
Almost Optimal Hash Sequence Traversal

Don Coppersmith∗ Markus Jakobsson†

Abstract

We introduce a novel technique for computation of consecutive preimages of hash
chains. Whereas traditional techniques have a memory-times-computation complexity of
O(n) per output generated, the complexity of our technique is only O(log2 n), where n

is the length of the chain.
Our solution is based on the same principal amortization principle as [1], and has

the same asymptotic behavior as this solution. However, our solution decreases the real
complexity by approximately a factor of two. Thus, the computational costs of our
solution are approximately 1

2
log2 n hash function applications, using only a little more

than log2 n storage cells.
A result of independent interest is the lower bounds we provide for the optimal (but

to us unknown) solution to the problem we study. The bounds show that our proposed
solution is very close to optimal. In particular, we show that there exists no improvement
on our scheme that reduces the complexity by more than an approximate factor of two.

Keywords: amortization, hash chain, pebbles, upper and lower bounds.

1 Introduction

Hash chains have been proposed as a tool for improving the efficiency of a variety of practical
and valuable cryptographic applications, e.g., [5, 6, 7, 8, 11]. However, the cost for computing
the next value on a hash chain is a topic that has largely been ignored. For long chains,
this task may account for a quite noticeable – if not overwhelming – portion of the total
computational effort of the protocol.

The technique most oftenly employed (whether implicitly or explicitly stated) is to com-
pute each preimage by iterative hash function application to a common seed. However, such
a method – which clearly has a computational complexity of O(n) for a chain of length n – is
highly wasteful in that the same sequence of values is repetitively computed. Another possi-
ble method, in which all values are precomputed and stored, substantially reduces the on-line
computational cost, but has a staggering storage complexity of O(n). All straightforward
combinations of these two techniques can be shown to have a memory-times-computation
complexity of O(n), which is often beyond the reasonable for desirable parameter choices.
As an example, one can see that such a high complexity would be punitive in protocols like
the broadcast authentication protocols by Perrig et al. [6, 7, 8]. There, the delay between

∗IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598.
†RSA Laboratories, Bedford, MA 01730. mjakobsson@rsasecurity.com

1

the transmission of a packet and the receiver’s authenticity check of the same is determined
by the amount of time between the release of consecutive hash preimages. This makes short
time periods (i.e., rapid hash chain traversal) desirable. At the same time, since their method
is intended for very inexpensive devices, the permissible ”allowances” for computation and
storage are strict. Together, these restrictions drastically limit the possible lifetime of such
broadcast devices.

Influenced by amortization techniques proposed by Itkis and Reyzin [2], Jakobsson [1]
showed how to reduce the above mentioned memory-times-storage complexity to O(log2 n).
This was accomplished by the introduction of a technique in which multiple intermediary
values are kept, but their values (and positions in the chain) constantly modified. While
the protocol of Jakobsson stressed simplicity over efficiency, we take the opposite approach
in this paper. By introducing a set of tricks and new techniques, we are able to improve
the efficiency at the expense of simplicity – the latter both in terms of the protocol and its
associated proofs. Thus, our improved protocol allows for a reduction of the computational
requirements to slightly less than half of [1], while slightly reducing the storage demands for
most practical parameter choices.

Using a numeric example to illustrate the differences, we have that consecutive preimages
of a chain of length 231 can be generated using 31 hash function applications and 868 bytes of
storage in [1], while our algorithm only needs 15 hash function applications and 720 bytes of
storage – both assuming the use of SHA [10]. More generally, the computational requirements
of our protocol are blog2

√
nc hash function evaluations per output element. The storage

requirements, in turn, are dlog2 ne + dlog2(log2 n + 1)e memory cells, where each cell stores
one hash chain value and some short state information. Note that these are not average costs,
but upper bounds on the cost per element that is output, given a hash chain of length n.

In order to allow for these savings, it is necessary to shift from a strategy with a very simple
movement pattern to a more complicated strategy where the per-element budget always is
exhausted. (Another way to think about it is that the reduction of the budget demands a
wiser spending strategy under which no resources are wasted.) Consequently, we develop a
rationale for how to assign a now reduced budget among a set of pebbles whose demands and
priorities are modified over time. Furthermore, we propose a protocol based on these design
criteria and show it to be correct.

Finally, we show that our strategy, and the related protocol we propose, are near optimal.
We do this by providing upper and lower bounds for the most efficient algorithm possible,
and compare the resulting complexity to that of our protocol.

2 Intuition

The aim of our protocol is to compute and output a series of consecutive values on a hash
chain with minimal memory and computational requirements. We call the two ends of our
chain ”the beginning” and ”the end” of the chain, functionally corresponding to the public
vs. the secret keys of the scheme. In a setup phase, the chain is constructed by choosing the
end value at random and iteratively applying the one-way function to get the value at the
beginning of the chain. We want to output all the values of the chain – starting with the value
at the beginning of the chain, and ending (not surprisingly perhaps) with the value at the end
of the chain. Each value in the chain (except the end value) is the hash one-way function of

2

the adjacent value in the direction of the end of the chain. In other words, each output value
is the hash preimage of the previously output value. Therefore, previously output values are
not useful in computing the next value to be output, which instead has to be computed by
iterative application of the hash one-way function to a value towards the end of the chain.

