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ALMOST MINIMIZERS OF THE ONE-PHASE FREE

BOUNDARY PROBLEM

D. DE SILVA AND O. SAVIN

Abstract. We consider almost minimizers to the one-phase energy functional
and we prove their optimal Lipschitz regularity and partial regularity of their
free boundary. These results were recently obtained by David and Toro [DaT],
and David, Engelstein, and Toro [DaET]. Our proofs provide a different
method based on a non-infinitesimal notion of viscosity solutions that we in-
troduced in [DS].

1. Introduction

This note is concerned with almost-minimizers of the classical one-phase (Bernoulli)
energy functional,

(1.1) J(u,Ω) :=

ˆ

Ω

(|∇u|2 + χ{u>0}) dx,

with Ω a bounded domain in R
n and u ≥ 0.

Minimizers of J were first investigated systematically by Alt and Caffarelli. Two
fundamental questions are answered in the pioneer article [AC], that is the Lipschitz
regularity of minimizers and the regularity of “flat” free boundaries, which in turns
gives the almost-everywhere regularity of minimizing free boundaries. The viscosity
approach to the associated free boundary problem was later developed by Caffarelli
in [C1, C2, C3]. In particular in [C2] the regularity of Lipschitz free boundaries is
obtained. There is a wide literature on this problem and the corresponding two-
phase problem, and we refer the reader to the paper [DFS] for a comprehensive
survey.

Almost minimizers of J were investigated recently in [DaT, DaET]. In [DaT]
the authors obtained local Lipschitz continuity of almost minimizers in the more
general case of a two-phase energy functional. Later, in [DaET] the authors proved
uniform rectifiability of the free boundary, and in the purely one-phase case they
showed that the free boundary is C1,α almost-everywhere. Thus the pioneer results
in [AC] have been extended to the context of almost minimizers.

Our purpose here is to provide a different approach, based on non-variational
techniques, to study almost minimizers of J and their free boundaries. Our strategy
is inspired by our recent work [DS] in which we develop a Harnack type inequality for
functions that do not necessarily satisfy an infinitesimal equation but rather exhibit
a two-scale behavior. As an application, we provide in [DS] the C1,α estimates of
Almgren and Tamanini [A, T] for quasi-minimizers of the perimeter functional, and
in [DS1] of the thin one-phase functional. We follow here the same approach, by
showing that almost minimizers of J are “viscosity solutions” in this more general
sense. Roughly, our viscosity solutions satisfy comparison in a neighborhood of
a touching point whose size depends on the properties of the test functions (see
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subsection 4.1). Once this is established, we employ the techniques developed by
the first author in [D] to study the regularity of the free boundary of viscosity
solutions.

Our first main theorem about the optimal Lipschitz regularity of almost mini-
mizers reads as follows. We refer to Section 2 for the precise definition of almost
minimizers (with constant κ and exponent β.)

Theorem 1.1. Let u be an almost minimizer for J in B1 (with constant κ and
exponent β.) Then

‖∇u‖L∞(B1/2) ≤ C(‖u‖H1(B1) + 1)

for some constant C depending on κ, β and n. Moreover, u is uniformly Lipschitz
continuous in a neighborhood of {u = 0}, that is if u(0) = 0 then

|∇u| ≤ C(n), in Br0 ,

for some r0 depending on κ, β, n and ‖u‖H1 .

Our next theorem extends the result in [C1] concerning the regularity of the free
boundary

F (u) := ∂{u > 0} ∩B1,

to the context of almost minimizers. Precisely, we prove an improvement of flatness
theorem (see Theorem 4.4), from which the following main regularity result follows.

Theorem 1.2. Let u be an almost minimizer to J in B1 (with constant κ and
exponent β.) Then

Hn−1(F (u) ∩B1/2) ≤ C(β, κ, n),

and F (u) is C1,α regular outside a closed singular set of Hausdorff dimension n−5,
for some α(β, n) > 0 small.

Our strategy also allows us to obtain C1,α regularity of Lipschitz free boundaries
via the arguments of [D] (see Theorem 4.8).

The paper is organized as follows. In Section 2 we prove the optimal Lipschitz
regularity for almost minimizers, then in section 3 we provide non-degeneracy prop-
erties and a compactness result. Section 4 is devoted to the partial regularity of
the free boundary.

2. Lipschitz Continuity of almost minimizers

In this section we prove Lipschitz continuity of almost minimizers. First, we
recall the definition of almost minimizers (see [G] for a comprehensive treatment of
almost minimizers of regular functionals of the calculus of variations.)

Definition 2.1. We say that u is an almost minimizer for J in Ω (with constant
κ and exponent β) if u ∈ H1(Ω), u ≥ 0 a.e. in Ω, and

(2.1) J(u,Br(x)) ≤ (1 + κrβ)J(v,Br(x))

for every ball Br(x) such that Br(x) ⊂ Ω and every v ∈ H1(Ω) such that v = u on
∂Br(x) in the trace sense.

