
Almost-Optimal Sublinear-Time Edit Distance in the Low
Distance Regime∗

Karl Bringmann
Saarland University

Max Planck Institute for Informatics
Saarbrücken, Germany

Alejandro Cassis
Saarland University

Max Planck Institute for Informatics
Saarbrücken, Germany

Nick Fischer
Saarland University

Max Planck Institute for Informatics
Saarbrücken, Germany

Vasileios Nakos
RelationalAI

Berkeley, United States of America

ABSTRACT

We revisit the task of computing the edit distance in sublinear time.

In the (𝑘, 𝐾)-gap edit distance problemwe are given oracle access to

two strings of length 𝑛 and the task is to distinguish whether their

edit distance is at most 𝑘 or at least 𝐾 . It has been established by

Goldenberg, Krauthgamer and Saha (FOCS ’19), with improvements

by Kociumaka and Saha (FOCS ’20), that the (𝑘, 𝑘2)-gap problem

can be solved in time 𝑂 (𝑛/𝑘 + poly(𝑘)). One of the most natural

questions in this line of research is whether the (𝑘, 𝑘2)-gap is best-

possible for the running time 𝑂 (𝑛/𝑘 + poly(𝑘)).
In this work we answer this question by significantly improv-

ing the gap. Specifically, we show that in time 𝑂 (𝑛/𝑘 + poly(𝑘))
we can even solve the (𝑘, 𝑘1+𝑜 (1))-gap problem. This is the first

algorithm that breaks the (𝑘, 𝑘2)-gap in this running time. Our

algorithm is almost optimal in the following sense: In the low dis-

tance regime (𝑘 ≤ 𝑛0.19) our running time becomes 𝑂 (𝑛/𝑘), which
matches a known 𝑛/𝑘1+𝑜 (1) lower bound for the (𝑘, 𝑘1+𝑜 (1))-gap
problem up to lower order factors.

Our result also reveals a surprising similarity of Hamming dis-

tance and edit distance in the low distance regime: For both, the

(𝑘, 𝑘1+𝑜 (1))-gap problem has time complexity 𝑛/𝑘1±𝑜 (1) for small 𝑘 .

In contrast to previous work, which employed a subsampled

variant of the Landau-Vishkin algorithm, we instead build upon

the algorithm of Andoni, Krauthgamer and Onak (FOCS ’10) which

approximates the edit distance in almost-linear time𝑂 (𝑛1+𝜀) within
a polylogarithmic factor. We first simplify their approach and then

show how to to effectively prune their computation tree in order to

obtain a sublinear-time algorithm in the given time bound. Towards

that, we use a variety of structural insights on the (local and global)

patterns that can emerge during this process and design appropriate

property testers to effectively detect these patterns.

∗This work is part of the project TIPEA that has received funding from the Euro-
pean Research Council (ERC) under the European Unions Horizon 2020 research and
innovation programme (grant agreement No. 850979).

STOC ’22, June 20ś24, 2022, Rome, Italy

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9264-8/22/06.
https://doi.org/10.1145/3519935.3519990

CCS CONCEPTS

· Theory of computation→ Streaming, sublinear and near

linear time algorithms.

KEYWORDS

Edit Distance, Sublinear Algorithms, Precision Sampling

ACM Reference Format:

Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos. 2022.

Almost-Optimal Sublinear-Time Edit Distance in the Low Distance Regime.

In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of

Computing (STOC ’22), June 20ś24, 2022, Rome, Italy. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3519935.3519990

1 INTRODUCTION

The edit distance (also called Levenshtein distance) [24] between two

strings 𝑋 and 𝑌 is the minimum number of character insertions,

deletions and substitutions required to transform 𝑋 into 𝑌 . It con-

stitutes a fundamental string similarity measure with applications

across several disciplines, including computational biology, text

processing and information retrieval.