Our solution employs novel amortization techniques to reduce the worst case computa-
tional cost per element to the average cost. Simply put, we use the known principle of
conserving resources by not letting anything go to waste. Technically speaking, this is done
by assigning a computational budget per step in the chain, and applying any ”leftover com-
putation” towards the computation of future elements. The contribution of this paper is a
technique for computing the desired sequence without ever exceeding the per-step budget,
along with the establishment of the required computational budget and memory demands.

In order to reach our goals, the leftover computation we apply towards future elements to
be computed must be sufficient to compute these. More importantly, it must be sufficient to
compute them on time. Thus, at each point in the chain, the cumulative required expenditures
must not exceed the cumulative computational budget.

Assume that we want to compute a value close to the beginning of the chain. If no values
along the chain are stored, then we have to perform an amount of work proportional to the
length of the chain, which we denote n. Let us now introduce one ”helper value” at some
distance d from the current chain element. Then, the cost of computing the current value is
that of d− 1 hash function evaluations. The cost for the next value to be computed, in turn,
will be d− 2 such evaluations. However, once the helper value is reached, the cost of the next
value will be that of reaching the endpoint of the chain – assuming we only employ one helper
value. One can see that the total cost is minimized if d = n/2, i.e., the helper value is located
on the mid-point of the chain.

If we can use two helper points (which corresponds to storing two extra elements instead
of one) then one could let the entire interval be split into three equally long intervals, in which
case the cost of computing the next element would be upper bounded by n/3 hash function
evaluations. On the other hand, if we first split the entire interval in two equally long intervals,
and then split the first of these two into two sub-intervals, then we have upper bounded the
initial computational cost at n/4 hash function evaluations. This lower cost applies to the
first half of the entire interval, after which the distance to the next element (which is the
endpoint) would be n/2. However, if we – once we reach the first helper point – relocate this
to the midpoint between the ”global midpoint” and the endpoint, we will maintain an upper
bound of n/4. (See figure 1 for an illustration of how the relocation occurs.)

This assumes that we have enough remaining computation for this relocation. Note now
that if we have three helper points, we have more values to relocate, but we also reduce
the computational upper bound for each element (since the intervals decrease in length with
an increasing number.) We can see that using approximately log n helper values, we will
maximize the benefits of the helper points, as we then, for every element to be computed, will
have a helper point at a maximum distance of two steps away.

If we use this approximate number of helper values, the cost of computing the next value
to be output is (on average) that of half a hash function evaluation, making the budget for
relocation the dominating portion of the required total budget. When we relocate a helper
point, the cost for computing its value at the wanted location is proportional to the distance
(in the direction of the endpoint) to the next known value, whether this is a helper value or
the endpoint itself. It is clear that the more helper points we employ, the lower this cost will

3

Figure 1: The figure shows the movement of helper values (squares) as the current posi-
tion (small arrow) changes. In (a) the positions right after setup are shown; (b) shows the
relocation of the first helper value as it has been reached. In (c), its relocation is completed.

be. However, the cost metric we are interested in minimizing is not computation alone, but
the product of computational complexity and memory complexity.

For each element to be computed and output we assign a budget, corresponding to the
computational upper bound per element. The computation of the next element has the
highest priority to access this budget, since for each step, one has to compute and output the
appropriate element. Any leftovers are assigned to the computation of helper values. These
are partitioned into high priority helper values and low priority helper values. High priority
helper values are relocated into already rather small intervals, located close to the current
element (i.e., the element to be output in the current round). Low priority helper values, in
turn, traverse larger distances, and further from the current element. The low priority helper
values are only assigned those portions of the budget that remain after the current element has
been computed, and the high priority helper values have exhausted their needs (i.e., arrived at
their respective destinations.) Given that low priority helper values are traversing distances
large enough to make it impossible for them to both get started and arrive in one and the
same time interval, we can with only two such helper values guarantee that there always will
be one left to ”soak up” any computational leftovers.

During the setup phase, the endpoint of the chain is randomly selected, and the start
point obtained by iterated hash function evaluation. This may be done by a device with less
computational limitations than the device that later will compute and output the consecutive
elements. During setup, the helper values will also be initialized. The first helper value will
be placed at the mid-point between the endpoint and the starting point, thereby splitting
the entire interval in two. The ith helper value will be placed on the midpoint between the
position of the i− 1st helper value and the starting point. Thus, each helper value will have
a position and a value associated with them, where the value is obtained by iterated hash
function application of the endpoint value or a previously placed helper value.

We show that our protocol is almost optimal. We do this by providing upper and lower
bounds for the optimal solution to the problem. We wish to point out that while we do not
know what the optimal solution is, we know that our solution (which is not the optimal) is ”as
good as one can get” – for all practical purposes. This does not count potential improvements
leading to a simpler or shorter algorithm, but only refers to its memory and computational
complexity.

4

Outline: We begin by introducing our method for computing the sequence of hash preim-
ages, first laying out the preliminaries (section 3) and then elaborating on the protocol (sec-
tion 4). In section 5, we present and prove our claims relating to the completeness and
correctness of the protocol, and relating to the upper and lower bounds of the optimal solu-
tion to the problem we study.

3 Preliminaries

Definitions

We use the term hash chain H to mean a sequence of values < v0, v1, . . . , vi, . . . vn >, where
vn is a value chosen uniformly at random from {0, 1}l, and vi = h(vi+1), where h : {0, 1}∗ →
{0, 1}l is a hash function or another publicly computable one-way function. We refer to v0 as
the starting point, and to vn as the endpoint.