Below constants depending only on n are called universal. When u is assumed
to be an almost minimizer, then universal constants may depend on β as well.
Throughout the paper the function u will be non-negative.

Our first result is the following dichotomy.
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Proposition 2.2. Let u ∈ H1(B1) and assume that

(2.2) J(u,B1) ≤ (1 + σ)J(v,B1)

for all v ∈ H1(B1) such that v = u on ∂B1. Denote by

(2.3) a :=

(
 

B1

|∇u|2dx

)1/2

.

Given ǫ > 0 small, there exist constants η,M, σ0 > 0 (depending on ǫ) such that if
σ ≤ σ0 and a ≥ M then the following dichotomy holds. Either

(2.4)

(

 

Bη

|∇u|2dx

)1/2

≤
a

2
,

or

(2.5)

(

 

Bη

|∇u − q|2dx

)1/2

≤ ǫa,

with q ∈ R
n such that

(2.6)
a

4
< |q| ≤ C0a,

and C0 > 0 universal.

Proof. Let v denote the harmonic replacement of u in B1. Then,
ˆ

B1

|∇u−∇v|2 ≤ J(u,B1) +

ˆ

B1

(|∇v|2 − 2∇u · ∇v)

and by (2.2) together with the fact that
ˆ

B1

∇v · ∇(u − v) = 0

this gives
ˆ

B1

|∇u−∇v|2 ≤ σ

ˆ

B1

|∇v|2 + C.

Thus, since v minimizes the Dirichlet integral in B1,
 

B1

|∇u −∇v|2 ≤ σ

 

B1

|∇u|2 + C = σa2 + C,

with C > 0 universal.
Since |∇v|2 is subharmonic in B1 and v minimizes the Dirichlet integral, we

conclude that

|∇v| ≤ C0a in B1/2,

with C0 universal. Thus, since ∇v is harmonic, if we denote by q := ∇v(0), we
conclude that |q| ≤ C0a, and

 

Bη

|∇v − q|2 ≤ C1a
2η2, ∀ η ≤ 1/2,

with C1 universal. Thus,

(2.7)

 

Bη

|∇u − q|2 ≤ 2ση−na2 + 2C1η
2a2 + Cη−n,
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and hence

(2.8)

 

Bη

|∇u|2 ≤ 4ση−na2 + 4C1η
2a2 + 2Cη−n + 2|q|2.

Now, given ǫ > 0, we can choose η small (depending on ǫ) and then σ small and a
large depending on η, such that

(2.9) 4ση−na2 + 4C1η
2a2 + 2Cη−n ≤ 2ǫ2a2 ≤

a2

8
.

We distinguish two cases. If

|q| ≤
a

4
then (2.8)-(2.9) give that

(

 

Bη

|∇u|2dx

)1/2

≤
a

2
.

Otherwise,
a

4
< |q| ≤ C0a,

and (2.7)-(2.9) give that
(

 

Bη

|∇u − q|2dx

)1/2

≤ ǫa.

This concludes the proof.
�

The next Lemma shows that alternative (2.5) can be “improved” when ǫ and σ
are small enough.

Lemma 2.3. Let u be as in Proposition 2.2, with a ≥ a0 > 0. Assume that

(2.10)

(
 

B1

|∇u− q|2dx

)1/2

≤ ǫa

for some ǫ > 0, and q ∈ R
n such that

(2.11)
a

8
< |q| ≤ 2C0a,

for C0 > 0 the universal constant in Proposition 2.2.
Given 0 < α < 1, there exist ρ = ρ(α) > 0, ǫ0 = ǫ0(α, a0), c0 = c0(α, a0), such

that if

ǫ ≤ ǫ0 and σ ≤ c0ǫ
2,

then

(2.12)

(

 

Bρ

|∇u − q̃|2dx

)1/2

≤ ǫραaPoincar ′e − Sobolev

with q̃ ∈ R
n such that

(2.13) |q − q̃| ≤ C̃ǫa,

for some C̃ > 0 universal.
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Proof. Let v̄ be the harmonic replacement of u in B1/2 and denote by v the com-
petitor:

v = v̄ in B1/2 v = u outside B1/2.

Then,
J(u,B1) ≤ (1 + σ)J(v,B1),

that is
J(u,B1/2) ≤ σJ(u,B1 \B1/2) + (1 + σ)J(v,B1/2).

Notice that from our assumptions (C universal possibly changing from line to line)
 

B1

|∇u|2dx ≤ Ca2

thus we conclude that
ˆ

B1/2

(|∇u|2 − |∇v|2) + |{u > 0} ∩B1/2| ≤ Cσ(a2 + 1) + |B1/2|.

Since v is the harmonic replacement of u in B1/2, we finally obtain

(2.14)

ˆ

B1/2

|∇u −∇v|2dx ≤ Cσ(a2 + 1) + |{u = 0} ∩B1/2|.

We now claim that (C1, δ universal,)

(2.15) |{u = 0} ∩B1/2| ≤ C1ǫ
2+δ.

