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Abstract. We obtain asymptotically tight algorithmic bounds for Max-Cut and Edge Dom-
inating Set problems on graphs of bounded clique-width. We show that on an n-vertex graph of
clique-width t both problems

• cannot be solved in time f(t)no(t) for any function f of t unless Exponential Time Hy-
pothesis (ETH) fails, and

• can be solved in time nO(t).
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1. Introduction. Tree-width is one of the most fundamental parameters in
graph algorithms. Graphs of bounded tree-width enjoy good algorithmic properties
similar to trees and this is why many problems which are hard on general graphs can
be solved efficiently when the input is restricted to graphs of bounded tree-width.
On the other hand, many hard problems also become tractable when restricted to
graphs “similar to complete graphs”. Courcelle and Olariu [6] introduced the notion
of clique-width which captures nice algorithmic properties of both extremes.

Since 2000, the research on algorithmic and structural aspects of clique-width is
an active direction in Graph Algorithms, Logic, and Complexity. Corneil et al. [4]
show that graphs of clique-width at most 3 can be recognized in polynomial time.
Fellows et al. [12] settled a long standing open problem by showing that computing
clique-width is NP-hard. Oum and Seymour [31] describe an algorithm that for every
fixed t, in time O(|V (G)|9 log |V (G)|) computes a (23t+2−1)-expressions of a graph G
of clique-width at most t. Recently, Hliněný and Oum obtained time O(f(t) · |V (G)|3)
algorithm computing (2t+1 − 1)-expressions of a graph G of clique-width at most t
[19]. We refer to the recent survey [20] for further information on different width
parameters.

By the meta-theorem of Courcelle, Makowsky, and Rotics [5], all problems ex-
pressible in MS1-logic (Monadic Second-Order logic on graphs with quantification
over subsets of vertices but not of edges) are fixed parameter tractable when pa-
rameterized by the clique-width of a graph and the expression size. For many other
problems not expressible in this logic including problems like Max-Cut, Edge Dom-
inating Set, Graph Coloring, or Hamiltonian Cycle, there is a significant
amount of the literature devoted to algorithms for these problems and their gener-
alizations on graphs of bounded clique-width [10, 16, 17, 18, 25, 26, 28, 33, 34, 35].
Running times of all these algorithms on an n-vertex graph of clique-width at most t
are of order O(nf(t)), for some functions f of t.
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One of the central questions in the area is whether the bound O(nf(t)) on the run-
ning time of all these algorithms is asymptotically optimal. Even the existence of fixed
parameter tractable algorithms (with clique-width being the parameter) for all these
problems (or their generalizations) was open until very recently [16, 25, 26, 28, 18]. As
the first step toward obtaining lower bounds for clique-width parameterizations, we
have shown in [15] that unless FPT= W[1], there is no function g such that Graph
Coloring, Edge Dominating Set, and Hamiltonian Path are solvable in time
g(t) · nO(1). While [15] resolves the parameterized complexity of these problems, the
conclusion that unless FPT= W[1], there is no algorithm with run time O(g(t) · nc),
for some function g and a constant c not depending on t, is weak compared to the
known algorithmic upper bounds. For example, it does not rule out an algorithm of
running time nO(

√
t)2t.

In this paper, we provide asymptotically tight optimal lower bounds for Max-
Cut and Edge Dominating Set. In particular, we show that unless Exponential
Time Hypothesis (ETH) fails, there is no f(t) ·no(t)-time algorithm for both problems.

While known algorithms for these problems run in times nO(t2) [25, 26, 10, 35], we
give new algorithmic upper bounds of the form nO(t). Together, these lower and
upper bounds give asymptotically tight algorithmic bounds for Max-Cut and Edge
Dominating Set.

To obtain our lower bounds we construct “linear FPT-reductions”. These type
of reductions are much more stringent and delicate than the usual FPT reductions.
This is the reason why this research direction is still in a nascent stage and not so
many asymptotically tight bounds are known in the literature. Chen, Huang, Kanj,
and Xia [2, 3] were the first to succeed in obtaining results of such flavor by showing
that there is no algorithm for k-Clique (finding a clique of size k) running in time
f(k)no(k) unless there exists an algorithm for solving 3-SAT running in time 2o(n) on
a formula with n-variables. The assumption that there does not exists an algorithm
for solving 3-SAT running in time 2o(n) is known as Exponential Time Hypoth-
esis (ETH) [21] and is equivalent to the following conjecture from parameterized
complexity: FPT 6=M[1], see [8, 13]. The lower bound on k-Clique can be extended
to some other parameterized problems via linear FPT-reductions [2, 3]. This kind
of investigation has also been useful in obtaining tight algorithmic lower bounds for
polynomial time approximation schemes [29] and for constraint satisfaction problems
when parameterized by the tree-width of the “primal graph” [30]. We further extend
the utility of this approach by obtaining asymptotically tight algorithmic bounds for
clique-width parameterizations. We refer to the recent survey of Lokshtanov, Marx,
and Saurabh [27] for detailed discussions on the ETH.

The remaining part of the paper is organized as follows. Section 2 contains
definitions and preliminary results. Section 3, is devoted to the proof of an auxiliary
result, namely that Red-Blue Capacitated Dominating Set cannot be solved
in time f(k)no(k) on graphs with a feedback vertex set of size at most k assuming
ETH. Red-Blue Capacitated Dominating Set and its variants appear to be
very handy tools for proving intractability of problems parameterized by the clique-
width. In Section 4 we provide tight upper and lower bounds for Max-Cut. We also
show how the obtained bound implies bounds on related Bipartization by Edge
Removal and Maximum (Minimum) Bisection problems. In Section 5, we obtain
bounds for Edge Dominating Set. We conclude by Section 6, where we provide
open problems and directions for further research.

2. Definitions and preliminary results.
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Parameterized Complexity and ETH.. Parameterized complexity is a two-dimensional
framework for studying the computational complexity of a problem. One dimension
is the input size n and the other is the parameter k. More formally, a (parameterized)
language L ⊆ Σ∗ × N for a finite alphabet Σ is contained in FPT if there is a com-
putable function f : N → N such that any instance (Q, k) can be decided with respect
to L in time f(k) · p(|Q|) for some polynomial function p : N → N. We call such a
problem fixed-parameter tractable. We refer to the books of Downey and Fellows [9],
Flum and Grohe [13] and Niedermeier [32] for a detailed treatment to parameterized
complexity.

We define the notion of parameterized (linear) reduction which is the main tool
for establishing of our results.

Definition 1. Let A and B be parameterized problems. We say that A is
(uniformly many:1) FPT-reducible to B if there exist functions f, g : N → N, a
constant α ∈ N and an algorithm Φ transforming an instance (x, k) of A into an
instance (x′, g(k)) of B in time f(k)|x|α such that (x, k) ∈ A if and only if (x′, g(k)) ∈
B. The reduction is called linear if g(k) = O(k).

The following well-known complexity hypothesis was formulated by Impagliazzo,
Paturi, and Zane [22].

Hypothesis 1 (ETH). There exists a positive real number s such that 3Sat with
n variables and m clauses cannot be solved in time 2sn(n+m)O(1).

Graphs.. We only consider finite undirected graphs without loops or multiple
edges. The vertex set of a graph G is denoted by V (G) and its edge set by E(G).
A set S ⊆ V (G) of pairwise adjacent vertices is called a clique. For v ∈ V (G),
by EG(v) we denote the set of edges incident with v. For vertex v ∈ V (G), we
denote by NG(v) its (open) neighborhood, that is, the set of vertices adjacent to v.
The closed neighborhood of v is NG[v] := NG(v) ∪ {v}. The degree of a vertex v is
dG(v) := |NG(v)|. For graph G, its incidence graph is the bipartite graph I(G) with
the vertex set V (G) ∪ E(G) such that v ∈ V (G) and e ∈ E(G) are adjacent if and
only if v is incident with e in G. For a set of vertices S ⊆ V (G), G[S] is the subgraph
of G induced by S and by G−S we denote the graph obtained form G by removal of
S.

Clique-width.. Let G be a graph, and t be a positive integer. A t-graph is a graph
with vertices labeled by integers from {1, 2, . . . , t}. We refer to a t-graph consisting of
exactly one vertex labeled by some integer from {1, 2, . . . , t} as to an initial t-graph.
The clique-width cwd(G) is the smallest integer t such that G can be constructed by
means of repeated application of the following four operations:

i(v) : Introduce operation constructing an initial t-graph with vertex v labeled by
i,

⊕ : Disjoint union,
ρi→j : Relabel operation changing all labels i to j, and
ηi,j : Join operation making all vertices labeled by i adjacent to all vertices labeled

by j.

An expression tree of a graph G is a rooted tree T with nodes of four types i, ⊕, η
and ρ:

• Introduce nodes i(v) are leaves of T corresponding to initial t-graphs with
vertices v labeled by i.

• Union node ⊕ stands for a disjoint union of graphs associated with its chil-
dren.

• Relabel node ρi→j has one child and is associated with the t-graph obtained by



4 FOMIN, GOLOVACH, LOKSHTANOV, AND SAURABH

applying of the relabeling operation to the graph corresponding to its child.
• Join node ηi,j has one child and is associated with the t-graph resulting by

applying the join operation to the graph corresponding to its child.
• The graph G is isomorphic to the graph associated with the root of T (with
all labels removed).

The width of the tree T is the number of different labels appearing in T . If G is of
clique-width t, then there is a rooted expression tree T of width t of G. Given a node
X of an expression tree, the graph GX represents the graph formed by the subtree of
the expression tree rooted at X.