We define the span n to be the length of the hash chain, i.e., the number of elements in
the sequence to be generated. We assume that n = 2σ for some integer σ > 2.

We define the budget b as the number of computational units allowed per element of
the sequence that is output. Here, we only count hash function evaluations and not other
computational steps associated with the protocol execution. This is reasonable given the
fact that the computational effort of performing one hash function evaluation far exceeds the
remaining work per step.

We refer to each helper value, and to the endpoint, as a pebble. Each pebble pj has a
position in the chain and a value associated with itself. The position of the start value is zero,
and the position of the endpoint equals the span n. If position is the position of a pebble, then
its value is vposition. Additionally, each pebble is associated with a destination (the position
to which it is going); a priority (high or low); and an activity status (free, ready, active,
arrived.) Here, pebbles that are not in use are referred to as free; these may be allocated to
a particular task once the need arises. A pebble that is ready has been assigned a task, but
has not yet started to move, while an active pebble in in motion. We use the ready state for
a so-called “backup” pebble. This is a pebble that will become a low-priority pebble as soon
as the active low-priority pebble reaches its destination. Finally, a pebble is assigned status
arrived if it located at its destination point, and is still needed there (i.e., has not yet been
reached by the “current” pointer, which corresponds to the position of the current output
value.) We let k denote the number of pebbles used; the amount of storage needed is k times
the amount needed per value, plus the amount (registers, etc.) needed for the execution of
the protocol.

Goal

After performing a setup phase, we wish to generate the sequence H , element by element
(and starting from v1), using a minimal budget and a minimal number of pebbles. We will
demonstrate a method with required budget b = bσ/2c and using k = σ + dlog2(σ + 1)e
pebbles, where n = 2σ is the number of elements of H .

5

Design Guidelines

If a pebble is located at the position corresponding to the current output, we say that this
pebble has been reached, at which time it receives ”free” status. All pebbles with status free
are assigned a new position, destination, state and priority, according to guidelines that are
set up to guarantee protocol completeness. To explain the proposed protocol, we present
these guidelines along with their technical motivations.

”First things first”. At each step, we first compute and output the appropriate hash chain
value (which we call the current value); then, any remaining budget is assigned to active high-
priority pebbles, starting with the pebble with the lowest position value (i.e., closest to the
position associated with the current output value.) First then, any still remaining budget is
assigned to active low-priority pebbles. This is to ensure that computational results that soon
will be needed are ready on time.

Controlling high-priority pebbles. The high-priority pebbles are started at the ”far end”
of the first interval after the current value that does not already contain an active pebble,
counting only intervals of size greater than two. In other words, if there is a pebble in free
state, this will obtain the position and value of the first interval of size four or greater in
which there is no active pebble, and will be given state active. Here, pebbles that just have
been assigned to a position are considered to be in the interval in question. When the pebble
reaches its destination (at the mid-point of the interval), it is given state arrived. Thus, if
the resulting intervals (half the size of the original interval) are at least of size four, a new
pebble may immediately be assigned a starting position equalling the position of the pebble
that just reached its destination.

High-priority pebbles are only allowed to be active in positions lower than the active low-
priority pebble, and are otherwise kept in free state. This is to make sure that high-priority
pebbles do not take too much of the available budget: it slows them down to the benefit of
low-priority pebbles when they complete their imminent tasks.

Controlling low-priority pebbles. We want there always to be a low-priority pebble that
can “soak up” any remaining computational budget. We can achieve this by (1) having one
”backup” pebble that is not assigned to any task, but which is ready to become the active
low-priority pebble; and by (2) making each low-priority pebble traverse a distance that is
sufficiently long that it and its backup cannot both complete before a new pebble becomes
available. (When a new pebble does become available, it will be assigned to become a backup
pebble if there is none, otherwise a high-priority pebble.)

According to our protocol, pebbles close to the current pointer have destinations set two
steps apart. Therefore, assuming they will arrive in a timely fashion, they will be ”virtually
spaced” two steps from each other. Thus, a pebble will be reached by the current pointer every
two moves (where a move is the computation performed between two consecutive outputs).
If the distance low-priority pebbles need to travel from their inception until they reach their
destination is at least twice the budget per move, then a new pebble will always be reached
and relocated before the low-distance pebble and its backup reach their goals. Therefore, if
the backup low-priority pebble is converted to an active low-priority pebble, a new backup

6

pebble will be created before the converted pebble reaches its goal. Thus, our requirement
will be satisfied.

By taking this approach, we can guarantee that the entire budget of each step will always
be consumed, since there will always be an active low-priority pebble. According to our
suggested approach, we only need one active low-priority pebble at the time, and one ”backup”
low-priority pebble.

4 Protocol

Setup. The endpoint vn is chosen uniformly at random from {0, 1}l, where we may set
l = 160. The sequence H =< v0, v1, . . . , vi, . . . , vn > is computed by iterated application of
the hash function h, where vi = h(vi+1), 0 ≤ i < n− 1. Pebble pj , 1 ≤ j ≤ σ, for σ = log2 n,
is initialized as follows:

position← 2j

destination← 2j

value← v2j

status← arrived.