Since v−q ·x is the harmonic replacement of u−q ·x in B1/2, we find that |∇v−q|2

is subharmonic in B1/2 and

|∇v − q| ≤ C̃ǫa in B1/4.

Thus, if q̄ denotes the gradient of v − q · x at 0, we conclude that (C2 universal)

(2.16)

 

Bρ

|∇v − (q + q̄)|2 ≤ C2ǫ
2a2ρ2, ρ ≤ 1/4.

Denote q̃ := q + q̄. Then,
|q − q̃| = |q̄| ≤ C̃ǫa.

Combining (2.14)-(2.15)-(2.16) we get,

(2.17)

 

Bρ

|∇u − q̃|2dx ≤ C̄σ(a2 + 1)ρ−n + 2C1ǫ
2+δρ−n + 2C2ǫ

2a2ρ2.

We conclude the proof by choosing first ρ depending on α so that

2C2ǫ
2a2ρ2 ≤

1

4
ǫ2a2ρ2α,

then ǫ small (depending on ρ and a0) so that

2C1ǫ
2+δρ−n ≤

1

4
ǫ2a20ρ

2α

and finally σ small depending on ρ, a0 and ǫ so that

C̄σ(a2 + 1)ρ−n ≤
1

4
ǫ2ρ2α(a2 + a20).

We are left with the proof of the claim (2.15). We have
 

B1

(u − l)dx = 0,
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where l is the linear function l(x) := b+q ·x with b :=
ffl

B1
u. Therefore, by Poincaré

inequality we get that (c universal)

c

 

B1

(u− l)2dx ≤

 

B1

|∇u−∇l|2dx ≤ ǫ2a2.

Since u ≥ 0, we conclude that (C universal)
 

B1

(l−)2dx ≤ Cǫ2a2.

This together with (2.11) gives that for c1 universal (ǫ small),

(2.18) l ≥ c1a in B1/2.

After dividing u and l by a, we can assume that a = 1 in (2.10) and (2.18). By
the Poincaré-Sobolev inequality and assumption (2.10) we get,

(
ˆ

B1

(u − l)2∗dx

)2/2∗

≤ Cǫ2

with l ≥ c1 in B1/2. Our claim immediately follows, with δ = 4/(n− 2). �

Remark 2.4. We remark that the conclusion of Lemma 2.3 still holds if the lower
bound in assumption (2.11) is replaced by the hypothesis

(2.19)

 

B1

u dx ≥ C1a,

with C1 large enough universal (depending on C0.) This can be easily seen from
the proof, as the lower bound is only used when showing that (2.18) holds.

Corollary 2.5. Let u be an almost minimizer for J in B1 (with constant κ and
exponent β) and assume that u satisfies (2.10)-(2.6) and that a ≥ a0 > 0. There
exist ǫ0, κ0 depending on β, n, and a0, such that if ǫ ≤ ǫ0, κ ≤ κ0ǫ

2 then

(2.20) ‖u− l‖C1,β/2(B1/2)
≤ Cǫa,

with C universal, for some linear function l of slope q. Moreover,

(2.21) ‖∇u‖L∞(B1/2) ≤ C̄a,

with C̄ universal.

Remark 2.6. From (2.20) we obtain that ∇u 6= 0, hence u > 0 in B1/2.

Proof. We show that we can iterate Proposition 2.3 indefinitely with α = β/2.
Indeed, if (q0 := q)

(2.22)

(
 

Br

|∇u− qk|
2dx

)1/2

≤ ǫrβ/2a, with r = ρk,

then the rescaling ur(x) := r−1u(rx) satisfies the hypotheses of Proposition 2.3
with

σr = κrβ , ǫr := ǫrβ/2.

Moreover,

|qi+1 − qi| ≤ Cǫρiβ/2a, i ≤ k − 1, and
a

4
≤ |q0| ≤ C0a,

guarantee that (2.11) is always satisfied if ǫ0 is sufficiently small. By Proposition
2.3, (2.22) is satisfied also for r = ρk+1, and therefore it is true for all k’s.
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After relabeling ǫ by Cǫ if necessary, the same conclusion holds for all balls
Br(x) ⊂ B3/4.

By standard (Campanato) estimates, we deduce that

‖∇u− q0‖C0,β/2(B1/2)
≤ Cǫa,

from which the desired claims easily follow. �

We are now ready to prove the main result Theorem 1.1. We remark that in the
statement of the theorem we can replace ‖u‖H1 by ‖u‖L2 as it is known that almost
minimizers still satisfy a Caccioppoli type inequality (see Theorem 6.5, Giusti [G]).

Proof of Theorem 1.1. After an initial dilation of factor s−1, s small, we can assume
that u is an almost minimizer with a constant κ̃ = κsβ , that can be made arbitrarily
small.

For α = β/2, and a0 = 1, let ǫ0 = ǫ0(β, 1), c0 = c0(β, 1), be given by Lemma
2.3. Now, let η, M ≥ 1, and σ0 be the constants from Proposition 2.3 associated
to ǫ = ǫ0. Then, set

a(τ) :=

(
 

Bτ

|∇u|2dx

)1/2

.