Computational problems involving the edit distance have been

studied extensively. A textbook dynamic programming algorithm

computes the edit distance of two strings of length 𝑛 in time𝑂 (𝑛2)
[26, 27]. It is known that beating this quadratic time by a polynomial

improvement would violate the Strong Exponential Time Hypothe-

sis [1, 2, 9, 14], one of the cornerstones of fine-grained complexity

theory. For faster algorithms, we therefore have to resort to approx-

imating the edit distance.1 A long line of research (starting even

before the hardness result emerged) lead to successively improved

approximation algorithms: The first result established that in linear

time the edit distance can be 𝑂 (
√
𝑛)-approximated [22]. The ap-

proximation ratio was improved to𝑂 (𝑛3/7) in [10] and to 𝑛1/3+𝑜 (1)

in [12]. Making use of the Ostrovsky-Rabani technique for embed-

ding edit distance into the ℓ1-metric [25], Andoni and Onak [8]

gave an 𝑛𝑜 (1) -approximation algorithm which runs in time 𝑛1+𝑜 (1) .
Later, Andoni, Krauthgamer and Onak achieved an algorithm in

time𝑂 (𝑛1+𝜀) computing a (log𝑛)𝑂 (1/𝜀) -approximation [4]. A break-

through result by Chakraborty, Das, Goldenberg, Kouckỳ and Saks

1Throughout the paper, by łalgorithmž we mean łrandomized algorithm with constant
error probabilityž.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1102

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3519935.3519990
https://doi.org/10.1145/3519935.3519990
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519935.3519990&domain=pdf&date_stamp=2022-06-10

STOC ’22, June 20ś24, 2022, Rome, Italy Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos

showed that it is even possible to compute a constant-factor approxi-

mation in strongly subquadratic time [15]. Subsequent work [13, 21]

improved the running time to close-to-linear for the regime of

near-linear edit distance. Very recently, Andoni and Nosatzki [7]

extended this to the general case, showing that in time𝑂 (𝑛1+𝜀) one
can compute a 𝑓 (1/𝜀)-approximation for some function 𝑓 depend-

ing solely on 𝜀.

While for exact algorithms (almost-)linear-time algorithms are

the gold standard, for approximation algorithms it is not clear

whether a running time of 𝑂 (𝑛1+𝜀) is desired, as in fact one might

hope for sublinear-time algorithms. Indeed, another line of research

explored the edit distance in the sublinear setting, where one has

random access to the strings 𝑋 and 𝑌 , and the goal is to compute

the edit distance between 𝑋 and 𝑌 without even reading the whole

input. Formally, in the (𝑘, 𝐾)-gap edit distance problem the task is

to distinguish whether the edit distance is at most 𝑘 or at least 𝐾 .

The running time is analyzed in terms of the string length 𝑛 and the

gap parameters 𝑘 and 𝐾 . Initiating the study of this problem, Batu

et al. [11] showed how to solve the (𝑘,Ω(𝑛))-gap problem in time

𝑂 (𝑘2/𝑛 +
√
𝑘), assuming 𝑘 ≤ 𝑛1−Ω (1) . The aforementioned algo-

rithm byAndoni andOnak [8] can be viewed in the sublinear setting

and solves the (𝑘, 𝐾)-gap problem in time 𝑛2+𝑜 (1) ·𝑘/𝐾2, assuming

𝐾/𝑘 = 𝑛Ω (1) . In a major contribution, Goldenberg, Krauthgamer

and Saha [17] showed how to solve the (𝑘, 𝐾)-gap problem in time2

𝑂 (𝑛𝑘/𝐾 + 𝑘3). Subsequently, Kociumaka and Saha [20] improved

the running time to𝑂 (𝑛𝑘/𝐾 + 𝑘2 +
√
𝑛𝑘5/𝐾). They focus their pre-

sentation on the (𝑘, 𝑘2)-gap problem, where they achieve time

𝑂 (𝑛/𝑘 + 𝑘2).
How far from optimal are these algorithms? It is well-known that

(𝑘, 𝐾)-gap edit distance requires time Ω(𝑛/𝐾) (this follows from
the same bound for Hamming distance). Batu et al. [11] additionally

proved that (𝑘,Ω(𝑛))-gap edit distance requires time Ω(
√
𝑘). To-

gether, (𝑘, 𝐾)-gap edit distance requires time Ω(𝑛/𝐾 +
√
𝑘), but this

leaves a big gap to the known algorithms. In particular, in the low

distance regime (where, say, 𝐾 ≤ 𝑛0.01) the lower bound is Ω(𝑛/𝐾)
and the upper bound is 𝑂 (𝑛𝑘/𝐾). Closing this gap has been raised

as an open problem by the authors of the previous sublinear-time

algorithms.3 In particular, a natural question is to determine the

smallest possible gap which can be distinguished within the time

budget of the previous algorithms, say 𝑂 (𝑛/𝑘 + poly(𝑘)). Is the
currently-best (𝑘, 𝑘2)-gap barrier penetrable or can one prove a

lower bound?