An expression tree T is irredundant if for any join node ηi,j , the vertices labeled
by i and j are not adjacent in the graph associated with its child. It was shown by
Courcelle and Olariu [6] that every expression tree T of G can be transformed into
an irredundant expression tree T ′ of the same width in time linear in the size of T .

Feedback vertex set.. A feedback vertex set of a graph G is a set of vertices X ⊆
V (G) such that G − X is a forest. The feedback vertex set number of a graph G,
denoted by fvs(G), is the size of a smallest feedback vertex set of G. We need the
following observation.

Observation 1. Let X be a feedback vertex set of a graph G. If G′ is obtained
from G by subdividing some edges, then X is a feedback vertex set of G′.

We also use the following lemma.
Lemma 2.1. Let X be a feedback vertex set of a graph G such that each vertex

v of the forest F = G −X is adjacent to at most one vertex of X. Then cwd(G) ≤
4 · |X|+ 3.

Proof. Let X = {x1, . . . , xk}. Observe that because F is a forest, we have that
cwd(F ) ≤ 3 (see e.g. [24]). Let T be an expression tree for F of width 3 using labels
1, 2, 3. To construct an expression tree for G, we use the following additional labels.

• Labels α
(i)
1 , . . . , α

(i)
k for i ∈ {1, 2, 3} for vertices of F adjacent to vertices of

X.
• Labels β1, . . . , βk for vertices of X.

We construct an expression tree for G by making necessary changes in T . For each
vertex v ∈ V (F ) adjacent to xp, the corresponding introduce node i(v) is replaced by

node α
(i)
p (v). Each relabel node ρi→j is replaced by path ρi→jρα(i)

1 →α
(j)
1

· · · ρ
α

(i)
k

→α
(j)
k

,

children of ρi→j become children of the first endpoint ρi→j of the path, and the parent
of ρi→j becomes the parent of the second endpoint ρ

α
(i)
k

→α
(j)
k

. In similar way each join

node ηi,j is replaced by path ηi,jηi,α(j)
q
η
α

(i)
p ,j

η
α

(i)
p ,α

(j)
q
, where indices p, q run through

all pairs of different integers from {1, . . . , k}. Then we construct an expression tree for
G[X] with introduce nodes β1(x1), . . . , βk(xk). Since all vertices of X are labeled by
pairwise different labels, this construction is done in a straightforward way. Finally,
we add the union vertex with the roots of the modified tree for F and the tree for G[X]
being its children, and construct the join nodes η

α
(i)
1 ,β1

, . . . , η
α

(i)
k

,βk
for i ∈ {1, 2, 3}.

3. Capacitated domination. In this section we prove an auxiliary theorem
about the Capacitated Dominating Set problem. This result will be heavily used
in the proof of the main results of this paper. The parameterized complexity of
Capacitated Dominating Set with the treewidth of the input graph being the
parameter was considered in [1, 7]. Here, we use a special variant of the problem and
parameterize it by the feedback vertex set number.

A red-blue capacitated graph is a pair (G, c), where G is a bipartite graph with
the vertex bipartition R and B and c : R → N is a capacity function such that 1 ≤
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c(v) ≤ dG(v) for every vertex v ∈ R. The vertices of R are called red and the vertices
of B are called blue. A set S ⊆ R is called a capacitated dominating set if there is a
domination mapping f : B → S mapping every vertex from B to one of its neighbors
in S such that the total number of vertices mapped by f to each vertex v ∈ S does not
exceed its capacity c(v). For v ∈ S, we say that vertices in f−1(v) are dominated by
v. The Red-Blue Capacitated Dominating Set (or Red-Blue CDS) problem
for a given red-blue capacitated graph (G, c) and a positive integer k, asks whether
there exists a capacitated dominating set S for G containing at most k vertices.
A capacitated dominating set S ⊆ R is called saturated if there is a domination
mapping f which saturates all vertices of S, that is, |f−1(v)| = c(v) for each v ∈ S.
The Red-Blue Exact Saturated Dominating Set problem (Red-Blue Exact
Saturated CDS) takes a red-blue capacitated graph (G, c) and a positive integer
k as an input and asks whether there exists a saturated capacitated dominating set
with exactly k vertices.

The main result of this section is the following technical theorem.

Theorem 3.1. Unless the ETH fails, Red-Blue CDS and Red-Blue Exact
Saturated CDS cannot be solved in time f(k)no(k), where n is the number of vertices
and k is the feedback vertex set number of the input graph. Moreover, none of the two
problems can be solved in time f(k)no(k) even if the input is restricted to graphs G
such that for every minimum feedback vertex set X ⊆ V (G),

• X is independent, and
• each vertex of the forest G−X is adjacent to at most one vertex of X.

The remaining part of the section is devoted to the proof of this theorem.

Proof. [Proof of Theorem 3.1] First we prove the claim for Red-Blue CDS. We
construct a linear FPT-reduction from the k-Multi-Colored Clique (k-MCC)
problem to Red-Blue CDS parameterized by the feedback vertex set number. In
fact, our reduction runs in polynomial time.

The k-MCC problem asks for a given k-partite graph G = (V1 ∪ · · · ∪ Vk, E),
where V1, . . . , Vk are sets of the k-partition, whether there is a k-clique C in G. The
fact that assuming ETH this problem can not be solved in time f(k)no(k), follows
immediately from the reduction from the k-Clique problem (see e.g. [11, 27]). We
show how for a given instance (G, k) of k-MCC to construct an instance (H, c, k′) of
Red-Blue CDS such that

• fvs(H) = 2k,
• k′ =

(

k
2

)

+ 5k,
• G has a clique of size k if and only if H has a capacitated dominating set of
size k′, and

• for every minimum feedback vertex set X ⊆ V (H), X is independent and
each vertex of the forest H −X is adjacent to at most one vertex of X.

Let us note that while the number of vertices in a capacitated dominating set of H
is O(k2), we have fvs(H) = 2k and thus this reduction is linear for the required
parameterization of Red-Blue CDS. Without loss of generality we assume that k ≥
3.

To each vertex v ∈ V (G) we will assign two unique identification numbers vup

and vdown. The choice of identification numbers plays a crucial role in our reduction.
Let n be the number of vertices in G. For an integer p, we say that a set X of
positive integers is a p-non-averaging set if for every tuple (x1, x2, . . . , xp) of elements
of X their average is in X if and only if x1 = x2 = · · · = xp. Remarkably, dense p-
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non-averaging sets exist, and can be constructed in polynomial time.
Lemma 3.2 ([23]). For every p and n there exists a p-non-averaging set X,

|X| = n, such that the largest element of X has value 32p2n2. Furthermore, X can
be constructed in O(p2n3) time.

We construct a (k − 1)-non-averaging set X of size n and assign to each vertex
v of G a unique identification number vup ∈ X. Now we fix t to be three times the
largest element of X. For every v, we set vdown = t− vup.

For two red vertices u and v of H and a positive integer A, by adding an A-arrow
from u to v we will mean adding A subdivided edges between u and v. All the vertices
on the added subdivided edges are blue. Now we describe how to build the graph H
for a given instance (G = (V1 ∪ V2 · · · ∪ Vk, E), k) of k-MCC.

Vi

û v̂xi xj

xi,j

ê

yi zi

bi

ci

di

yj zj

ai aj

bj

cj

dj

(k − 1)vup-arrow

(k − 1)vdown-arrow

udown-arrow uup-arrow vdown-arrow vup-arrow

(k − 1)uup-arrow

(k − 1)udown-arrow

Vj

Fig. 1. Partial construction of H corresponding to two sets Vi and Vj of the k-MCC instance.
The edges of the original graph are shown by dashed lines; the vertices from R are shown in white
and vertices of B are shown in black.

For a pair of distinct integers i, j ∈ {1, . . . , k}, let Ei,j be the set of edges with
one endpoint in Vi and the other in Vj . For every integer i between 1 and k, we make
a blue vertex xi that has a red neighbor v̂ for each v ∈ Vi. For every pair of integers
i,j such that 1 ≤ i < j ≤ k, we make a blue vertex xi,j that has a red neighbor ê
for every edge e in Ei,j . For every i, we add a red vertex yi and a red vertex zi,
which we call marked. For every marked vertex yi, a red vertex ai and a blue vertex
bi adjacent to ai are added, and for yi and ai, a 2-arrow is constructed. Similarly,
for every marked vertex zi, a red vertex ci and a blue vertex di adjacent with ci are
added, and zi is joined with ci by a 2-arrow.

Now, for every vertex v ∈ Vi we add a ((k − 1) · vup)-arrow from v̂ to yi and a
((k − 1) · vdown)-arrow from v̂ to zi. For every 1 ≤ i < j ≤ k and edge e = uv in
Ei,j we proceed as follows. Let u ∈ Vi and v ∈ Vj . We add a (udown)-arrow from
ê to yi, a (uup)-arrow from ê to zi, a (vdown)-arrow from ê to yj and a (vup)-arrow
from ê to zj . At this point, if any marked vertex has degree less than (k− 1)t+2, we
add blue leaves adjacent only to that vertex, such that the marked vertex gets degree
(k − 1)t + 2. This concludes the construction of H. The construction is shown in
Fig. 1. Finally, we describe the capacities of the red vertices. We set capacities of all
vertices ai and ci equal to one. All other red and unmarked vertices have capacities
equal to their degree. The marked vertices all have capacity exactly (k−1)t less than
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their degree.