The remaining pebbles, pj , σ < j ≤ k, have their status set to free. All the pebble in-
formation is stored on the device we wish to later generate the hash sequence; this de-
vice also stores counters current ← 0 and backup ← 0, along with the span n. The pair
(startpoint, current) = (v0, 0) is output. The starting point v0 corresponds functionally to
the public key of the chain.

Maintenance. In the following, we assume that the pebbles pj , 1 ≤ j ≤ k, are kept sorted
with respect to their destination, with the lowest destination value first; and that pebbles that
do not have a destination assigned appear last in the ordered list. Consequently, the next
pebble to be reached (from the current position) will always be p1. When the status of the
pebbles is changed at any point, the altered item is inserted at the appropriate place in this
sorted list. We let LP (short for low priority) be an alias of the active low-priority pebble.
Thus, LP.position is the current position of the active low-priority pebble, independently of
what pebble number this corresponds to. Similarly, BU refers to the backup low-priority
pebble.

Generation. The following protocol is performed in order to generate the hash sequence;
each iteration of the protocol causes the next hash sequence value to be generated and out-
put. The protocol makes use of two routines, placeHP and placeLP ; these assign values
to high priority resp. low priority pebbles according to the previously given intuition. The
corresponding algorithms will be described after the main routine is presented:

7

1. Set available← b. (Set the remaining budget.)
2. Increase current by 1.
3. If current is odd then (No pebble at this position.)

output h(p1.value), (Compute and output.)
decrease available by 1,

else (A pebble at this position.)
output p1.value, (Output value, set pebble free.)
set p1.status← free,
if current = n, then halt. (Last value in sequence.)

4. For all free pebbles pj do (Reassign free pebbles.)
if backup = 0 then (Backup low-priority needed.)

pj .priority ← low,
pj .status← ready,
BU ← pj ,
backup← 1,

else
Call placeHP (pj) (Make it high priority.)

5. Sort pebbles.
6. Set j ← 1. (First pebble first.)

7. While available > 0 do
if pj .status = active then (Only move active pebbles.)

decrease pj .position by 1, (Update its position...)
pj .value← h(pj .value), (... and value...)
decrease available by 1, (... and do the accounting.)
if pj .position = pj .destination then (Pebble arrived!)

pj .status← arrived,
if pj .priority = low then (A low-priority pebble arrived.)

LP ← BU , (Backup becomes low priority.)
backup← 0,
Call placeLP, (Activate new low priority pebble!)
Sort pebbles.

increase j by 1. (Next pebble!)
8. Sort pebbles.
9. Go to 1. (Next element now.)

Routine PlaceLP. We begin by describing how one could compute the sequence of values
assigned to variables during calls to PlaceLP. (We later describe how just one such assignment
can be computed, as opposed to an entire sequence. We also elaborate on a method that is
less wasteful of stack space.) The wanted functionality of the routine is to compute the next
starting point for a low-priority pebble, along with the associated destination.

In the following, we use ”normalized” positions for ease of reading and uniformity over
different spans. To get a real position from a normalized position, one multiples the latter by
a value λ, where λ is the smallest power of two not smaller than 2b, and where b is the budget.
In other words, λ = 2dlog2 be+1. Thus, the series of normalized starting points, starting with
(4, 8, 6, 8, 16, 12, 10, 12, 16, 14, 16), corresponds to a series (32, 64, 48, 64, 128, 96, 80, 96, 128, 112, 128)

8

Figure 2: The left part of the figure shows the desired destinations of pebbles, where the num-
ber corresponds to the relative order of assignment. The relative order therefore corresponds
to the depth-first traversal order of the corresponding tree, shown to the right. Note that the
hash chain nodes correspond to a vertical projection of the tree nodes.

for b = 4, λ = 8. Similarly, the destination points and the distances between the starting
points for the pebbles and their destinations are described in normalized terms.

When a free pebble is activized, it is placed on top of another pebble (located at its
starting point) and given a destination. The destination is at the mid-point of the interval
to the next pebble (in the direction of the current pointer). Thus, the intervals are split in
two; as the pebble arrives, a new pebble is placed on top of it, with a destination of the next
lower midpoint. If an interval is too small to be split, the pebble is instead placed at the end
of the next interval.

We associate the first split of an interval with the root of a tree. The children of the root
correspond to the splits of the resulting two intervals, and their children by their respective
splits. The leaves correspond to the smallest splits of the intervals. Figure 2 shows the nodes
of a small tree, and their order of traversal, and how these corresponds to the order of pebble
placement in the hash chain. Figure 3 shows the starting points and destinations for one
example tree, according to the assignment strategy described below.

We say that the height of a tree is the number of layers of nodes it has. (Thus, a tree
consisting on only one node has height 1.) With each node of the tree, we associate a starting
point; a distance; and a destination, where the destination is the difference between the
starting point and the distance.

The normalized starting point for the root of a tree of height j is start = 2j+1. The
normalized distance of a node at height i in the tree is dist = 2i−1; thus the distance of the
root is 2j−1, and leaves of the tree all have normalized distance dist = 1. The normalized
destination dest of any node (and the root in particular) is the difference between its starting
point and distance, i.e., dest = start − dist. Finally, the starting point for a left child is its
parent’s destination value, parent.dest, while it is the parent’s starting value parent.start for
a right child.