We consider the integers k ≥ 0 for which the following inequality holds

(2.23) a(ηk) ≤ C(η)M + 2−ka(1),

with C(η) a large constant.
For k = 0 this is clearly satisfied. If it holds for all k’s then it easily follows that

a(r) ≤ C(M, η)(1 + a(1)), ∀r < 1.

Otherwise let k + 1 be the first integer for which (2.23) fails. If

a(ηk) ≤ M,

then (2.23) holds also for k + 1 since

a(ηk) ≤ C(η)a(ηk−1),

and we reach a contradiction. Thus

a(ηk) > M,

and, according to Proposition 2.2 (rescaled) we get that either

a(ηk+1) ≤
1

2
a(ηk),

which gives again a contradiction, or

(2.24)

(

 

B
ηk+1

|∇u− q|2dx

)1/2

≤ ǫ0a(η
k),

with
1

4
a(ηk) < |q| ≤ C0a(η

k).

According to Corollary 2.5 we find

a(r) ≤ C̄a(ηk) ≤ C(M, η)(1 + a(1)) for all r ≤ ηk.
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In conclusion a(r) ≤ C(1 + a(1)). The same inequality can be obtained for the
averages over all balls with center in B1/2 which are included in B1 which gives

‖∇u‖L∞(B1/2) ≤ C(1 + a(1)),

by Lebesgue Differentiation Theorem.
If u(0) = 0, then by Remark 2.6 we see that we can never end up in the alternative

(2.24). This means that in this case (2.23) holds for all k ≥ 0, hence

a(ηk) ≤ C,

is uniformly bounded for a sufficiently large k. By the result above this implies
that u is uniformly Lipschitz continuous in Bηk/2. �

3. Non-degeneracy

The purpose of this section is twofold. First we show that almost minimizers
are well approximated by harmonic functions (in their positivity set). Then, we
use this fact to obtain non-degeneracy properties of almost minimizers, which are
a crucial ingredient to use compactness arguments.

We assume throughout this section that u satisfies

(3.1) ‖∇u‖L∞(B1) ≤ K, and J(u,B1) ≤ J(v,B1) + σ

for any v ∈ H1(B1) which agrees with u on ∂B1. In what follows constants c, C
may depend on K, and in the body of the proof they possibly change from line to
line. Dependence on K is often omitted. A constant depending only on n is called
universal.

First we remark that the second inequality in (3.1) follows from the condition of
almost minimality. Precisely, since u is Lipschitz J(u,B1) ≤ C. Then the energy
inequality

(3.2) J(u,B1) ≤ (1 + σ)J(v,B1)

for any v that equals with u on ∂B1, implies

(3.3) J(u,B1) ≤ J(v,B1) + C′σ,

for some C′ large enough. It is more convenient working with (3.3), hence with
(3.1) after relabeling σ, instead of (3.2) since the energies cancel in a region where
v = u and the inequality behaves better with respect to scaling (see remark below.)

Remark 3.1. We remark that the rescaling uρ(x) := u(ρx)/ρ satisfies (3.1) with
σρ := ρ−nσ.

3.1. Approximation by harmonic functions. We prove first the following basic
lemma, which compares u with its harmonic replacement.

Lemma 3.2. Let u satisfy (3.1) and let B1 ⊂ {u > 0}. Denote by v the harmonic
replacement of u in B1. Then,

(3.4) ‖u− v‖L∞(B1/2) ≤ c(σ), c(σ) → 0 as σ → 0.

Proof. By the maximum principle, v > 0 in B1, hence using (3.1) and the fact that
v is the harmonic replacement of u we get

ˆ

B1

|∇u−∇v|2dx ≤ σ.
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By Poincaré inequality we conclude that (C changing from line to line)
ˆ

B3/4

(u − v)2dx ≤ Cσ

with u − v uniformly Lipschitz in B3/4. Thus, if (u − v)(x) ≥ µ say at x ∈ B1/2,
we conclude that

µ2+n ≤ Cσ,

and the conclusion holds with c(σ) = Cσ1/(n+2). �

A consequence of Lemma 3.2 is the following version of Harnack inequality.

Lemma 3.3. Let u satisfy (3.1) and assume B1 ⊂ {u > 0}. Let w be a harmonic
function such that u ≥ w in B1 and u − w ≥ µ at 0 for some µ ≤ µ0, µ0 small
depending on K. Then u − w ≥ cµ in B1/2 for some c universal provided that

σ ≤ µn+3.

A similar statement clearly holds if w lies above u and separates strictly from u
at 0.

3.2. Non-degeneracy. In this subsection we state and prove the non-degeneracy
lemmas.

Lemma 3.4 (Weak non-degeneracy). Assume that u satisfies (3.1) for σ small and
B1 ⊂ {u > 0}.Then u(0) ≥ c for some c = c(K) > 0.