It is easy to see that 2k marked vertices form a feedback vertex set ofH. Moreover,
all marked vertices should be contained in each feedback vertex set of a size at most 2k
because of 2-arrows which join these vertices with the vertices ai and ci respectively.
Indeed, let X be a feedback vertex set of size at most 2k. Because 2-arrows form 2k
vertex disjoint cycles of length 4, set X should contain at least one vertex from each
of these cycles. Hence, |X| = 2k and thus only vertices of these 2-arrows can be in
X. Now if there was a marked vertex, say yi not in X, then because k ≥ 3, for each
v ∈ Vi, the ((k − 1) · vup)-arrow from v̂ to yi contains a cycle. On the other hand, X
cannot contain vertices of this cycle; a contradiction. Hence, fvs(H) = 2k, and the
set of the marked vertices is a unique minimum feedback vertex set.

By the construction, the set of marked vertices is independent and each marked
vertex is adjacent only to subdivision vertices of A-arrows. Therefore, each vertex
of the forest obtained from H by removal of vertices of the feedback vertex set is
adjacent to at most one vertex of this set.

The following two lemmata complete the proof.

Lemma 3.3. If G has a multicolor clique C = {v1, v2, . . . , vk}, then H has a
capacitated dominating set D of size k′.

Proof. For every i < j let eij be the edge from vi to vj in G. In addition to all
the marked vertices and vertices ai and ci for i ∈ {1, . . . , k}, let D contain v̂i and êij
for every i, j ∈ {1, . . . , k}, i < j. Clearly D contains exactly k′ vertices, so it remains
to prove that D is indeed a capacitated dominating set.

Vertices ai and ci dominate blue neighbors bi and di respectively. All other
unmarked red vertices have degree equal to their capacity, so such vertices in D
dominate all their neighbors. Thus, all the xi-s are dominated by unmarked vertices
in D. Observe that every blue vertex except for the xi, bi and di-s has exactly one
marked neighbor. Thus, since the marked vertices all have capacity exactly (k − 1)t
less than their degree, it is sufficient to prove that every marked vertex has at least
(k − 1)t blue neighbors that are dominated by unmarked vertices in D.

Consider yi for some i. Notice that v̂i dominates (k − 1) · vupi blue neighbors of
yi. Also, every êij such that i < j and every êji such that j < i dominates vdown

i blue
neighbors of yi. Thus (k−1)(vupi +vdown

i ) = (k−1)t blue neighbors of yi are dominated
by unmarked vertices in D. The proof for zi is identical. Namely, v̂i dominates
(k− 1) · vdown

i blue neighbors of zi. Also, every êij such that i < j and every êji such
that j < i dominates vupi blue neighbors of zi. Thus (k − 1)(vdown

i + vupi ) = (k − 1)t
blue neighbors of zi are dominated by unmarked vertices in D. This concludes the
proof.

Lemma 3.4. If H has a capacitated dominating set D of size k′, then G has a
multicolor clique of size k.

Proof. For each i ∈ {1, . . . , k}, ai has capacity one and has a private neighbor bi
which should be dominated. Therefore yi must be included in D and must dominate
two adjacent vertices in the 2-arrows joining yi and ai. Similarly, every zi must be
included in D and must dominate two adjacent vertices in the 2-arrows which joins
zi and ci.

For every i ∈ {1, . . . , k}, there is vi ∈ Vi such that v̂i ∈ D, because otherwise xi

is undominated. Similarly, for every pair of integers i, j with i < j there must be an
edge eij ∈ Ei,j such that êij ∈ D; otherwise xij is undominated. Also all vertices bi
and di should be dominated, and hence all vertices ai and ci must be included in D.
Since |D| ≤ k′ it follows that these are the only unmarked vertices in D.
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Since all unmarked vertices in D except ai, and ci, i ∈ {1, . . . , k}, have capacity
equal to their degree, we can assume that each such vertex dominates all its neighbors.
For j > i, define eji = eij and êji = êij . We proceed by proving that for every pair
of integers i,j with i 6= j, eij = uv is incident with vi.

Consider zi for some i. The blue neighbors of zi can be dominated by zi, v̂i or
some êij for j 6= i. Since the capacity of zi is (k−1)t less than its degree we have that
at least (k − 1)t neighbors of zi are dominated by some vertices v̂i or êij in D. For
every j 6= i, let ui be the endpoint of eij that is in Vi. Now v̂i dominates (k− 1)vdown

i

neighbors of zi and for every j 6= i we have that êij dominates uup
j neighbors of zi.

Hence,

(3.1) (k − 1)vdown
i +

∑

j 6=i

uup
j ≥ (k − 1)t.

An identical argument for yi yields (k − 1)vupi +
∑

j 6=i u
down
j ≥ (k − 1)t. For every

v ∈ V (G) we have vup + vdown = t and thus

(k − 1)vdown
i +

∑

j 6=i

uup
j + (k − 1)vupi +

∑

j 6=i

udown
j = 2(k − 1)t.

Thus it follows that the inequality in (3.1) is the equality, yielding the following

(3.2)
∑

j 6=i

uup
j = (k − 1)t− (k − 1)vdown

i = (k − 1)vupi .

Since the up-identification numbers were taken from a (k − 1)-non-averaging set it
follows that uj = vi for all j 6= i. Thus for every i and j 6= i, vi is incident with eij .
Thus v1, . . . , vk form a multi-colored clique in G. This concludes the proof.

To prove the claim of Theorem 3.1 for Red-Blue Exact Saturated CDS, it
is sufficient to observe that if the instances constructed in the proof for Red-Blue
CDS have a capacitated dominating set D of size k′, then the capacitated dominating
set D is saturated and exact.

4. Max-Cut and related problems. In this section we consider theMax-Cut
problem and a few other closely related problems. Let G be a graph. For a partition
V1, V2 of V (G), the cut set is defined as CG(V1, V2) = {uv ∈ E(G) : u ∈ V1, v ∈ V2}.
A cut set of a graph G is a set of edges C ⊆ E(G) such that there is a partition V1, V2

of V (G) with C = CG(V1, V2). The size of a maximum cut set in G is denoted by
mcut(G). In the Max-Cut problem, we are given a graph G and a positive integer
k, and the objective is to check whether there exists a cut set C ⊆ E(G) such that
|C| ≥ k. Our main theorem in this section is the following.

Theorem 4.1. Let G be an n-vertex graph given together with an expression tree
of width t. Then the Max-Cut problem

• cannot be solved in time f(t) · no(t) unless the ETH fails;
• is solvable in time nO(t).

We prove this theorem in two steps. We first show the lower bound and then
complement this result with the corresponding upper bound.

4.1. Lower bound. To prove the lower bound we give a reduction from the
Red-Blue CDS problem parameterized by the feedback vertex set number to the
Max-Cut problem. The proof is organized as follows: we first give a construction,
then prove its correctness and finally argue on the clique-width of the transformed
instance.
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Construction.. Let (G, c, k) be an instance ofRed-Blue CDS withR = {u1, . . . , un}
being the set of red vertices and B = {v1, . . . , vr} being the set of blue vertices, and
such that for every minimum feedback vertex set X of G, set X is independent. We
also assume that G has m edges.

We start from the auxiliary gadgets.

Auxiliary gadgets F (x, y) and F ′(x, y).. Let x, y be two vertices. We construct
F (x, y) by joining x and y by 4m+1 paths of length two. Graph F ′(x, y) is constructed
by joining x and y by 4m + 1 paths of length three. The properties of F (x, y) and
F ′(x, y) required for our proof are summarized in the following lemma.

Lemma 4.2. For every F (x, y) and F ′(x, y)

• mcut(F (x, y)) = 8m+ 2 and mcut(F ′(x, y)) = 12m+ 3.
• For every partition V1, V2 of the vertex set of F (x, y) such that x ∈ V1 and
y ∈ V2, |CF (x,y)(V1, V2)| ≤ mcut(F (x, y))− 4m− 1.

• For every partition V1, V2 of the vertex set of F ′(x, y) such that x, y ∈ V1,
|CF ′(x,y)(V1, V2)| ≤ mcut(F ′(x, y))− 4m− 1.

We will attach gadgets F (x, y) and F ′(x, y) to other parts of the construction
through the vertices x and y. Notice that we can always assume that the vertices of
V (F (x, y))\{x, y} are included in exactly one side of an optimal partition of the vertex
set leading to the maximum sized cut. Similarly, we can assume that the vertices of
NF ′(x,y)(x) (NF ′(x,y)(y) respectively) also included in exactly one side of an optimal
partition of the vertex set.

Auxiliary gadgets Hs,t(x1, . . . , xs, y).. Let ℓ = max{n, r}. We first construct
graph H with the vertex set {zi,j : 1 ≤ i ≤ 2ℓ, 1 ≤ j ≤ 4m + 1}. Vertices zi,j and
zi′,j′ are joined by an edge for 1 ≤ i < i′ ≤ 2ℓ. That is, we construct a complete
2ℓ-partite graph with the 2ℓ-partition Z1, . . . , Z2ℓ, where Zi = {zi,1, . . . , zi,4m+1}.
Then we add graphs F (zi,1, zi,2), . . . , F (zi,4m, zi,4m+1) for each i ∈ {1, . . . , 2ℓ}. Let
h = ℓ(4m+ 1)(4mℓ+ 16m+ ℓ). We observe that a partition V1, V2 corresponding to
mcut(H) is the following. Let V1 consists of Z1, . . . , Zℓ and all the vertices of gadgets
F (zi,1, zi,2), . . . , F (zi,4m, zi,4m+1), i ∈ {ℓ+1, . . . , 2ℓ}, except those vertices of gadgets
contained in Zℓ+1, . . . , Z2ℓ. Let V2 be the remaining vertices. Using partition V1, V2

corresponding to mcut(H), by Lemma 4.2, we obtain the following lemma.

Lemma 4.3. For every partition V1, V2 of the vertex set of H, we have the follow-
ing. If V1 (or V2) does not contain exactly ℓ sets from Z1, . . . , Z2ℓ, then |CH(V1, V2)| ≤
mcut(H)− 4m− 1. Furthermore, mcut(H) = h.