Consider the sequence of assignments of start and dest that one obtains from performing
a depth first search of a given tree (with the left child always traversed before the right child).
That is the sequence of assignments corresponding to the associated initial interval (i.e., the
interval before splitting), as illustrated in figure 3. Consider further the sequence of such
assignments one gets from traversing a forest of such trees, where the first tree has height
one, and each tree is one level higher than its predecessor. That is the sequence of normalized

9

Figure 3: The left part of the figure shows the desired movement pattern of low priority
pebbles in the interval between normalized positions 8 and 16, where the numbers on the
arrows correspond to the relative order of the movements. The right part of the figure shows
the tree structure from which these movements are obtained. The node number corresponds
to the relative order of the movement, and is obtained by depth-first traversal of the tree. The
triple associated with a node is the (starting point, distance, destination) of the corresponding
pebble. A tree of height 2 is used for the normalized interval 4-8, and one of height 1 for the
interval 2-4. Similarly, larger trees are used for later intervals.

assignments we need in our protocol.
Each call to PlaceLP first computes such a pair of normalized values, all from the above

described sequence; these are then multiplied by λ and the product returned as the result of
the function. Thus, it sets

LP.priority ← low
LP.status← active
LP.position← λ start
LP.destination← λ dest

As soon as λ start > n, no assignment is performed, since there is no need for low priority
pebbles any longer. Any calls to PlaceLP after that return without any assignment.

Claim: The routine PlaceLP generates a sequence of elements, where the ith element of the
sequence corresponds to the pair of starting position and destination of the ith low-priority
pebble to be activated. The starting point corresponds to that of a pebble already placed
on the hash chain, and the destination corresponds to the middle point between this same
pebble and the closest pebble in the direction of the current pointer. The distance between
starting point and destination is at least twice the budget per step that is available for
moving pebbles, which guarantees that a recently placed low priority pebble does not reach
its destination before another pebble has been activated. Once such a pebble does reach
its destination, a “backup low-priority pebble” is activated by being turned into a standard
(active) low-priority pebble. Once a new pebble is reached by the current pointer (at which
time it is redundant in its current position, and needs to be relocated), such a pebble is made
into a backup low-priority pebble, if the old such pebble has been activated.

Routine PlaceHP. The routine for computing the next location for a high-priority pebble
is similar to the above, its main differences being that (1) the real and normalized values
coincide, and (2) after the trees in the forest have reached height log2 λ, they stop growing.
Here, as before, λ = 2dlog2 be+1, where b is the budget per output element produced.

10

The starting position of the jth tree is start = 2j+1 for j ≤ log2 λ, and start = λ(j−log2 λ)
for j > log2 λ. As before, the starting point for a left child is its parent’s destination value,
parent.dest, while it is the parent’s starting value parent.start for a right child. The distance
of a node at height i in the tree is dist = 2i−1. The destination, as before, is the difference
between its starting point and destination, i.e., dest = start− dist.

Before any assignment is made, it is verified that start ≤ LP.position, i.e., that the
assignment in question is to a position before the active low priority pebble. If this is not the
case, no assignment is made at this point, and the comparison re-performed at the next call
to the routine. Otherwise, the following assignment is made to parameter pj to the routine:

pj .priority ← high
pj .status← active
pj .position← start
pj .destination← dest

Claim: The routine PlaceHP generates a sequence of elements, where the ith element of the
sequence corresponds to the pair of starting position and destination of the ith high-priority
pebble to be activated. The starting point corresponds to that of a pebble already placed on
the hash chain, and the destination corresponds to the middle point between this same pebble
and the closest pebble in the direction of the current pointer. The starting point is chosen as
a point between the current pointer and the active low-priority pebble, as close to the current
pointer as possible, such that the distance between the starting point and the destination is
at least two.

Memory Complexity. In order to conserve working space, one can opt for a solution that
does not use a stack, but which recomputes the state from scratch when needed. One variable
would store the height of the tree; one would store the number of steps (using depth-first
search) from the root. Additionally, we need variables for start, dist and dest. To compute
these values, we would (at each time) begin with their starting assignments, and then modify
them according to the tree traversals leading to the wanted number of steps from the root.
This is done in accordance with the respective assignments, as above.

The maximum tree height for PlaceLP is σ − log2 λ − 1, since this corresponds to a
normalized starting point of 2σ−λ and a starting point of 2σ. Thus, this variable needs
blog2 σc bits. For PlaceHP, the maximum height is log2 λ, requiring log2dlog2dλee bits of
storage. A tree of the maximum height has 2σ−log2 λ−1 − 1 nodes for PlaceLP, and 2λ − 1
nodes for PlaceHP. Thus, the distances from the root can be represented with σ − log2 λ− 1
respective λ bits. Finally, the maximum value of the last three variables is σ bits for each one
of them, since the maximum value they can be assigned is 2σ. (These only keep state within
a computation, and so, we do not need one set for each algorithm.)

Therefore, the memory requirements of PlaceLP and PlaceHP are less than 4σ + log2 σ +
λ − 1 bits. This is dwarfed by the memory requirements for the pebbles, requiring 160 bits
each, resulting in a total of 160(σ + dlog2(σ + 1)e) bits.

11

5 Claims

Consider a span n = 2σ, a budget b = bσ/2c and k pebbles, for k = σ + dlog2(σ + 1)e.
We refer to the sum of the budgets from the setup stage until a particular step as the

cumulative budget at the step in question. We say that the protocol with a budget restriction
of b and a storage restriction of k succeeds at step j if and only if it outputs the jth value
vj of the hash sequence during this step, and that the protocol succeeded at step j − 1. The
protocol is said to succeed (by definition, and due to the setup procedure) at step 0 – this
corresponds to the setup phase, on which we do not place any strict restrictions in terms of
computation and storage.