Proof. Let v be the harmonic replacement of u in B1. Then according to Lemma
3.2, it is enough to prove the desired statement for v.

Now, let ϕ ∈ C∞
0 (B1/2) with ϕ ≡ 1 in B1/2 and 0 ≤ ϕ ≤ 1. Since v minimizes

the Dirichlet integral and v > 0 in B1 (by the maximum principle), we have

(3.5) J(v,B1) ≤ J(u,B1) ≤ J(v(1 − ϕ), B1) + σ.

On the other hand, since v is harmonic in B1, (C universal possibly changing from
line to line)

‖v‖L∞(B1/2), ‖∇v‖L∞(B1/2) ≤ Cv(0),

from which we deduce that

(3.6)

ˆ

B1

|∇v|2dx ≥

ˆ

B1

|∇v(1− ϕ)|2dx− C(v(0))2.

Combining (3.5)-(3.6) (since v > 0 in B1) we get
ˆ

B1

|∇v|2 + |B1| ≤ C(v(0))2 +

ˆ

B1

|∇v|2 + |B1| − |B1/4|+ σ,

and the desired claim follows for σ small. �

Lemma 3.5 (Strong non-degeneracy). Let u satisfy

(3.7) ‖∇u‖L∞(B1) ≤ K, and J(u,Br) ≤ (1 + σ)J(v,Br)

for any ball Br(x) with Br(x) ⊂ B1, and any v ∈ H1(Br(x)) which agrees with u
on ∂Br(x). If 0 ∈ ∂{u > 0} and σ is small enough, then for some c = c(K) > 0

max
Br

u ≥ cr.
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Proof. The proof of this result is standard once the following claim is obtained (see
for example [C3]).

Claim: Let x0 ∈ B1 ∩ {u > 0} (close to the origin). There exists a sequence
xk ∈ B1 such that (C depending on K)

(3.8) u(xk+1) = (1 + δ)u(xk)

with

(3.9) |xk+1 − xk| ≤ Cdist(x, ∂{u > 0})

for some δ small (depending on K).
Now the claim follows from Lemma 3.3, in view of the discussion following equa-

tion (3.1). �

Once Lipschitz continuity and non-degeneracy have been established, it is straight-
forward to show that any blow-up sequence must converge uniformly on compact
sets to a global minimizer. Moreover, by the Weiss monotonicity formula [W], it
follows that the limit must be homogenous of degree 1. We sum up these facts in
the next proposition.

Proposition 3.6. Assume u is an almost minimizer of J with constant κ and
exponent β, and that 0 ∈ ∂{u > 0}. Any blow up sequence converges uniformly (up
to subsequences) to a global minimizing cone (homogeneous of degree 1) which has
0 as a free boundary point. Also, their free boundaries converge in the Hausdorff
distance (on compact sets) to the free boundary of the cone.

Remark 3.7. Using the fact that global minimizers have Lipschitz constant less
than 1 (see [CJK]), one can show via Lemma 2.3 and Remark 2.4, that almost
minimizers have Lipschitz constant less than 2 in a r0 neighborhood around a free
boundary point with r0 depending on n, κ, β and ‖u‖L2. In other words we can
take K = 2 in statement of Theorem 1.1.

4. Partial regularity of the free boundary

4.1. Almost minimizers as viscosity solutions. In this subsection we show
that almost minimizers satisfy the comparison principle with appropriate families
of sub and supersolutions of the classical one-phase free boundary problem. The
difference with the infinitesimal case is that, in order to reach a contradiction we
need to specify the size of the neighborhood around the contact point between the
solution and an explicit barrier.

Lemma 4.1 (Subsolution). Let u satisfy (3.1) and let P be a quadratic polynomial
such that

‖D2P‖ ≤ 1, △P ≥ µ,

for some µ ≤ µ0 small. Assume that

either u > 0 or |∇P | ≥ 1 + µ in B1.

Then P cannot be below u in B1 and touch u by below at a point in B1/2 if σ ≤ µn+3.

We remark that the subsolution Lemma 4.1 is used to provide a comparison
principle for a function u satisfying (3.1). Precisely, if P as in Lemma 4.1 is such
that |∇P | ≥ 1 + µ and u ≥ P in say B1 \ B1/2, we can conclude that u ≥ P in
B1/2. More generally, one way to apply Lemma 4.1 is given in the following form
of the comparison principle for almost minimizers.
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Corollary 4.2 (Comparison principle). Let u satisfy (3.1) and

u ≥ P in a δ-neighborhood of ∂U of some domain U ⊂ B1,

for some quadratic polynomial P with ‖D2P‖ ≤ δ−1, △P ≥ µ. Assume that in U
either u > 0 or |∇P | ≥ 1 + µ. If

µn+3 ≥ C(K, δ) σ, then u ≥ P in U .