Our Contribution. We show that (𝑘, 𝑘1+𝑜 (1))-gap edit distance

can be solved in time 𝑂 (𝑛/𝑘 + 𝑘4+𝑜 (1)). In the low distance regime

(𝑘 ≤ 𝑛0.19) this runs in the same time as the previous algorithms for

the (𝑘, 𝑘2)-gap problem, so we significantly improve the gap [17,

20]. We stress that the quadratic gap seems to be the limit of the

techniques of previous work. Formally, we obtain the following

results.

2We write𝑂 (·) to hide polylogarithmic factors, that is,𝑂 (𝑇) = ⋃
𝑐≥0𝑂 (𝑇 log𝑐 𝑇) .

3See https://youtu.be/WFxk3JAOC84?t=1104 for the open problems raised in the con-
ference talk on [17], and similarly https://youtu.be/3jfHHEFNRU4?t=1159 for [20].

Theorem 1 (Main Theorem). Let 2 ≤ 𝐵 ≤ 𝑘 be a parameter. The

(𝑘,Θ(𝑘 log𝐵 (𝑘) · 𝐵))-gap edit distance problem can be solved in time

𝑛

𝑘
· (log𝑘)𝑂 (log𝐵 (𝑘)) +𝑂 (𝑘4 poly(𝐵)) .

Corollary 2 (Subpolynomial Gap). In time 𝑂 (𝑛/𝑘 + 𝑘4+𝑜 (1)) we
can solve (𝑘, 𝑘 · 2𝑂 (

√
log𝑘))-gap edit distance.

Corollary 3 (Polylogarithmic Gap). For any 𝜀 ∈ (0, 1), in time

𝑂 (𝑛/𝑘1−𝜀 + 𝑘4+𝑜 (1)) we can solve (𝑘, 𝑘 · (log𝑘)𝑂 (1/𝜀))-gap edit dis-
tance.

Note that one can solve the (𝑘, 𝑘2)-gap edit distance problem by

running our algorithm from Corollary 2 for 𝑘 := 𝑘2−𝑜 (1) . This runs
in time𝑂 (𝑛/𝑘2−𝑜 (1) +poly(𝑘)), which improves the previously best

running time of 𝑂 (𝑛/𝑘 + poly(𝑘)) for the (𝑘, 𝑘2)-gap edit distance

problem [17, 20] by a factor 𝑘1−𝑜 (1) in the low distance regime.

Edit Distance versus Hamming Distance. It is interesting to com-

pare our result against the best-possible sublinear-time algorithms

for approximating the Hamming distance. For Hamming distance, it

is well known that the (𝑘, 𝐾)-gap problem has complexity Θ(𝑛/𝐾),
with matching upper and (unconditional) lower bounds, assum-

ing that 𝐾/𝑘 = 1 + Ω(1). In the large distance regime (where,

say, 𝑘 ≥ 𝑛0.51), Hamming distance and edit distance have been

separated by the Ω(
√
𝑛) lower bound for (𝑘,𝑂 (𝑘))-gap edit dis-

tance [6, 11], because (𝑘,𝑂 (𝑘))-gap Hamming distance can be

solved in time 𝑂 (𝑛/𝑘).
Our results show a surprising similarity of Hamming distance

and edit distance: In the low distance regime (𝑘 ≤ 𝑛0.19) the com-

plexity of the (𝑘, 𝑘1+𝑜 (1))-gap problem is 𝑛/𝑘1±𝑜 (1) for both Ham-

ming distance and edit distance. Thus, up to 𝑘𝑜 (1) -factors in the gap
and running time, their complexity is the same in the low distance

regime.4

Our Techniques. To achieve our result, we depart from the frame-

work of subsampling the Landau-Vishkin algorithm [22, 23], which

has been developed by the state-of-the-art algorithms for sublinear

edit distance [17, 20]. Instead, we pick up the thread from the almost-

linear-time algorithm by Andoni, Krauthgamer and Onak [4]: First,

we give (what we believe to be) a more accessible view on that

algorithm. Subsequently, we design a sublinear version of it by

pruning certain branches in its recursion tree and thereby avoid

spending time on łcheapž subproblems. To this end, we use a va-

riety of structural insights on the (local and global) patterns that

can emerge during the algorithm and design property testers to

effectively detect these patterns.