Theorem 1: (Completeness.) The protocol succeeds at step j, 1 ≤ j ≤ n, for a span n = 2σ,
budget b = bσ/2c and k = σ + dlog2(σ + 1)e pebbles.

The proof of the theorem will be based on the following lemmata, all of which relate to the
above assignments for n, b and k. Recall that λ is defined to be the smallest power of two
not smaller than 2b.

Lemma 1: (Bootstrapping.) The protocol succeeds at step j, 1 ≤ j ≤ λ.

Proof of Lemma 1:

We will consider two cases: λ < 8, and λ ≥ 8. Recall that the cost of moving one step ahead
equals the distance from the position we move to the next (forward) pebble. Recall also that
λ is defined to be the smallest power of two equal to or larger than 2b, and thus, λ < 4b.

The first case corresponds to the two possibilities λ = 2 or λ = 4. For λ = 2, we have
b = 1. We need budget 1 to compute v1 from v2 (where there is a pebble), and zero budget to
obtain v2. For λ = 4, we know that b = 2. Since there are pebbles at positions 2 and 4, the
budgets to reach these are zero, and the budget to reach step 1 and 3 from the step before is
one. Therefore, the lemma holds for the first case.

For the second case, i.e., λ ≥ 8, we know that there is one pebble at λ, one at λ/2, and
one at λ/4, since we start with pebbles at each position that is a power of two, and which
is in the interval between 0 and n. Consider the first two quarters of the interval between 0
and λ. Notice first that the budget will be sufficient for each step of these two quarters, since
the pebbles are spaced λ/4 apart, and the budget is b > λ/4 (given how λ is defined). The
traversal cost for both of the quarters is upper bounded by (λ/4−1)+(λ/4−2)+. . .+2+1+0 =
(λ/4− 1)λ/8, giving a total of (λ/4− 1)λ/4. The total budget assignment for this first half
is (λ/2)b. Since b > λ/4, we have that the cumulative budget is (λ/2)λ/4. Thus, the budget
”surplus” for the first half is at least (λ/2)λ/4− (λ/4− 1)λ/4 = (λ/4 + 1)λ/4 > λ/4.

This surplus will be applied to moving pebbles outside the first half of the interval, since
any pebble movement inside the first half could only lower the expenditures for this portion,
which would cause an even larger surplus. The surplus, in turn, is always spent on moving
pebbles, with the closest high-priority pebbles receiving priority. The first pebble outside the
first half of the interval would start at λ, and have destination 3λ/4. Given that the surplus
of the first half of the interval is at least λ/4, the pebble would reach its destination by the
time the current position is λ/2.

Consider now the third and fourth quarter of the interval between 0 and λ. We have
concluded that when the current position is λ/2, there are pebbles at both position 3λ/4 and
position λ (where the latter pebble has been there since the setup phase.) We know that

12

b > λ/4. Thus, the budget will be sufficient for each step of the two last quarters of the
interval, and we see that the protocol will succeed at step λ. This concludes the proof.

Lemma 2: (Discrete points.) The protocol succeeds at step j = 2iλ + 1, 0 ≤ i ≤ σ − log2 λ,
if it succeeds at step 2iλ.

Proof of Lemma 2:

Assume that we have arrived at position j = 2iλ for some 0 ≤ i ≤ σ − log2 λ − 1. (This
means that the protocol succeeded up until this point.) We wish to prove that the protocol
will succeed for the next step, too. In order for this to occur, the next pebble must be at
most b+1 steps away from step j, or the budget will not suffice. We will show that there will
be a pebble at j + 2, which would make the lemma hold, since b ≥ 1.

At the time when we are at step j, the total incurred costs for pebbles equal the cost for
filling the space between 0 and j with pebbles, plus that for populating (with exponentially
increasing intervals) the interval between j and 2j. We will argue that this sum is equal to
the cost of populating the interval between 0 and j only, were this interval empty. This will
result in a simpler way of determining the total required pebble expenditure up until step j.

Consider the location of all pebbles in the interval between 0 and j at the start time. These
pebbles are located at positions 2, 4, 8, . . . , j/2. We want pebbles at positions j + 2, j + 4, j +
8, . . . , j + j/2 when we are at position j. Due to the setup, there will already be a pebble
at 2j = 2i+1λ. The cost of placing the pebbles at (j + 2, j + 4, j + 8, . . . , j + j/2), given the
pebble at 2j, is identical to the cost we would have incurred if we wanted to place pebbles
at 2, 4, 8, . . . , j/2, given the pebble at j, since the relative distances from j resp. from 2j are
identical for the two sequences. We can therefore substitute the cost for the real sequence
between j and 2j by the hypothetical cost for the interval 0 to j.

Therefore, the total pebble expenditures at step j will equal the total pebble expenditures
we were to incur if we were to fill an empty interval between 0 and j. The cost of filling an
empty interval between 0 and j involves moving one pebble a distance j/2; two pebbles a
distance j/4 each, four pebbles a distance of j/8 each, etc. Filling the space means that (over
time) every even position in the interval has a pebble. Thus, the total pebble expenditure is
∑log2 j−1

κ=1 2κ−1j2−κ, where 2κ−1 is the cardinality and j2−κ is the associated cost. This total
expenditure can be seen to equal j/2(log2 j − 1).