Proof. Otherwise (a vertical translation of) P touches u by below at some point
x0 ∈ U at distance greater then δ from ∂U . Now we rescale this picture from Bδ(x0)

to B1 and contradict Lemma 4.1. Indeed, the rescaled functions ũ, P̃ satisfy the
hypotheses of lemma in B1 with P̃ touching ũ by below at the origin and with
constants (see Remark 3.1)

σ̃ = δ−nσ , µ̃ = µδ.

�

Similarly we obtain the following viscosity supersolution lemma which gives a
version of the Corollary above (comparison principle) for polynomials P lying above
u.

Lemma 4.3 (Supersolution). Let u satisfy (3.1) and let P be a quadratic polyno-
mial such that

‖D2P‖ ≤ 1, △P ≤ −µ,

for some µ > 0 small. Assume that

either u > 0 or |∇P | ≤ 1− µ in B1.

Then P+ cannot be above u in B1 and touch u by above at a point in B1/2∩{P > 0}

if σ ≤ µn+3.

Next we provide the proofs of Lemma 4.1 and 4.3.

Proof of Lemma 4.1. If u > 0 then the conclusion follows easily from Lemma
3.2.

We assume that |∇P | ≥ 1 + µ, u ≥ P in B1 and u(x0) = P (x0) for some x0 in
B1/2. Since D2P is bounded, u is Lipschitz and P touches u by below at x0, we
find that P is uniformly Lipschitz continuous in B1. Let

P̄ (x) := P (x) +
µ

4n
(1 − |x|2),

so that △P̄ ≥ µ
2 , |∇P̄ | ≥ |∇P | − µ

2 and by the Lipschitz continuity of u and P̄+,

(4.1) P̄+ − u ≥
µ

8n
in Bcµ(x0).

Set
umax := max{u, P̄+}, umin := min{u, P̄+}

and notice that
umax = u, umin = P̄+ on ∂B1.

Then we have
J(u,B1) ≤ J(umax, B1) + σ,

or equivalently

(4.2) J(umin, B1)− J(P̄+, B1) ≤ σ.
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We claim that

J(umin, B1)− J(P̄+, B1) ≥
µ

2

ˆ

B1

(P̄+ − umin) dx.

Combining this claim with (4.1) and (4.2) we conclude that

cµn+2 ≤ σ,

and get a contradiction for σ ≤ µn+3 and µ small.
We are left with the proof of the claim. For this we minimize the functional

ˆ

B1

|∇v|2 + χ{v>0} +
µ

2
(v − P̄+) dx

among all competitors 0 ≤ v ≤ P̄+ which coincide with P̄+ on ∂B1, and claim that
P̄+ is the minimizer. This will imply the claim as umin is an admissible competitor.

In the region where the minimizer v is strictly below P̄+, it satisfies (in the
viscosity sense)

∆v =
µ

4
in {v > 0}, |∇v|2 = 1 on F (v).

This means that v satisfies the comparison principle with the continuous family
of classical subsolutions (P̄ + t)+ as we increase t from a large negative constant
up to t = 0, and we obtain v ≡ P̄+ as desired. Here we used that ∆P̄ > µ

4 and

|∇P̄ | ≥ 1 + µ
2 > 1.

�

Proof of Lemma 4.3. The proof follows the lines of the previous lemma, thus we
only sketch the argument. As before it suffices to assume |∇P | ≤ 1− µ, u ≤ P+ in

B1 and u(x0) = P+(x0) with x0 ∈ B1/2 ∩ {P > 0}. Denote

P̄ := P (x)−
µ

4n
(1 − |x|2).

The energy inequality reads

J(u,B1) ≤ J(umin, B1) + σ,

hence

(4.3) J(umax, B1)− J(P̄+, B1) ≤ σ,

where

umin := min{u, P̄+}, umax := max{u, P̄+}.

As above, we can show that P̄+ is the minimizer of the functional
ˆ

B1

(

|∇v|2 + χ{v>0} +
µ

2
(P̄+ − v)

)

dx,

among all competitors v ≥ P̄+ which coincide with P̄+ on ∂B1, by using that
(P̄ + t)+ with t ≥ 0 is a continuous family of classical comparison supersolutions.

This implies that

J(umax, B1)− J(P̄+, B1) ≥
µ

2

ˆ

B1

(umax − P̄+) dx.

It remains to show that the right hand side is greater than cµn+2.
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If u(x0) < µ
32n , we can easily conclude from the fact that u touches P+ at x0

and |∇P | ≤ 1, that P < µ
16n in B µ

32
n(x0). This implies that P̄+ ≡ 0 in B µ

32n
(x0),

then by the Lipschitz continuity and the nondegeneracy of u, we conclude that

umax − P̄+ = u ≥ c(K)µ, in B ⊂ B µ
32n

(x0),

with |B| ∼ µn.
If u(x0) ≥

µ
32n , then using that u(x0) = P (x0), the Lipschitz continuity of u and

P̄+, we get that

umax − P̄+ = u− P̄+ ≥ cµ in Bc′µ(x0).