Comparison to Goldenberg, Kociumaka, Krauthgamer, Saha [16].

In a recent arXiv paper, Goldenberg et al. studied the complexity

of the (𝑘, 𝑘2)-gap edit distance problem in terms of non-adaptive

algorithms [16]. Their main result is an 𝑂 (𝑛/𝑘3/2)-time algorithm,

and a matching query complexity lower bound. We remark that our

results are incomparable: For the (𝑘, 𝑘2)-gap problem they obtain a

non-adaptive algorithm (which is faster for large 𝑘), whereas we

4We remark that this similarity does not yet follow from previous sublinear algorithms,

since they solve the (𝑘, 𝑘2)-gap edit distance in time𝑂 (𝑛/𝑘 + poly(𝑘)) [17, 20], while
(𝑘, 𝑘2)-gap Hamming distance can be solved much faster, namely in time𝑂 (𝑛/𝑘2) .

1103

https://youtu.be/WFxk3JAOC84?t=1104
https://youtu.be/3jfHHEFNRU4?t=1159

Almost-Optimal Sublinear-Time Edit Distance in the Low Distance Regime STOC ’22, June 20ś24, 2022, Rome, Italy

present an adaptive algorithm (which is faster for small 𝑘). More-

over, we can improve the gap to (𝑘, 𝑘1+𝑜 (1)), while still running
in sublinear time 𝑂 (𝑛/𝑘) when 𝑘 is small. Our techniques also dif-

fer substantially: Goldenberg et al. build on the work of Andoni

and Onak [8] and Batu et al. [11], whereas our algorithm borrows

from [4].

Outline. The rest of this paper is structured as follows. In Sec-

tion 2 we introduce the necessary preliminaries. In Section 3 we

give a high-level overview of our algorithm, starting with the nec-

essary ingredients from previous work. We omit the proof details

in this section and give the detailed proofs in Section 4.

2 PRELIMINARIES

For integers 𝑖, 𝑗 we write [𝑖 . . 𝑗] = { 𝑖, 𝑖 + 1, . . . , 𝑗 − 1 } and [𝑗] =
[0 . . 𝑗]. We also set poly(𝑛) = 𝑛𝑂 (1) , polylog(𝑛) = (log𝑛)𝑂 (1)
and 𝑂 (𝑛) = 𝑛 polylog(𝑛).

Strings. We usually denote strings by capital letters 𝑋,𝑌, 𝑍 . The

length of a string 𝑋 is denoted by |𝑋 | and we write 𝑋 ◦𝑌 to denote

the concatenation of𝑋 and𝑌 . For a nonnegative integer 𝑖 , we denote

by 𝑋 [𝑖] the 𝑖-th character in 𝑋 (starting with index zero). For

integers 𝑖, 𝑗 we denote by 𝑋 [𝑖 . . 𝑗] the substring of 𝑋 with indices

in [𝑖 . . 𝑗]. In particular, if the indices are out-of-bounds, then we

set 𝑋 [𝑖 . . 𝑗] = 𝑋 [max(𝑖, 0) . . min(𝑗, |𝑋 |)].
For two strings 𝑋,𝑌 with equal length, 𝑋 is a rotation of 𝑌

if𝑋 [𝑖] = 𝑌 [(𝑖 + 𝑠) mod |𝑌 |] for some integer shift 𝑠 .We say that𝑋

is primitive if all of the nontrivial rotations of 𝑋 are not equal

to 𝑋 . For a string 𝑃 , we denote by 𝑃∗ the infinite-length string

obtained by repeating 𝑃 . We say that 𝑋 is periodic with period 𝑃

if 𝑋 = 𝑃∗ [0 . . |𝑋 |]. We also say that 𝑋 is 𝑝-periodic if it is periodic

with some period of length at most 𝑝 .

Hamming and Edit Distance. For two equal-length strings 𝑋,𝑌 ,

we define their Hamming distance HD(𝑋,𝑌) as the number of non-

equal characters: HD(𝑋,𝑌) = |{ 𝑖 : 𝑋 [𝑖] ≠ 𝑌 [𝑖] }|. For two
strings 𝑋,𝑌 (with possibly different lengths), we define their edit

distance ED(𝑋,𝑌) as the smallest number of edit operations neces-

sary to transform 𝑋 into 𝑌 ; here, an edit operation means inserting,

deleting or substituting a character.