If at any time we are either one or two steps from a pebble (where our position corresponds
to the value being output), then the total expenditures for moving a step ahead is either zero
(if we are at a position with an odd number, meaning next position has a pebble) or one (if
we are at an evenly numbered position.) Thus, the total ”stepping” expenditures up until
step j are j/2.

We see that the total expenditures up until step j = 2iλ would be j/2(log2 j − 1) + j/2
in order for there to be pebbles at positions (j + 2, j + 4, . . . , j + j/2) at the time the current
position reaches step j. This equals 1

2jlog2 j. Given that for each of the j steps, we are
assigned a budget b, the total budget up until that point will be jb. We will be successful if
b ≥ 1

2 log2 j. This quantity will be the largest for the end of the interval that the proof is valid
for, i.e., i = σ− log2 λ−1. Plugging in i in the formula for j gives us j = 2σ−log2 λ−1λ = 2σ−1.
Thus, if b ≥ 1

2 (σ − 1), then the lemma holds. According to the specifications, we have
b = bσ/2c. Therefore, if the protocol succeeds at j = 2iλ, then it succeeds at j + 1 = 2iλ + 1,
for 0 ≤ j ≤ n/2, which concludes the proof.

13

Lemma 3: (Intervals.) The protocol succeeds at step j = 2i+1λ, if it succeeds at step 2iλ+1.

Proof of Lemma 3:

Assume that the protocol succeeds at step j = 2iλ + 1. We wish to prove that then, the
protocol also succeeds at step 2j−2 = 2i+1λ. This will be shown using a symmetry argument.
Consider intervals of size 2iλ. Consider first such an interval starting at position 1 and ending
at 2iλ, and then one starting at position 2iλ + 1 and ending at 2i+1λ.

Assume that the current position is at the beginning of the second interval. Assume
further that the relative positions of the pebbles in the second interval (in relation to the
current position) are identical to the relative positions of the pebbles in the first interval (in
relation to the current pointer when located in the beginning of the first interval). Then, the
required expenditures to reach the end of the second interval from its beginning must equal
the required expenditures to reach the end of the first. This is so since the resource allocation
strategy is the same for both intervals, namely that pebbles close to the current position are
given priority over pebbles further away. Therefore, if the budget is sufficient to reach the
end-point of the first interval, then it is also sufficient to reach the end-point of the second.

We know that the first interval will have pebbles at positions 2, 4, 8, . . . , j when we are at
position 1. As was shown in Lemma 2, the cumulative budget available to pebbles at step j
is sufficient for the placement of pebbles at positions j + 2, j + 4, j + 8, . . . j + j/2, and we
know that there already is one (due to the setup) at position 2j. Therefore, the required
expenditures in the interval between 2iλ + 1 and 2i+1λ are the same as those for the interval
between 1 and 2iλ. This concludes the proof.

Proof of Theorem 1: The theorem follows from the above lemmata, all of which are proven
in the appendix. Lemma 1 establishes that the protocol succeeds for j, 1 ≤ j ≤ λ. Then,
Lemma 2 shows that it succeeds for λ + 1 (i.e., setting i = 0), and lemma 3 shows that it
succeeds for all values up until 2λ (again using i = 0). Then, using i = 1, lemmata 2 and 3
establish that the protocol succeeds up to position 4λ. We apply lemmata 2 and 3 iteratively,
and for increasing values of i, ending with i = σ − 1 − log2 λ, finally establishing that the
protocol succeeds for j = n, which completes the proof.

In the following, we show that our solution is almost optimal. More particularly, we con-
sider the product of the number of hash function evaluations needed, and the number of
storage cells required, where each storage cell holds one hash chain value and some short
state information. Then, the complexity of the optimal solution is 1

4 log2 n per output ele-
ment, while the complexity of our solution is approximately 1

2 log2 n – more precisely, it is
1
2blog nc(dlog2 ne + dlog2(log2 n + 1)e). Thus, we are (practically speaking) no more than a
factor of two away from the optimal solution in terms of computation-times-storage complex-
ity.

Theorem 2: (Lower bound.) The optimal solution to the problem has a memory-times-
computational complexity of at least 1

4k lg2 n, where n is the length of the hash chain and k
is the number of pebbles.

Proof of Theorem 2: We wish to show that the cumulative budget – the total cost of
processing a string of length n using k pebbles – is at least n

4k lg2 n, which implies that the

amortized cost per evaluation is at least 1
4k lg2 n. This, in turn, will imply that the budget

(worst-case cost per evaluation) is also at least 1
4k lg2 n. The optimal case is k = 1

2 lg n, where
the amortized cost per evaluation is also 1

2 lg n.

14

Let g(n, k) be the required cumulative budget for covering a string of length n with k
pebbles, excluding the initial cost (n) of setting up the pebbles.

Suppose that the furthest pebble is at position n − T , at the last time that it is used
(cloned or used directly). Then we must cover an interval of length n− T with k− 1 pebbles
(not using the kth pebble, which is stuck at position n), expend energy T to lay down the
pebbles in the remaining interval, and cover that last interval with k pebbles. Optimizing
over choice of T , we would have

g(n, k) = min
T

[g(n− T, k − 1) + T + g(T, k)].