Let s and t be two positive integers such that s, t ≤ ℓ. We construct graph
Hs,t(x1, . . . , xs, y) from H by adding vertices x1, . . . , xs and y, and then joining them
with H by gadgets F (x1, z1,1), . . . , F (xs, zs,1) and F (y, zℓ+1,1), . . . , F (y, zℓ+t,1) (see
Fig 2). Let hs,t = h+(8m+2)(s+ t). We say that the subgraph of Hs,t(x1, . . . , xs, y)
induced by Zi and the set vertices of degree two adjacent to the vertices of Zi is the
i-th column of Hs,t(x1, . . . , xs, y) for i ∈ {1, . . . , 2ℓ}. For i ∈ {1, . . . , s}, we say that
the i-th column is associated with xi. Respectively, for i ∈ {ℓ + 1, . . . , ℓ + t}, the
i-th column is associated with y. We also refer to vertices zi,j as to z-vertices of the
gadget. Lemmata 4.2 and 4.3 imply the following properties of this graph.

Lemma 4.4. The following properties hold for Hs,t(x1, . . . , xs, y).

• mcut(Hs,t(x1, . . . , xs, y)) = hs,t.
• Let V1, V2 be an optimal partition of V (Hs,t(x1, . . . , xs, y)), that is,

mcut(Hs,t(x1, . . . , xs, y)) = |CHs,t(x1,...,xs,y)(V1, V2)|, and y ∈ V1. Then at
most ℓ− t vertices from {x1, . . . , xs} are in V1.

• There is an optimal partition V1, V2 such that y ∈ V1 and for each 0 ≤ p ≤



10 FOMIN, GOLOVACH, LOKSHTANOV, AND SAURABH

zℓ+1,1

x1 xs y

H

z1,1 zs,1

zℓ+t,1

Fig. 2. Graph Hs,t(x1, . . . , xs, y)

min{s, ℓ− t}, exactly p vertices from {x1, . . . , xs} are in V1.
• For every non-optimal partition V1, V2 of V (Hs,t(x1, . . . , xs, y)), with the fol-
lowing two properties
(a) for every gadget F (zi,j , zi,j+1), 1 ≤ i ≤ 2ℓ and 1 ≤ j ≤ 4m, we have

that V (F (zi,j , zi,j+1)) \ {zi,j , zi,j+1} is contained either in V1, or V2;
(b) for every gadget F (xi, zi,1), 1 ≤ i ≤ s and F (y, zℓ+j,1) 1 ≤ j ≤ t, we

have that V (F (xi, zi,1)) \ {xi, zi,1} and V (F (y, zℓ+j,1)) \ {y, zℓ+j,1} is
contained either in V1, or V2,

we have that |CHs,t(x1,...,xs,y)(V1, V2)| ≤ mcut(Hs,t(x1, . . . , xs, y))− 4m− 1.
Final Reduction.. We are ready to describe the reduction. Each edge e = uivj

of G is replaced by two vertices ae and be. Each of the new vertices becomes adjacent
to ui and vj . Thus we replace edge e with two paths of length two. We create two
vertices w1 and w2 and construct a copy of F ′(w1, w2). For each vertex vj ∈ B, a copy
of F (vj , w1) is created. In the next step, we introduce a copy ofHn,ℓ−k(u1, . . . , un, w1).
By G′ we denote the graph obtained until now (we will need this graph while bounding
the clique-width of the construction in Lemma 4.6). Finally, for each vertex ui ∈ R,
a copy of HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2), where the set of edges incident with

ui, EG(ui) = {e1, . . . , edG(ui)} is constructed, and for each vertex vj ∈ B, a copy of
HdG(vj),ℓ−1(ae1 , . . . , aedG(vj)

, w2), where {e1, . . . , edG(vj)} = EG(vj) is added. Let Q

be the resulting graph. We put

µ = (4m+ 1)(2r + 3) + hn,ℓ−k +
n
∑

i=1

hdG(ui),ℓ−c(ui) +
r

∑

j=1

hdG(vj),ℓ−1 + 2(m+ r).

Lemma 4.5. Graph G has a capacitated dominating set of the size at most k if
and only if graph Q has a cut set with at least µ edges.

Proof. Let S be a capacitated dominating set of size at most k in G and f be the
corresponding domination mapping. We construct a partition V1, V2 of the vertex set
of Q corresponding to a cut set of size at least µ as follows. We put vertex w1 in V1,
vertex w2 in V2, all vertices v1, . . . , vr in V1, all vertices from S in V1, and and vertices
of R \ S in V2. We also put all vertices be in V2. For each edge e = uivj ∈ E(G)
such that f(vj) = ui, that is, e is being used for domination, the corresponding
vertex ae is included in V2 and all other vertices ae, whose corresponding edge is
not used for domination, are included in V1. Finally, we extend our partition to an
optimal partition of all gadgets F (x, y), F ′(x, y) and Hs,t(x1, . . . , xs, y) used in the
construction of Q. Desired extensions of these gadgets to an optimal partition can be
done by applications of Lemmata 4.2, 4.3 and 4.4. By the construction of partitions
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V1 and V2, the contribution of gadgets F (x, y), F ′(x, y) and Hs,t(x1, . . . , xs, y) to
the cut CQ(V1, V2) is mcut(F (x, y)), mcut(F ′(x, y)), and mcut(Hs,t(x1, . . . , xs, y))
respectively. Hence, we have already accounted for

(4m+ 1)(2r + 3) + hn,ℓ−k +

n
∑

i=1

hdG(ui),ℓ−c(ui) +

r
∑

j=1

hdG(vj),ℓ−1

edges in the cut CQ(V1, V2). The remaining 2(m + r) edges in the cut CQ(V1, V2)
come from the edges incident with vertices ae and be for some e. Every edge e = uv
is either it is an edge used for domination or not. In the first case, when e is used for
dominating, we have that uae, aev, ube, and bev are part of the cut. In the second case,
exactly two of the edges among uae, aev, ube, and bev are part of the cut. In each case
for every e at least two edges among uae, aev, ube and bev are in the cut and hence
edges incident with vertices ae and be contribute at least 2(m− r)+ 4r = 2(m+ r) to
the cut CQ(V1, V2). This completes the forward direction of the proof.

Assume now that Q has a cut set C of size at least µ, and let (V1, V2) be the
corresponding partition of the vertex set of Q. Let Q′ be the graph obtained by taking
the union of the edge sets of auxiliary gadgets F (x, y), F ′(x, y) and Hs,t(x1, . . . , xs, y).
Then there exists a partition A and B of V (Q′) such that CQ′(A,B) = µ′, where

µ′ = (4m+ 1)(2r + 3) + hn,ℓ−k +

n
∑

i=1

hdG(ui),ℓ−c(ui) +

r
∑

j=1

hdG(vj),ℓ−1.

Suppose that at least for one of the gadgets F (x, y), F ′(x, y), or Hs,t(x1, . . . , xs, y),
say F (x, y), the partition (V ′

1 , V
′
2) of V (F (x, y)) obtained by restricting the partition

(V1, V2) to V (F (x, y)) is not optimal. That is, |CF (x,y)(V
′
1 , V

′
2)| < mcut(F (x, y)).

Then by Lemmata 4.2, 4.3, and 4.4, |C| ≤ µ′ − (4m + 1) + 4m < µ. By choosing
non-optimal partitions of auxiliary gadgets we loose at least 4m + 1 edges while
gaining at most 4m new edges by cutting 4m edges of Q which do not belong to these
gadgets. This implies that C restricted to all these gadgets is an optimal cut in Q′.
By Lemma 4.2, w1 and w2 belong to different sets of the bipartition V1, V2. Assume
that w1 ∈ V1 and w2 ∈ V2. Then Lemma 4.2 implies that v1, . . . , vr ∈ V1. Thus, by
making use of Lemma 4.4, we conclude that at most k vertices of set R = {u1, . . . , un}
belong to V1. We put S = R ∩ V1 and prove that S is a capacitated dominating set
in G. Notice that by Lemma 4.4, at most one vertex ae in the neighborhood of
each vertex vj is included in V2. Suppose that there is a vertex vj such that its
neighborhood in Q has no vertices ae ∈ V2. Then |C| ≤ µ′ + 2m + 2(r − 1) < µ, a
contradiction. So, for each vertex vj , there is an edge e = uivj such that ae ∈ V2.
Now we argue that ui ∈ S. This follows from the fact that if ui /∈ S, then ui ∈ V2;
hence |C| ≤ µ′ + 2m+ 2r− 2 < µ. We define the domination mapping as f(vj) = ui.
Since by Lemma 4.4, at most c(ui) vertices in the set NQ(ui) ∩ {ae | e ∈ E(G)} are
included in V2, we have that |f−1(ui)| ≤ c(ui). This concludes the proof.

Now we upper bound the clique-width of Q by a linear function of the feedback
vertex set number of G.

Lemma 4.6. cwd(Q) ≤ 40 · fvs(G) + 40.
Proof. Let t = fvs(G) and let X be a minimum feedback vertex set of G. By

Observation 1, X is a feedback vertex set of I(G). Recall that X is independent.
Then each vertex of I(G)−X is adjacent to at most one vertex of X. By Lemma 2.1,
cwd(I(G)) ≤ 4 · |X|+ 3 = 4t+ 3.
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Let us remind, that while describing graph Q, as an intermediate step of the
construction, we defined graph G′. We construct an expression tree for Q in two steps
and use 10c+10 labels, where c = 4t+3. At the first step, we construct en expression
tree for G′ using 4c+10 labels, and at the second step we describe how it can modified
to an expression tree for Q by the cost of 6c additional labels.