We also define an optimal alignment, which is a basic object

in several of the forthcoming proofs. For two strings 𝑋,𝑌 , an

alignment between 𝑋 and 𝑌 is a monotonically non-decreasing

function 𝐴 : { 0, . . . , |𝑋 | } → { 0, . . . , |𝑌 | } such that 𝐴(0) = 0 and

𝐴(|𝑋 |) = |𝑌 |. We say that 𝐴 is an optimal alignment if additionally

ED(𝑋,𝑌) =
|𝑋 |−1∑︁
𝑖=0

ED(𝑋 [𝑖], 𝑌 [𝐴(𝑖) . . 𝐴(𝑖 + 1)]).

This definition is slightly non-standard (compare for instance to the

definition in [18]), but more convenient for our purposes. Note that

the alignments between 𝑋 and 𝑌 correspond to the paths through

the standard edit distance dynamic program. In that correspon-

dence, an optimal alignment corresponds to a minimum-cost path.

Trees. In the following we will implicitly refer to trees 𝑇 where

each node has an ordered list of children. A node is a leaf if it has

no children and otherwise an internal node. The depth of a node 𝑣

is defined as the number of ancestors of 𝑣 , and the depth of a tree𝑇

is the length of the longest root-leaf path. We refer to the subset of

nodes with depth 𝑖 as the 𝑖-th level in 𝑇 .

Approximations. We often deal with additive and multiplicative

approximations in this paper. To simplify the notation, we say that 𝑥

is a (𝑎, 𝑏)-approximation of 𝑥 whenever 𝑥/𝑎 − 𝑏 ≤ 𝑥 ≤ 𝑎𝑥 + 𝑏.

3 OVERVIEW

We start by reinterpreting the algorithm of Andoni, Krauthgamer

and Onak [4] as a framework consisting of a few fundamental

ingredients (Section 3.1). We then quickly show how to instantiate

this framework to recover their original algorithm (Section 3.2),

and then develop further refinements to obtain our main result

(Section 3.3). The goal of this section is to outline the main pieces

of our algorithm; we defer the formal proofs to Section 4 and the

Appendix.

3.1 The Andoni-Krauthgamer-Onak Framework

First Ingredient: Tree Distance. The first crucial ingredient for the

framework is a way to split the computation of the edit distance

into smaller, independent subtasks. A natural approach would be

to divide the two strings into equally sized blocks, compute the edit

distances of the smaller blocks recursively, and combine the results.

The difficulty in doing this is that the edit distance might depend

on a global alignment, which determines how the blocks should

align and therefore the subproblems are not independent (e.g. the

optimal alignment of one block might affect the optimal alignment

of the next block). However, this can be overcome by computing

the edit distances of one block in one string with several shifts

of its corresponding block in the other string, and combining the

results smartly. This type of hierarchical decomposition appeared in

previous algorithms for approximating edit distance [4, 8, 11, 25].

In particular, Andoni, Krauthgamer and Onak [4] define a string

similarity measure called the tree distance5 which gives a good ap-

proximation of the edit distance and cleanly splits the computation

into independent subproblems.

We will define the tree distance for an underlying tree 𝑇 which

we sometimes refer to as the partition tree.

Definition 4 (Partition Tree). Let 𝑇 be a tree where each node 𝑣 is

labeled with a non-empty interval 𝐼𝑣 . We call 𝑇 a partition tree if

• for the root node 𝑣 we have 𝐼𝑣 = [𝑛], and
• for any node 𝑣 with children 𝑣0, . . . , 𝑣𝐵−1, 𝐼𝑣 is the concatena-
tion of 𝐼𝑣0 , . . . , 𝐼𝑣𝐵−1 .

For the original Andoni-Krauthgamer-Onak algorithm, we will

use a complete 𝐵-ary partition tree 𝑇 with 𝑛 leaves. In particular,

the depth of 𝑇 is bounded by log𝐵 (𝑛). There is a unique way to

label𝑇 with intervals 𝐼𝑣 : For the 𝑖-th leaf (ordered from left to right)

we set 𝐼𝑣 = { 𝑖 }; this choice determines the intervals for all internal

nodes. For our algorithm we will later focus on the subtree of 𝑇

with depth bounded by 𝑂 (log𝐵 (𝑘)) (this is again a partition tree,

as can easily be checked).