�

4.2. Partial regularity of the free boundary. In this subsection we prove our
main regularity result for the free boundary of almost minimizers. In the context of
minimizers this result is contained in [AC]. The general case of viscosity solutions
is due to [C1, C2], with a different proof provided in [D]. Our proof for almost
minimizers will rely on the techniques in [D].

We have the following theorem.

Theorem 4.4 (Flatness implies regularity.). Let u be an almost minimizer to J in
B1 (with constant κ and exponent β), and let |∇u| ≤ K. Assume |u− x+

n | ≤ ǫ0 in
B1 and 0 ∈ F (u) := ∂{u > 0} ∩ B1. If ǫ0 and κ are small enough depending on β
and K, then F (u) is C1,α in a neighborhood of 0, for some α ≤ β/(n+ 4).

Theorem 4.4 follows easily from the improvement of flatness lemma below. Its
proof is presented at the end of the section.

Lemma 4.5. Let u satisfy (3.1). Assume that |u − x+
n | ≤ ǫ in B1, 0 ∈ F (u), and

σ in (3.1) satisfies σ ≤ ǫn+4. Given α ∈ (0, 1) there exists η depending on α such
that

(4.4) |u− (x · ν)+| ≤ ǫη1+α in Bη

for some unit direction ν, provided that ǫ ≤ ǫ0(K,α) is sufficiently small.

As mentioned before, the results in subsection 4.1 guarantee that the proof of
Lemma 4.5 follows along the lines of the case of minimizers as in [D]. We sketch
the details in the following two subsections.

4.3. Two properties. Define the ǫ-scaled function

ūǫ :=
1

ǫ
(u− xn) in the set {u > 0} ∩B1.

Next we state two properties (P1) and (P2) for the function u which turn out to
be sufficient for obtaining the approximation of ūǫ with solutions of the linearized
Neumann problem

(4.5) △ū0 = 0 in B+
1/2, ∂nū0 = 0 on {xn = 0} ∩B1/2,

and for obtaining the improvement of flatness Lemma 4.5. These properties are
written in terms of two small parameters δ and ǫ > 0.

(P1) Harnack inequality, (see Lemma 3.3 in [D].)
Given δ > 0, there exists ǫ0 = ǫ0(δ) such that if ǫ ≤ ǫ0 and for some constant a,

u ≥ l+ = (xn + a)+, in Br(x0) ⊂ B1,
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with r ≥ δ, |a| ≤ ǫ and

u(y) ≥ l+(y) + γǫ for some y for which Br/2(y) ⊂ {l+ > 0} ∩Br(x0),

and some γ ∈ [δ, 1], then

u ≥ (xn + a+ cγǫ)+ in Br/2(x0),

for some c > 0 universal.
Similarly, the above holds when we replace ≥ by ≤ and γ by −γ.

(P2) Viscosity property. Given δ > 0, there exists ǫ0 = ǫ0(δ) such that if ǫ ≤ ǫ0
we cannot have u(x0) = P (x0) and u ≥ P in Bδ(x0) ⊂ B1 where P is a quadratic
polynomial such that ‖D2P‖ ≤ δ−1ǫ, △P ≥ δǫ, and in the ball Bδ(x0) either u > 0
or |∇P | > 1 + δǫ.

Similarly, the above holds when u ≤ P , ∆P ≤ −δǫ and |∇P | < 1− δǫ.

We explain why (P1) and (P2) suffice to obtain the improvement of flatness
property as in [D].

Lemma 4.6. Assume a family of functions u satisfy properties (P1) and (P2)
above. If |u− x+

n | ≤ ǫ in B1, 0 ∈ F (u), then

|u− (x · ν)+| ≤ ǫη1+α in Bη,

for some unit direction ν, provided that ǫ ≤ ǫ1 with ǫ1 depending on n, α and the
dependence δ 7→ ǫ0(δ) that appears in properties (P1), (P2).

Proof. The lemma follows by compactness. We argue by contradiction and produce
sequences ǫk → 0 and a sequence of functions uk satisfying the assumptions but
not the conclusion. Let

ūk :=
1

ǫk
(uk − xn) in the set {uk > 0} ∩B1.

Then if we choose ǫk ≤ ǫ0(δk) with δk = 2−k, property (P1) together with the
Ascoli-Arzela theorem guarantee that (up to a subsequence) the graphs of ūk con-
verge in the Hausdorff distance to the graph of a Hölder function ū0 defined in the
half ball B+

1/2.

Next we show that property (P2) implies that the function ū0 satisfies

△ū0 = 0 in B+
1/2, ∂nū0 = 0 on {xn = 0} ∩B1/2,

in the viscosity sense. Indeed, if Q is a quadratic polynomial with △Q > 0 that
touches ū0 by below at some point x0 ∈ B+

1/2 then Q+ ck touches by below ūk by

below at xk → x0 in a fixed neighborhood of x0. Thus we can find δ > 0 small such
that ‖D2Q‖ ≤ δ−1, △Q > δ and

Pk := xn + ǫk(Q+ ck)

touches uk by below at xk and it is below it in a δ neighborhood of xk. Notice that
Pk > 0 in this neighborhood and thus we contradict property (P2) for all large k.