Expression tree for G′.. Suppose that an expression tree for I(G) uses c la-
bels α1, . . . , αc. To construct an expression tree for G′, besides labels α1, . . . , αc we
introduce the following additional labels.

• Labels β1, . . . , βc for vertices v1, . . . , vr.
• Labels γ1, . . . , γc for vertices {ae | e ∈ E(G)}.
• Labels δ1, . . . , δc for vertices {be | e ∈ E(G)}.
• Labels ζ1, ζ2 for vertices w1, w2.
• Label η for vertices zi,j in Hn,ℓ−k(u1, . . . , un, w1).
• Working labels λ1, λ2, λ3 and ξ1, ξ2, ξ3, ξ4.

We construct the required expression tree for G′ by going over the expression tree
for I(G) and making necessary changes in it. When a vertex ui ∈ R labeled by αp

is introduced, we construct ui and the column of the gadget Hn,ℓ−k(u1, . . . , un, w1)
associated with ui together with the edges that join the column and ui. To do it,
we perform the following set of operations. We first introduce vertex ui labeled by
αp and a vertex (which is essentially zi,1 of the gadget) labeled by ξ3. Then 4m + 1
vertices labeled by ξ2 are introduced and joined with vertices labeled by αp and ξ3.
Then vertices labeled ξ2 are relabeled to λ1. Now we repeat the following operations
4m times:

• introduce a vertex labeled by ξ1 and 4m+ 1 vertices labeled by ξ2;
• join vertices labeled by ξ2 with vertices labeled by ξ1 and ξ3;
• relabel vertices labeled by ξ2 by λ1, vertex labeled by ξ3 by η, and vertex

labeled by ξ1 by ξ3;
• finally, vertex labeled by ξ3 is relabeled by η.

We omit the union operations from our descriptions here and henceforth in any
similar descriptions and assume that if some vertex is introduced then the union is
always performed.

When a vertex x ∈ V (I(G)) corresponding to an edge e ∈ E(G) and labeled
by αp is introduced, we introduce vertices ae and be and label them by γp and δp,
respectively. Now we move towards the introduction of vertices from set B. When
a vertex vj ∈ B labeled by αp is introduced, we introduce vertex vj with label βp.
Then 4m+ 1 vertices labeled by ξ1 are introduced, joined with the vertex labeled by
βp. Then we label these vertices by λ2 and finally join them with vertex w1, after w1

is introduced.

For each union operation in the expression tree for I(G), we do as follows. If both
graphs contain vertices labeled η, then both graphs contain columns ofHn,ℓ−k(u1, . . . , un, w1),
and the z-vertices from different parts should be joined by edges. To implement this,
besides the union operation, we do the following:

• vertices labeled by η in one of the graphs are relabeled by ξ1;
• we perform the union operation;
• the vertices labeled by η and ξ1 are joined; and
• the vertices labeled by ξ1 are relabeled by η.

If only one graph contains vertices labeled η then we just do the union operation.

If in the expression tree of I(G), we have join operation between two labels, say
αp and αq, then we simulate this by applying join operations between the vertices
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with the following labels: αp and γq; αp and δq; βp and γq; βp and δq; αq and γp; αq

and δp; βq and γp; and βq and δp.
Finally, for the relabel operation in the expression tree of G, that is, relabel αp

to αq, is replaced by the following relabeling process: αp to αq; βp to βq; γp to γq;
and δp to δq.

After we have scanned the expression tree for I(G), vertices w1 and w2 labeled
by ζ1 and ζ2 respectively, are introduced. Then we repeat the following operations
4m+ 1 times:

• introduce two vertices labeled by ξ1 and ξ2;
• join vertices labeled by ζ1 and ξ1, ξ1 and ξ2, ξ2 and ζ2;
• and relabel the vertices labeled by ζ1 and ζ2 by λ1.

After that the vertex w1 labeled by ζ1 is joined with the vertices labeled λ2.
We show next how to complete the construction of Hn,ℓ−k(u1, . . . , un, w1). Notice

that the columns associated with u1, . . . , un and the edges that join u1, . . . , un with
these columns are constructed, all z-vertices in distinct columns are already pairwise
adjacent, and all z-vertices are labeled by η. Now we construct columns of gadgets
that are not associated with u1, . . . , un, w1 and joining them together. We repeat the
following ℓ − n + k times. A vertex labeled ξ3 is introduced, and now we repeat the
following operations 4m times:

• introduce a vertex labeled ξ1 and 4m+ 1 vertices labeled ξ2;
• join vertices labeled ξ2 and vertices labeled with ξ1 and ξ3;
• relabel vertices labeled ξ2 by λ1, the vertex labeled ξ3 by ξ4, and the vertex

labeled ξ1 by ξ3.
Finally, the vertex labeled ξ3 is relabeled ξ4, the vertices labeled ξ4 are joined with
vertices labeled η, and then relabeled by η.

It remains to consider the columns associated with w1. We do the following ℓ− k
times. The vertex labeled by ξ3 and 4m + 1 vertices labeled by ξ1 are introduced.
Vertices labeled by ξ1 are joined with vertices labeled by ζ1 and ξ2, and relabeled λ1.
After this we repeat the following operations 4m times:

• introduce new vertex labeled by ξ1 and 4m+ 1 vertices labeled by ξ2;
• join vertices labeled by ξ2 and vertices labeled by ξ1 and ξ3;
• relabel vertices labeled by ξ2 by λ1, vertex labeled by ξ3 by ξ4, and the vertex
labeled by ξ1 by ξ3.

Finally, the vertex labeled ξ3 is relabeled by ξ4, the vertices labeled ξ4 are joined with
vertices labeled η and then relabeled η.

Expression tree for Q.. We now show how to modify the expression tree for
G′ by adding gadgets HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2), where {e1, . . . , edG(ui)} =

EG(ui), for ui ∈ R by making use of 3c additional labels. GadgetsHdG(vj),ℓ−1(ae1 , . . . , aedG(vj)
, w2),

where {e1, . . . , edG(vj)} = EG(vj) for vertices vj ∈ B are added similarly and with a
help of additional 3c labels.

For ui ∈ R, to add gadgetsHdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2), where {e1, . . . , edG(ui)} =

EG(ui), we use following additional labels:
• labels α′

1, . . . , α
′
c,

• labels γ′
1, . . . , γ

′
c, and

• labels γ′′
1 , . . . , γ

′′
c .

Let us observe that label λ1 is not used in any join operation in the construction of
G′. Hence, it is safe to use it to relabel a vertex as soon as all its incident edges are
constructed. Notice also that label λ3 is not used at all. Thus we can use it to relabel
the vertices that should be joined with w2. We use the working labels ξ1, ξ2, ξ3, ξ4 as
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well.
We scan the expression tree for G′ and iteratively change it for each ui, i ∈

{1, . . . , n}, by adding the corresponding gadgets.
For i ∈ {1, . . . , n}, let EG(ui) = {e1, . . . , edG(ui)}. Denote by Ai the set of vertices

{ae1 , . . . , aedG(ui)
} and let Ui = Ai ∪ {ui} for i ∈ {1, . . . , n}.

We need the following claim.
Claim 1. Let X be a node of the expression tree for G′ and G′

X be the subgraph
of G′ corresponding to this node. If V (G′

X) ∩ Ui 6= ∅ but G′[Ui] is not a subgraph of
G′

X then the following holds:
• if ui ∈ V [G′

X ], then ui is labeled by a label which is different from labels of
other vertices of G′

X ,
• the vertices of Ai ∩ V (G′

X) that are not adjacent to ui in G′
X are labeled by

labels that are different from the labels of the vertices of G′
X −Ai.

Proof. [Proof of Claim 1] Recall that the vertices u1, . . . , un are labeled by
α1, . . . , αc, and these labels are used only for u1, . . . , un Assume that there are two
distinct vertices ui, uj ∈ V [G′

X ] labeled by the same label αp. Because G
′[Ui] is not a

subgraph of G′
X , there is ae ∈ Ai such that uiae /∈ E(G′

X). Then ae should be joined
with ui by an edge on some further step of the construction of G′. But because ui

and uj have the same label, the join operation that constructs uiae would construct
ujae /∈ E(G′); a contradiction.

Recall that the vertices ae for e ∈ E(G) are labeled by γ1, . . . , γc, and these labels
are used only for such vertices. Assume now that there is a vertex of ae ∈ Ai∩V (G′

X)
such that uiae /∈ E(G′

X) that has the same label as some other vertex ae′ ∈ V [G′
X ]\Ai.

Then again, ae should be joined with ui by an edge on some further step of the
construction of G′. But because ae and ae′ have the same label, the join operation
that constructs uiae would construct ujae′ . Because ae′ /∈ Ai , ujae′ /∈ E(G′), and
we obtain a contradiction.

We use Claim 1 to construct graph HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2) in such a

way that all z-vertices of this gadget constructed for the node X are labeled by the
same label α′

p, if ui ∈ V [G′
X ] and this vertex is labeled by αp. If ui /∈ V [G′

X ] and the la-
bels γp1

, . . . , γph
are used for vertices Ai∩V (G′

X) then all z-vertices are labeled by the
labels γ′

p1
, . . . , γ′

ph
. The construction of the gadgetHdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2)
is completed when after some union operation all vertices of Ui are included in graph
G′

X .
When vertex ui ∈ R labeled by αp is introduced, we construct ui and the columns

of HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2) that are not associated with ae1 , . . . , aedG(ui)

together with joining them edges. To do it, we perform the following set of opera-
tions. First, we introduce the vertex ui labeled by αp. Then we repeat the following
operations ℓ + c(ui) − dG(ui) times. A vertex labeled ξ3 is introduced and then the
following operations are repeated 4m times:

• introduce a vertex labeled by ξ1 and 4m+ 1 vertices labeled ξ2,
• join vertices labeled ξ2 and vertices labeled by ξ1 and ξ3,
• relabel vertices labeled by ξ2 by λ1, the vertex labeled ξ3 by ξ4, and the vertex
labeled ξ1 by ξ3.

