bi-Lipschitz map with f(0) = 0, and with
ε < 1

3 . Then f is an almost linear map.

Proof. Let x, y ∈ X . By Proposition 9 and the above Remark

(7) ‖f(x) + f(y)

2
− f(

x+ y

2
)‖ ≤ 4

3
K1(3ε)K2‖x− y‖.

We put C(ε) = 4
3K1(3ε)K2 . Then

‖1

2
(f(x) + f(y))− 1

2
f(x+ y)‖ ≤ ‖1

2
(f(x) + f(y))− f(

x+ y

2
)‖

+ ‖f(
x+ y

2
)− 1

2
f(x+ y)‖

≤ 2C(ε)(‖x‖+ ‖y‖).

That is,

(8) ‖f(x) + f(y)− f(x+ y)‖ ≤ 4C(ε)(‖x‖+ ‖y‖).

(7) and Lemma 10 imply

(9) ‖λf(x)− f(λx)‖ ≤ 2C(ε)‖x‖, for 0 ≤ λ ≤ 1, x ∈ X.

For each x ∈ X , we define gx(λ) = ‖λf(x)− f(λx)‖ on R. Then for λ1, λ2 ∈ R

|gx(λ1)− gx(λ2)| = |‖λ1f(x)− f(λ1x)‖ − ‖λ2f(x)− f(λ2x)‖|
≤ ‖λ1f(x)− λ2f(x)‖+ ‖f(λ1x)− f(λ2x)‖
≤ 2|λ1 − λ2|(1 + ε)‖x‖.

Putting λ2 = 0, we obtain

(10) ‖λf(x)− f(λx)‖ ≤ 2|λ|(1 + ε)‖x‖.

We define g1(λ) = 2λ(1 + ε)‖x‖ and g2(λ) = 2C(ε)‖x‖, for λ ≥ 0. Then g1 and g2

have the common value at λ = C(ε)
1+ε . By simple calculation for all 0 < α < 1,

min{g1(λ), g2(λ)} ≤ 8

3
C(ε)1−αλα‖x‖.

Then (9) and (10) imply

‖λf(x)− f(λx)‖ ≤ 8

3
C(ε)1−αλα‖x‖, for 0 ≤ λ ≤ 1.

We replace x by 1
λx and multiply 1

λ (0 < λ ≤ 1) in the above formula and we get

‖ 1

λ
f(x)− f(

1

λ
x)‖ ≤ 8

3
C(ε)1−α(

1

λ
)2−α‖x‖.
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Thus

‖λf(x)− f(λx)‖ ≤ 8

3
C(ε)1−α(λα + λ2−α)‖x‖ for λ ≥ 0.

Using (8),

‖f(x) + f(−x)‖ ≤ 4C(ε)‖x‖.

For λ < 0, put −λ = β. Then

‖λf(x)− f(λx)‖ = ‖f(−βx) + βf(x)‖

≤ 4C(ε)β‖x‖+
8

3
C(ε)1−α(βα + β2−α)‖x‖

≤ 40

3
(C(ε) + C(ε)1−α)(|λ|α + |λ|2−α)‖x‖.

That is,

‖f(λx)− λf(x)‖ ≤ D(ε, α)(|λ|α + |λ|2−α)‖x‖

where D(ε, α) = 40
3 (C(ε) + C(ε)1−α), 0 < α < 1. This completes the proof of the

theorem.

Let f be an ε-bi-Lipschitz map from a finite dimensional Banach space X onto
a finite dimensional real Banach space Y with f(0) = 0. Then there exists a linear
map I near f .

Theorem 12. Let X and Y be finite dimensional real Banach spaces. If f : X −→
Y is a surjective ε-bi-Lipschitz map with f(0) = 0 and ε < 1

3 , then there exists a
linear isomorphism I : X −→ Y such that

‖I(x)− f(x)‖ ≤ E(ε, α)(‖x‖α + ‖x‖2−α)

where E(ε, α)→ 0 as ε→ 0 and 0 < α < 1.

Proof. Since f is a homeomorphism from X onto Y , there exists a basis

{e1, e2, . . . , en}

for X such that {f(e1), f(e2), . . . , f(en)} are linearly independent in Y and ‖ei‖ =
1, i = 1, 2, . . . , n. We define a surjective linear map I : X → Y by

I(
n∑
i=1

αiei) =
n∑
i=1

αif(ei), αi ∈ R, i = 1, 2, . . . , n.
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If x ∈ X , there exist α1, α2, ..., αn in R such that x =
∑n
i=1 αiei. By Theorem 11,

‖f(x)− I(x)‖ = ‖f(
n∑
i=1

αiei)−
n∑
i=1

αif(ei)‖

≤ ‖f(
n∑
i=1

αiei)− f(
n−1∑
i=1

αiei)− f(αnen)‖

+ ‖f(
n−1∑
i=1

αiei)− f(
n−2∑
i=1

αiei)− f(αn−1en−1)‖

· · ·
+ ‖f(α1e1 + α2e2)− f(α1e1)− f(α2e2)‖
+ ‖f(α1e1)− α1f(e1)‖+ ‖f(α2e2)− α2f(e2)‖+ · · ·
+ ‖f(αnen)− αnf(en)‖

≤ (n− 1)D(ε, α)(
n∑
i=1

|αi|)

+D(ε, α)(
n∑
i=1

(|αi|α + |αi|2−α))

≤ n2D(ε, α)K(‖x‖α + ‖x‖2−α), for some K > 0.

Put E(ε, α) = n2D(ε, α)K. This completes the proof of the theorem.
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