We want to show, by induction, that g(n, k) ≥ n lg2 n
4k .

The inductive step will go through if we can show that, for all n, T, k, we have h(k, T) ≥ 0,
where for fixed n we define

h(k, T) = −n lg2 n

4k
+

(n− T) lg2(n− T)

4(k − 1)
+ T +

T lg2 T

4k
.

For convenience we set L = lg n. We evaluate h and its derivatives around the point (k0 =
L/2, T0 = n/2), which is near its global minimum. We have:

h(L/2, n/2) = − nL2

4(L
2
)
+

n
2
(L−1)2

4(L
2
−1)

+ n
2 +

n
2
(L−1)2

4(L
2
)

= n(L−1)
2L(L−2) ≈ n

2 lg n

∂h
∂k (L/2, n/2) = + nL2

4(L
2
)2
−

n
2
(L−1)2

4(L
2
−1)2

−
n
2
(L−1)2

4(L
2
)2

= n(−3L2+6L−2)
L2(L−2)2 ≈ −3n

lg2 n

∂h
∂T (L/2, n/2) = − lg2(n/2)+2(lg e) lg(n/2)

4(L
2
−1)

+ 1 + lg2(n/2)+2(lg e) lg(n/2)

4(L
2
)

= − (L−1)2+2(L−1) lg e

4(L
2
−1)(L

2
)

+ 1

= −(L−1)2+2(L−1) lg e+L(L−2)
L(L−2)

= 2(L−1) lg e−1
L(L−2) ≈ 2 lg e

lg n

∂2h
∂k2 (L/2, n/2) = −n lg2 n

2(L
2
)3

+
n
2

lg2 n
2

2(L
2
−1)3

+
n
2

lg2 n
2

2(L
2
)3

=
−(L

2
−1)3nL2+((L

2
)3+(L

2
−1)3) n

2
(L−1)2

2(L
2
)3(L

2
−1)3

= n(4L4+4L3−44L2+56L−16)
L3(L−2)3 ≈ 4n

lg2 n

∂2h
∂k∂T (L/2, n/2) = lg2(n/2)+2(lg e) lg(n/2)

4(L
2
−1)2

− lg2(n/2)+2(lg e) lg(n/2)

4(L
2
)2

= (4L−4)((L−1)2+2(lg e)(L−1))
L2(L−2)2 ≈ 4

lg n

∂2h
∂T 2 (L/2, n/2) = 2(lg e)(lg e+lg(n/2))/(n/2)

4(L
2
−1)

+ 2(lg e)(lg e+lg(n/2))/(n/2)

4(L
2
)

= (4L−4)(lg e)(lg e+(L−1))
nL(L−2) ≈ 4 lg e

n

15

Using the first-order approximations of the first and second derivatives, we calculate that the
function h(k, T) will reach its global minimum at about

k = k0 + 5 lg e
4 lg e−4 ≈ lg n

2 + 4.07

T = T0 + (−2 lg e−3
4 lg e−4) n

L ≈ n
2 − 3.32 n

lg n

and its value there will be
n

2 lg n
−O(

n

lg2 n
),

which is positive for n sufficiently large. This concludes the proof.

References

[1] M. Jakobsson, “Fractal Hash Sequence Representation and Traversal,” To
appear in ISIT ’02; available at http://eprint.iacr.org/2002/001 and
www.markus-jakobsson.com.

[2] G. Itkis and L. Reyzin, ”Forward-Secure Signatures with Optimal Signing and Verify-
ing,” Crypto ’01, pp. 332–354.

[3] L. Lamport, ”Constructing Digital Signatures from a One Way Function,” SRI Inter-
national Technical Report CSL-98 (October 1979).

[4] R. Merkle, ”A digital signature based on a conventional encryption function,” Proceed-
ings of Crypto ’87.

[5] S. Micali, ”Efficient Certificate Revocation,” Proceedings of RSA ’97, and U.S. Patent
No. 5,666,416.

[6] A. Perrig, R. Canetti, D. Song, and D. Tygar, ”Efficient and Secure Source Authenti-
cation for Multicast,” Proceedings of Network and Distributed System Security Sym-
posium NDSS 2001, February 2001.

[7] A. Perrig, R. Canetti, D. Song, and D. Tygar, ”Efficient Authentication and Signing of
Multicast Streams over Lossy Channels,” Proc. of IEEE Security and Privacy Sympo-
sium S & P 2000, May 2000.

[8] A. Perrig, R. Canetti, D. Song, and D. Tygar, ”TESLA: Multicast Source Authentica-
tion Transform”, Proposed IRTF draft, http://paris.cs.berkeley.edu/ ˜ perrig/

[9] K. S. J. Pister, J. M. Kahn and B. E. Boser, ”Smart Dust: Wireless Networks
of Millimeter-Scale Sensor Nodes. Highlight Article in 1999 Electronics Research
Laboratory Research Summary.”, 1999. See http://robotics.eecs.berkeley.edu/

˜ pister/SmartDust/

[10] FIPS PUB 180-1, ”Secure Hash Standard, SHA-1,”
www.itl.nist.gov/fipspubs/fip180-1.htm

[11] S. Stubblebine and P. Syverson, ”Fair On-line Auctions Without Special Trusted Par-
ties,” Financial Cryptography ’01.

16