Finally, the vertex labeled by ξ3 is relabeled by ξ4, the vertices labeled by ξ4 are joined
with vertices labeled by α′

p (if they exist) and then relabeled by α′
p.

Next we consider the columns associated with w2 and perform the following ℓ−
c(ui) times:

• new vertex labeled by ξ3 and 4m+ 1 vertices labeled by ξ1 are introduced;
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• the vertices labeled by ξ1 are joined with vertices labeled by ξ3, and relabeled
by λ3.

Then we repeat the following operations 4m times:
• introduce avertex labeled by ξ1 and 4m+ 1 vertices labeled by ξ2,
• join vertices labeled by ξ2 and vertices labeled by ξ1 and ξ3,
• relabel vertices labeled by ξ2 by λ1, the vertex labeled ξ3 by ξ4, and the vertex

labeled ξ1 by ξ3.
Finally, the vertex labeled by ξ3 is relabeled by ξ4, the vertices labeled by ξ4 are joined
with vertices labeled α′

p and then relabeled by α′
p.

When a vertex ae, uiae ∈ E(Q), labeled by γq is introduced, we construct it
together with the column of HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2) associated with ae.
To do it, we perform the following set of operations. First, we introduce the vertex ae
labeled γq and a vertex labeled by ξ3. Then 4m+1 vertices labeled ξ2 are introduced
and joined with the vertices labeled γp and ξ3. Then the vertices labeled ξ2 are
relabeled λ1. Now we repeat the following operations 4m times:

• introduce a vertex labeled by ξ1 and 4m+ 1 vertices labeled ξ2,
• join vertices labeled ξ2 and vertices labeled ξ1 and ξ3,
• relabel vertices labeled ξ2 by λ1, the vertex labeled ξ3 by γ′

q, and the vertex
labeled ξ1 by ξ3.

Finally, the vertex labeled ξ3 is relabeled γ′
q.

We are done with introduction nodes. Next we proceed with union operations.
Notice that we construct different parts of each gadgetHdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2)
while introducing the vertices of Ui. We join them together when vertices of Ui are
collected together by the union operations. Let X be a union node of the expression
tree for G′. Denote by X and Y two children of this node and let G′

Y and G′
Z be

the subgraphs of G′ corresponding to these nodes. Denote also by QY and QZ the
subgraph of Q constructed for Y and Z respectively. Assume inductively, that for
every i ∈ {1, . . . , n},

• if ui ∈ V (G′
Y ) (ui ∈ V (G′

Z) respectively) and ui is labeled by αp, then
the z-vertices of HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2) that are in QY (in QZ

respectively) are labeled by α′
p.

• if ui /∈ V (G′
Y ) (ui /∈ V (G′

Z) respectively) and ae ∈ Ai is labeled by γp in G′
Y

(inG′
Z respectively), then the z-vertices ofHdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2)

that are in the column associated with ae are labeled by γ′
p in QY (QZ re-

spectively).
• all z-vertices of distinct columns HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2) in QY

(QZ respectively) are pairwise adjacent.
• γ′′

1 , . . . , γ
′′
c are not used in QY and QZ .

It is straightforward to see that these conditions hold if Y (Z respectively) is an
introduce node.

If for every i ∈ {1, . . . , n}, G′
Y or G′

Z has no vertices of Ui, then we just perform
the union operation. Otherwise, we first relabel γ′

p to γ′′
p for p ∈ {1, . . . , c} in QY .

Then we perform the union operation. Now we consider i ∈ {1, . . . , n} such that
Ui ∩ V (G′

Y ) 6= ∅ and Ui ∩ V (G′
Z) 6= ∅. We have three cases.

Case 1. ui ∈ V (G′
Y ). Suppose that ui is labeled by αp. By Claim 1, αp is used only

for ui inG′
X . Hence, α′

p is used only for z-vertices ofHdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2)

in QY . Suppose that graph G′
Z includes vertices of Ai labeled by γp1

, . . . , γph
. Then

all z-vertices of HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2) in the columns associated with a

vertex labeled by γpj
are labeled by γ′

pj
for j ∈ {1, . . . , h} in QZ . Because ui /∈ V (G′

Z),



16 FOMIN, GOLOVACH, LOKSHTANOV, AND SAURABH

the vertices of Ai∩V (G′
Z) are not adjacent to ui inG′

X . By Claim 1, labels γp1
, . . . , γph

are not used for V (G′
X)\Ai. Therefore, labels γ

′
p1
, . . . , γ′

ph
are used only for z-vertices

of HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2) in the columns associated with the vertices la-

beled by γp1
, . . . , γph

. For j ∈ {1, . . . , h}, we join the vertices labeled by α′
p and γ′

pj
,

and then relabel the vertices labeled γ′
pj

by α′
p. It remains to observe that in this

way we join the z-verties of HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2) from G′

Y and G′
Z ,

and afterwards all these vertices are labeled by α′
p.

Case 2. ui ∈ V (G′
Z). This case is symmetric to Case 1, and we use the same ar-

guments. Suppose that ui is labeled by αp. Then α′
p is used only for z-veritices of

HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2) in QZ . Suppose that the graph G′

Y includes ver-

tices ofAi labeled by labels γp1
, . . . , γph

. Then all z-vertices ofHdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2)

in the columns associated with a vertex labeled by γpj
are labeled by γ′′

pj
for j ∈

{1, . . . , h}. For j ∈ {1, . . . , h}, we join the vertices labeled α′
p and γ′′

pj
, an then relabel

the vertices labeled γ′′
pj

by α′
p.

Case 3. ui /∈ V (G′
Y ) ∪ V (G′

Z). Suppose that G′
Y includes vertices of Ai labeled by

γp1
, . . . , γph

, and G′
Z has vertices of Ai labeled by γq1 , . . . , γqf . Then all z-vertices

of HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2) in the columns associated with a vertex la-

beled by γpj
in G′

Y are labeled by γ′′
pj

for j ∈ {1, . . . , h}, and all z-vertices of
HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2) in the columns associated with a vertex labeled

by γqj in G′
Z are labeled by γ′

qj
for j ∈ {1, . . . , f}. By Claim 1, γ′′

p1
, . . . , γ′′

ph
and

γ′
q1
, . . . , γ′

qf
are used only for the z-vertices ofHdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2). For

each j ∈ {1, . . . , h} and each j′ ∈ {1, . . . , f}, we join the vertices labeled by γ′′
pj

and
γ′
qj′

. Clearly, in this way we join the z-verties of HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2)

from QY and QZ .

In conclusion we relabel γ′′
p to γ′

p for p ∈ {1, . . . , c}.

Observe that for the subgraph of QX constructed for X, we have the required
properties. Namely, if ui ∈ V (G′

X) and ui is labeled by αp, then the z-vertices of
HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2) that are in QX are labeled α′
p, and if ui /∈ V (G′

X)

and ae ∈ Ai is labeled by γp inG′
X , then the z-vertices ofHdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)

, w2)

that are in the column associated with ae are labeled by γ′
p. Also all z-vertices of dis-

tinct columns HdG(ui),ℓ−c(ui)(ae1 , . . . , aedG(ui)
, w2) in QX are pairwise adjacent, and

γ′′
1 , . . . , γ

′′
c are not used in QX .

The join operations in the expression tree for G′ are done in the new tree in
exactly the same way. The relabel operation in the expression tree of G′, that is,
relabel αp to αq and relabel γp to γq, are replaced by relabel αp to αq, α

′
p to α′

q,
and γp to γq, γ

′
p to γ′

q, respectively. Notice that this relabeling does not violate the
aforementioned requirements for labelings that are crucial for the union operations.

When we have completed the scan of the expression tree for G′, the only thing
which remains is to join vertices labeled λ3 and the vertex labeled ζ2 (the vertex w2).

GadgetsHdG(vj),ℓ−1(ae1 , . . . , aedG(vj)
, w2) for vertices vj ∈ B, where {e1, . . . , edG(vj)} =

EG(vj), are added in the same way by using additional 3c labels and labels λ1, λ3, ξ1, ξ2, ξ3, ξ4.
Observe also that Claim 1 can be reformulated for each vj and EG(vj). This completes
the proof of Lemma 4.6.

To conclude the first part of the proof of the Theorem 4.1, we observe that
the number of vertices of Q is polynomial in n + r, and therefore if Max-Cut is
solvable in time f(cwd(Q)) · |V (Q)|o(cwd(Q)) then Red-Blue CDS is solvable in
time f(fvs(G)) · |V (G)|o(fvs(G)) .
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4.2. Algorithmic upper bound for Max-Cut.. Now we outline an algorithm
for solvingMax-Cut in time nO(t) on graphs given together with an expression tree of
width at most t. The algorithm is based on dynamic programming over the expression
tree of the input graph. We first describe what we store in the tables corresponding
to the nodes in the expression tree.