If we touch ū0 by below at some boundary point x0 ∈ B1/2 ∩ {xn = 0} by a
quadratic polynomial Q that satisfies in addition Qn(x0) > δ then we argue as

above and find that Pk touches uk by below in {uk > 0} ∩ B2δ(x0) at xk → x0.
Since Pk is increasing in the xn direction we conclude that Pk is below uk in a whole
δ-neighborhood of xk and we contradict (P2) again since |∇Pk| ≥ ∂nPk ≥ 1 + δǫk.
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Now the conclusion of the lemma follows easily from the C2 estimates for solu-
tions to the Neumann problem (4.5) for ū0, since ‖ū0‖L∞ ≤ 1,

|ū0 − l| ≤
1

2
η1+α in B+

η ,

for some linear function l and with η > 0 small depending only on α and n.
�

4.4. Properties (P1) and (P2) are satisfied. In order to establish Lemma 4.5
it suffices to show that if σ ≤ ǫn+4 then properties (P1) and (P2) hold. For (P1),
by Remark 3.1 it suffices to consider the case Br(x0) = B1 and replace σ by

σ̄ = r−nσ ≤ δ−nǫn+4.

Assume a = 0 for simplicity. Lemma 3.3 applies since σ̄ ≤ (γǫ)n+3 for γ ≥ δ and ǫ
is small depending on δ. We obtain

(4.6) u ≥ x+
n + cγǫ in B3/4 ∩ {xn ≥ c0(n)}.

Now we can use Lemma 4.1 (with µ = cγǫ/4) and show that u must be greater
than

P = xn +
c

2
γǫ(c0 + xn + 2nx2

n − |x′|2),

in the cylinder C := {|xn| ≤ 2c0, |x′| ≤ 1/4}, thus the desired conclusion easily
follows. Indeed in view of Corollary 4.2, if u ≥ P in a neighborhood of ∂C and
|∇P | > 1 + µ then u ≥ P in C. In the region where c0 ≤ xn ≤ 2c0 the fact that
u ≥ P immediately follows from (4.6), if c0 is small enough depending on n. In
the remaining region we use that u ≥ xn and choose the neighborhood sufficiently
small.

Finally property (P2) follows from Lemma 4.1, since after a rescaling of factor

δ−1, the rescaled polynomial P̃ satisfies

‖D2P̃‖ ≤ ǫ, △P̃ ≥ δ2ǫ, P̃ > 0 or |∇P̃ | ≥ 1 + δǫ.

Now we take µ = δ2ǫ and clearly σ̄ ≤ µn+3, if ǫ is small enough depending on δ.
Finally, we sketch the proof of Theorem 4.4.

Proof of Theorem 4.4. Since u is an almost minimizer, then it satisfies (3.1) with
σ = κ. Given α ∈ (0, β/(n+4)], let ǫ0 depending onK,α be given by Lemma 4.5 and
take κ ≤ ǫn+4

0 . Then u satisfies (4.4) and rescaling we obtain that uη(x) = u(ηx)/η
still satisfies (3.1) with σ = κηβ and it is ǫ0η

α flat. Thus we can apply Lemma 4.5
again as long as κηβ ≤ ǫn+4

0 ηα(n+4), which holds in view of our choice of α. We
conclude that Lemma 4.5 can be applied indefinitely and the theorem follows. �

4.5. Regularity of the free boundary. From Proposition 3.6, we know that a
Lipschitz almost minimizer with small constant κ is well approximated by minimiz-
ers and this approximation holds also for the free boundaries. On the other hand,
the free boundary of a minimizer consists of a singular part which is a closed set of
Hausdorff dimension n− 5, and a regular part which has finite n− 1 dimension and
is locally smooth [AC, CJK, JS]. Thus, using Theorem 4.4 and a standard covering
argument, we obtain the following result.
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Theorem 4.7. Let u be a Lipschitz almost minimizer to J in B1 with exponent
β and sufficiently small constant κ(K,β), where K is a constant that bounds the
Lipschitz norm of u. Then

Hn−1(∂{u > 0} ∩B1/2) ≤ C, with C universal,

and ∂{u > 0} is smooth outside a closed singular set of Hausdorff dimension n− 5.

In the general case we obtain that

Hn−1{∂{u > 0} ∩B1/2) ≤ C(κ, β, ‖u‖L∞(B1)),

and ∂{u > 0} is smooth outside a closed singular set of Hausdorff dimension n− 5.
We also state the result of [C2, D] about the regularity of Lipschitz free bound-

aries for the case of almost minimizers. In view of the results in this section, the
proof follows with the strategy of [D].

Theorem 4.8. Let u be an almost minimizer in B1 with exponent β and constant
κ. Assume that 0 ∈ F (u) and that F (u) is a Lipschitz graph with Lipschitz constant
L. Then F (u) ∩B1/2 is a C1,α graph, and its C1,α norm is bounded by a constant
that depends only on n, L and β and κ.
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