Let G be a graph with n vertices and m edges, and let T be an expression tree
for G of width t. By the results of Courcelle and Olariu [6], without loss of generality
we can assume that T is irredundant. For a node X of T , denote by GX the t-graph
associated with this node, and let U1(X), . . . , Ut(X) be the sets of vertices of GX

labeled 1, . . . , t respectively. The table for the node X stores vectors (s1, . . . , st, r)
of integers such that 0 ≤ si ≤ |Ui(X)| for 1 ≤ i ≤ t, and 0 ≤ r ≤ |E(GX)|,
for which there is a partition V1, V2 of V (GX) such that |V1 ∩ Ui(GX)| = si and
|CGX

(V1, V2)| ≥ r. Notice that this table contains at most (n+1)t ·m vectors. If X is
the root node of T (that is, G = GX) then mcut(G) is equal to the maximum value
of r for which the table for X contains an entry with this value.

Now we provide the details of how to construct and update such tables. The
construction for introduce nodes of T is straightforward.
Relabel Node: Suppose that X is a relabel node ρi→j , and let Y be the child of

X. Then the table for X contains a vector (s1, . . . , st, r) if and only if si = 0
and the table for Y contains the entry (s′1, . . . , s

′
t, r) such that s′p = sp for

1 ≤ p ≤ t, t 6= i, j, and sj = s′i + s′j .
Union Node: Let X be a union node with children Y and Z. In this case the table

for X contains vector (s1, . . . , st, r) if and only if the tables for Y and Z have
vectors (s′1, . . . , s

′
t, r

′) and (s′′1 , . . . , s
′′
t , r

′′) respectively, such that s′i + s′′i = si
for 1 ≤ i ≤ t, and r′ + r′′ ≥ r.

Join Node: Finally, suppose that X is a join node ηi,j with the child Y . The table
for X has vector (s1, . . . , st, r) if and only if the table for Y includes a vector
(s1, . . . , st, r

′) such that r′ + si(|Uj(Y )| − sj) + sj(|Ui(Y )| − si) ≥ r.
Correctness of the algorithm follows from the description of the procedure. The
running time of the algorithm is O(tO(1)n2t+O(1)). This proves that Max-Cut can
be solved in time nO(t) if a graph with a clique decomposition of width at most t is
given.

4.3. Bipartization by Edge Removal and Maximum (Minimum) Bi-
section.. Theorem 4.1 have several interesting corollaries for similar problems like
Bipartization by Edge Removal and Maximum (Minimum) Bisection.

In the Bipartization by Edge Removal problem, we are given a graph G and
a positive integer k, and the question is whether there is a set of edges X such that
|X| ≤ k and the graph G′ with the vertex set V (G) and the edge set E(G) \ X is
bipartite. Since this problem is dual to the Maximum Cut problem, we immediately
have the following corollary.

Corollary 4.7. Let G be an n-vertex graph given together with an expression
tree of width t. Then the Bipartization by Edge Removal problem

• cannot be solved in time f(t) · no(t) unless the ETH fails;
• is solvable in time nO(t).

In the Maximum (Minimum) Bisection problem, we are given a graph G with
an even number of vertices and a positive integer k, and the objective is to check
whether there is a partition of V (G) into two sets V1 and V2 of equal size such that
|CG(V1, V2)| ≥ k (|CG(V1, V2)| ≤ k).

Corollary 4.8. Let G be an n-vertex graph given together with an expression
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tree of width t. Then the Maximum (Minimum) Bisection problem
• cannot be solved in time f(t) · no(t) unless the ETH fails;
• is solvable in time nO(t).

Proof. The algorithmic upper bounds for Maximum Bisection and Minimum
Bisection follow from an easy modification of the algorithm for Max-Cut described
in Section 4.2. The lower bound can be obtained from the fact that the Max-Cut
problem for a graph G can be reduced to Maximum Bisection by adding |V (G)| iso-
lated vertices. The claim about theMinimum Bisection follows from the observation
that the Maximum Bisection problem for a graph G can be reduced to Minimum
Bisection for the complement graph G, and the fact that cwd(G) ≤ 2 ·cwd(G) (see
[35, 6]).

5. Edge dominating set. In this section, we consider the Edge Dominating
Set problem. In the Edge Dominating Set problem, we are given a graph G and
a positive integer k, and the objective is to determine whether there is a set of edges
X ⊆ E(G) such that |X| ≤ k and every edge of G is either included in X, or it is
adjacent to at least one edge of X (which dominates it). The set X is called an edge
dominating set of G. We prove the following result for Edge Dominating Set.

Theorem 5.1. Let G be an n-vertex graph given together with an expression tree
of width t. Then the Edge Dominating Set problem

• cannot be solved in time f(t) · no(t) unless the ETH fails;
• is solvable in time nO(t).

The remaining part of this section is devoted to the proof of Theorem 5.1. We
first show the lower bound and then complement this result with the corresponding
upper bound.

5.1. Lower bound. To prove our result we give a linear FPT-reduction from
Red-Blue Exact Saturated CDS to Edge Dominating Set. The proof is
organized as follows: we first give a construction, then prove its correctness and finally
argue on the clique-width of the transformed instance. We start with descriptions of
auxiliary gadgets.

Auxiliary gadgets.. Let s ≤ t be positive integers. We construct graph Fs,t

with the vertex set {x1, . . . , xs, y1, . . . , ys, z1, . . . , zt} and edges xiyi, 1 ≤ i ≤ s and
yizj , 1 ≤ i ≤ s and 1 ≤ j ≤ t. Basically we have a complete bipartite graph between
yi’s and zj ’s with pendent vertices attached to yi’s. The vertices z1, z2, . . . , zt are
called roots of Fs,t. Further we refer to the vertices xi, yj as x and y-vertices of the
gadget.

Graph Fs,t has the following property.
Lemma 5.2. Any set of s edges incident with vertices y1, . . . , ys forms an edge

dominating set in Fs,t. Furthermore, let G be a graph obtained by taking the union of
Fs,t with some other graph H such that V (Fs,t) ∩ V (H) = {z1, . . . , zt}. Then every
edge dominating set of G contains at least s edges from Fs,t. The proof of the lemma
follows from the fact that every edge dominating set includes at least one edge from
E(yi) for i ∈ {1, . . . , s}.

Final reduction.. Now we describe our reduction. Let (G, c) be a red-blue
capacitated graph with R = {u1, . . . , un} being the set of red vertices and B =
{v1, . . . , vr} being the set of blue vertices, and let k be a positive integer. Each red
vertex ui is replaced by the set Ui with c(ui) vertices, and for every edge uivj ∈ E(G),
all vertices of Ui are joined to vj by edges. For every vertex vj we add one additional
leaf (a pendent vertex). Now vertex sets {a1, . . . , an} and {b1, . . . , bn} are constructed,
and vertices ai are made adjacent to all the vertices of Ui and the vertex bi. For every
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bi

Ui
ai

X

Ri

vj

Fig. 3. Graph G′

vertex bi, a set Ri of c(ui) vertices is added and bi is made adjacent to all the vertices
in Ri. Then to every vertex of R1 ∪ R2 ∪ · · · ∪ Rn we add a path of length two. Let
X be the set of middle vertices of these paths. We denote the obtained graph by G′

(see Fig 3). Finally, we introduce three copies of Fs,t:

• a copy of Fn−k,n with roots {a1, . . . , an},
• a copy of Fk,n with roots {b1, . . . , bn}, and

• a copy of Fr,ℓ where ℓ =
n
∑

i=1

c(ui) with roots in X.

Let this final resulting graph be H.

Lemma 5.3. A graph G has a saturated capacitated dominating set of size k if
and only if H has an edge dominating set of cardinality at most n+ r + ℓ.

Proof. Let S be an exact saturated dominating set of size k in G and f be its cor-
responding domination mapping. For convenience, we assume that S = {u1, . . . , uk}.
We construct an edge dominating set as follows. First we select an edge emanating
from every vertex in the set {v1, . . . , vr}. For every vertex vj , we choose a vertex u in
Ui where ui = f(vj) which is not incident to already chosen edges and add the edge
uvi to our set. Notice that we always have such a choice of u ∈ Uj as c(uj) = |Uj |. We
observe that these edges already dominate all the edges in the sets E(vj), 1 ≤ j ≤ r,
and in sets E(u) for u ∈ U1 ∪ · · · ∪ Uk. Now we add n − k edges from Fn−k,n which
are incident with vertices in {ak+1, . . . , an} and k edges from Fk,n which are incident
to {b1, . . . , bk}. Then ℓ − r matching edges joining vertices of Rk+1, . . . , Rn to the
vertices of X are included in the set. Finally, we add r edges form Fr,ℓ which are
incident to vertices of X and are adjacent to vertices of R1, . . . , Rk. Since S is an
exact capacitated dominating set,

∑k

i=1 c(ui) = r, and from our description it is clear
that the resulting set is an edge dominating set of size n+ r + ℓ for H.

We proceed to prove the other direction of the equivalence. Let L be an edge
dominating set of cardinality at most n + r + ℓ. The set L is forced to contain
at least one edge from every E(vj), at least n − k edges from Fn−k,n, at least k
edges from Fk,n, and at least one edge from E(x) for all x ∈ X, because of the
presence of pendent edges. This implies that |L| = n+ r + ℓ, and L contains exactly
one edge from every E(vi), exactly n − k edges from Fn−k,n, exactly k edges from
Fk,n, and exactly one edge from E(x) for all x ∈ X. Every edge aibi has to be
dominated by some edge of L, in particular it must be dominated from either an edge
of Fn−k,n, or Fk,n. Let I = {i : ai is incident with an edge from L∩E(Fn−k,n)} and
J = {j : bj is incident to an edge from L ∩ E(Fk,n)}. The above constraints on the
set L implies that |I| = n− k, |J | = k, and these sets form a partition of {1, . . . , n}.
The edges which join vertices bi and Ri for i ∈ I are not dominated by edges from
L ∩ E(Fk,n). Hence to dominate these edges we need at least

∑

i∈I |Ri| edges which
connect sets Ri and X. Since at least r edges of Fr,ℓ are included in L, we have that
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∑

i∈I |Ri| ≤ ℓ− r and

∑

j∈J

|Rj | = r −
∑

i∈I

|Ri| ≥ ℓ− (ℓ− r) ≥ r.

Let S = {ui : i ∈ J}. Clearly, |S| = k. Now we show that S is a saturated capacitated
dominating set. For i ∈ J , edges which join a vertex ai to Ui are not dominated
by edges from L ∩ E(Fn−k,k), and hence they have to be dominated by edges from
sets E(vj). Since r ≤

∑

i∈J |Rj | =
∑

i∈J |Uj |, there are exactly r such edges, and
every such edge must be dominated by exactly one edge from L. We also know that
L ∩ E(vj) 6= ∅ for all j ∈ {1, . . . , r} and hence for every vj , there is exactly one edge
which joins it with some vertex u ∈ Ui for some i ∈ J . Furthermore, all these edges are
not adjacent, that is, they form a matching. We define f(vj) = ui for j ∈ {1, . . . , r}.
From our construction it follows that f is a domination mapping for S and S is an
exact saturated dominating set in G.

The next lemma shows that if the graph G we started with has bounded feedback
vertex number and has the properties required by Lemma 2.1, then H has bounded
clique-width.

Lemma 5.4. If for every minimum feedback vertex set X of G, each vertex v of the
forest G−X is adjacent with at most one vertex of X, then cwd(H) ≤ 4·fvs(G)+13.

Proof. By Lemma 2.1, we have that the graph G is of clique-width at most
s = 4 · fvs(G) + 3. Suppose that the expression tree for G uses s-labels {α1, . . . , αs}.
We construct the expression tree for H by scanning the expression tree for G. To
construct the expression tree for H, we need the following additional labels:

• Labels ξ1, ξ2, and ξ3 for attaching Fn−k,n, Fk,n and Fr,ℓ respectively.
• Label λ for marking some vertices that are already joined with all the neigh-

bors.
• Working labels γ1, . . . , γ6.

When a vertex ui ∈ R labeled by αp is introduced, we perform the following set
of operations. First we introduce the following vertices with working labels: c(ui)
vertices of Ui with label γ1, the vertex ai with label γ2, and the vertex bi with label
γ3. Then we join the vertices labeled by γ1 with the vertex labeled with γ2, and the
vertex labeled by γ2 with the vertex labeled γ3. Then we relabel γ1 to αp and γ2 to
ξ1. Now we create vertices of Ri and the paths attached to it. To do so we perform
the following operations c(ui) times:

• introduce three nodes labeled by γ4, γ5 and γ6
• join γ3 with γ4, γ4 with γ5 and γ5 with γ6,
• relabel γ4 to λ, γ5 to ξ3, and γ6 to λ.

Finally, we relabel γ3 to ξ2. We omit the union operations from the description and
assume that if some vertex is introduced then this operation is immediately performed.

If a vertex vj ∈ B labeled by αq is introduced, then we introduce vertex vi labeled
by γ1, and a pendent vertex labeled by γ2, join vertices labeled by γ1 and γ2, and
then relabel γ1 to αq and γ2 to λ.

If in the expression tree of G, the join operation occurs between two labels, say
αp and αq, then we repeat in the new tree. Union operations in the expression tree
are done exactly as before.

Finally, to complete the construction of the expression tree for H, we add Fn−k,n,
Fk,n and Fr,ℓ. Notice that all the vertices in {a1, . . . , an}, {b1, . . . , bn} and X are
labeled by ξ1, ξ2 and ξ3 respectively. From here we can easily add Fn−k,n, Fk,n and
Fr,ℓ with root vertices {a1, . . . , an}, {b1, . . . , bn} and X respectively by making use of
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working labels γ1, γ2, γ3, and λ. To obtain each gadget, we construct x and y-vertices
labeled by γ1 and γ2 respectively, join γ1 with γ2, and then relabel γ1 to λ and γ2
to γ3. As soon as x- and y-vertices of each gadget are constructed and joined by a
matching, we join γ3 with ξ1, ξ2 or ξ3 to construct t Fn−k,n, Fk,n, or Fr,ℓ respectively.
When the construction of each gadget is completed, we relabel γ3 to λ. This concludes
the description for the expression tree for H.

To conclude the lower bound proof of Theorem 5.1, it remains to note that H has
4(n+r+ℓ) ≤ 4(n+r+n2) vertices, and therefore if we could solve Edge Dominating
Set in time f(t)|V (H)|o(t), where t = cwd(H), then we also would be able to solve
Red-Blue Exact Saturated CDS in time f(k)|V (G)|o(k), where k is the feedback
vertex set number of G. By Theorem 3.1, this would imply that the ETH does not
hold.

5.2. Algorithmic upper bound for Edge Dominating Set. Now we give
an algorithmic upper bound for the Edge Dominating Set problem parameterized
by the clique-width, that is, give an algorithm running in time nO(t) for Edge Dom-
inating Set on graphs with a given expression tree of with at most t. Again, the
algorithm is based on a dynamic programming over the expression tree of the input
graph.

Let G be a graph with n vertices and m edges, and let T be an expression tree for
G of width t. We assume that T is irredundant. For a node X of T , denote by GX

the t-graph associated with this node, and let U1(X), . . . , Ut(X) be sets of vertices
of GX labeled 1, . . . , t respectively. The table of data for the node X stores vectors
(s1, . . . , st, r1, . . . , rt, l) of non-negative integers with the following properties:

• si + ri ≤ |Ui(X)| for 1 ≤ i ≤ t;
• l ≤ |E(GX)|;
• there is a set of edges S ⊆ E(GX) such that si vertices of Ui(X) are adjacent
to the edges of S for 1 ≤ i ≤ t, and |S| ≤ l;

• it is possible to attach ri pendent edges to the vertices of Ui(X) for 1 ≤ i ≤ t
in such a way that these edges dominate all edges of GX undominated by S.

The intuition behind this definition is that there are at most ri vertices in Ui(X)
that are incident with at least one edge e /∈ S in GX that is not dominated by S.
The size of this table is at most (n + 1)2t · m. If X is the root node of T (that is
G = GX) then the size of the minimum edge dominating set is the minimum value of
l for which the table for X contains an entry with the value of the parameter being l
and r1 = . . . = rt = 0.

Now we give the details of how we make our tables and how do we update it.

Introduce Node: Tables for introduce nodes of T are constructed in a straightfor-
ward way.

Relabel Node: Let X be a relabel node ρi→j , and let Y be the child of X. Then
the table for X contains a vector (s1, . . . , st, r1, . . . , rs, l) if and only if si = 0,
ri = 0 and the table for Y contains the entry (s′1, . . . , s

′
t, r

′
1, . . . , r

′
t, l) such

that s′p = sp and rp = r′p for 1 ≤ p ≤ t, t 6= i, j, and sj = s′i+ s′j , rj = r′i+ r′j .
Union Node: Let X be a union node with children Y and Z. In this case the table

for X contains a vector (s1, . . . , st, r1, . . . , rt, l) if and only if the tables for
Y and Z have vectors (s′1, . . . , s

′
t, r

′
1, . . . , r

′
t, l

′) and (s′′1 , . . . , s
′′
t , r

′′
1 , . . . , r

′′
t , l

′′)
respectively such that s′i + s′′i = si and r′i + r′′i = ri for 1 ≤ i ≤ t, and
l′ + l′′ ≤ l.

Join Node: Finally, suppose that X is a join node ηi,j with the child Y . It can be
noted that the table for X has a vector (s1, . . . , st, r1, . . . , rt, l) if and only if
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the table for Y includes a vector (s′1, . . . , s
′
t, r

′
1, . . . , r

′
t, l

′) such that
• sp = s′p and rp = r′p for 1 ≤ p ≤ t, p 6= i, j;
• si + ri = s′i + r′i, sj + rj = s′j + r′j ;
• s′i ≤ si, s

′
j ≤ sj ;

• either s′i + r′i = |Ui(Y )|, or s′j + r′j = |Uj(Y )|;
• l′ +max{si − s′i, sj − s′j} ≤ l.

Correctness of the algorithm follows from the description of the algorithm, and its
running time O(tO(1)n4t+O(1)) is. Hence Edge Dominating Set is solvable in time
nO(t). This concludes the proof of Theorem 5.1.

6. Conclusion and further directions. In this paper, we obtained the first
asymptotically tight bounds for problems parameterized by the clique-width of the
input graph. In particular, we showed that Max-Cut and Edge Dominating Set
cannot be solved in time f(t)no(t) unless the ETH collapses; while there do exist
algorithms with running time nO(t) for both these problems, where t is the clique-
width of the input graph. Notice that our reduction to obtain a tight lower bound
for Max-Cut is also an FPT-reduction and, therefore, Max-Cut is W[1]-hard when
parameterized by the clique-width of the input graph. Thus we resolve an open
problem about the parameterized complexity of Max-Cut.

We conclude with an open problem related to Hamiltonian Cycle. In the
Hamiltonian Cycle problem, we are given a graph G and the objective is to check
whether there exists a cycle passing through every vertex of G. Similar to Max-Cut
and Edge Dominating Set we can obtain the following algorithmic lower bound
for the Hamiltonian Cycle problem when parameterized by the clique-width of the
input graph.

Theorem 6.1. Assuming ETH, the Hamiltonian Cycle problem cannot be
solved in time f(t)no(t), where n is the number of vertices and t is the clique-width of
the input graph.

However, all the algorithms we know for Hamiltonian Cycle run in time nO(t2)

if an expression tree of width t is given. We leave it open to find either an improved
lower bound or an improved upper bound for the Hamiltonian Cycle problem.
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