The purpose of the partition tree is that it determines a decom-

position of two length-𝑛 strings 𝑋 and 𝑌 : For a node labeled with

5In fact, Andoni et al. call the measure the E-distance. However, in a talk by Robert
Krauthgamer he recoined the name to tree distance, and we decided to stick to this
more descriptive name.

1104

https://slidetodoc.com/polylogarithmic-approximation-for-edit-distance-and-the-asymmetric/

STOC ’22, June 20ś24, 2022, Rome, Italy Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos

X[i . . j]

Y [i+ s . . j + s]

s

v1

s′

v0 v2 v3

Y

X

Figure 1: Illustrates the tree distance TD𝑣,𝑠 (𝑋,𝑌) at a node 𝑣

with interval 𝐼𝑣 = [𝑖 . . 𝑗], shift 𝑠 and children 𝑣0, . . . , 𝑣3. The

dashed lines denote the shift given by 𝑠. The bold lines show

the łlocalž shifts 𝑠′ for each of the children (explicitly labeled

for 𝑣0).

interval 𝐼𝑣 = [𝑖 . . 𝑗] we focus on the substrings 𝑋 [𝑖 . . 𝑗] and
𝑌 [𝑖 . . 𝑗]. In particular, the leaf labels in the partition tree deter-

mine a partition into consecutive substrings. With this definition

in hand, we can define the tree distance:

Definition 5 (Tree Distance). Let 𝑋,𝑌 be length-𝑛 strings and let

𝑇 be a partition tree. For any node 𝑣 in 𝑇 and any shift 𝑠 ∈ Z, we set:
• If 𝑣 is a leaf with 𝐼𝑣 = [𝑖 . . 𝑗], then

TD𝑣,𝑠 (𝑋,𝑌) = ED(𝑋 [𝑖 . . 𝑗], 𝑌 [𝑖 + 𝑠 . . 𝑗 + 𝑠]).

• If 𝑣 is an internal node with children 𝑣0, . . . , 𝑣𝐵−1, then

TD𝑣,𝑠 (𝑋,𝑌) =
∑︁
𝑖∈[𝐵]

min
𝑠′∈Z
(TD𝑣𝑖 ,𝑠′ (𝑋,𝑌) + 2 · |𝑠 − 𝑠′ |) . (1)

We write TD𝑇 (𝑋,𝑌) = TD𝑣,0 (𝑋,𝑌) where 𝑣 is the root node in 𝑇 ,
and we may omit the subscript 𝑇 when it is clear from the context.

Figure 1 gives an illustration of this definition. The following

lemma (which slightly generalizes the analogous result by [4])

shows that the tree distance is a useful measure to approximate the

edit distance of two strings. We include a proof in the full version.

Lemma 6 (Equivalence of Edit Distance and Tree Distance).

Let 𝑋,𝑌 be strings and let 𝑇 be a partition tree with degree at most 𝐵

and depth atmost𝐷 . ThenED(𝑋,𝑌) ≤ TD𝑇 (𝑋,𝑌) ≤ 2𝐵𝐷 ·ED(𝑋,𝑌).

In light of this lemma, we now focus on approximating the tree

distance of two strings. The idea behind the Andoni-Krauthgamer-

Onak algorithm is to approximately evaluate Definition 5 for all

nodes 𝑣 in the partition tree: For the leaves we directly evaluate

the edit distance and for the internal nodes we use Equation (1)

to combine the recursive computations. However, notice that in

Equation (1) we minimize over an infinite number of shifts 𝑠′ ∈ Z.
To remedy this situation, recall that we anyways only want to solve

a gap problem: Whenever the tree distance exceeds some value 𝐾

we will immediately report far. We therefore restrict our attention

to approximating the capped tree distance:

Definition 7 (Capped Distances). Let 𝐾 be a threshold. We define

the 𝐾-capped edit distance ED≤𝐾 (𝑋,𝑌) = min(ED(𝑋,𝑌), 𝐾) and
the 𝐾-capped tree distance TD≤𝐾

𝑇
(𝑋,𝑌) = min(TD𝑇 (𝑋,𝑌), 𝐾).

It is easy to observe that for computing the 𝐾-capped tree dis-

tance TD≤𝐾 (𝑋,𝑌), it suffices to let 𝑠′ range through { −𝐾, . . . , 𝐾 }

in Equation (1), that is:

TD≤𝐾𝑣,𝑠 (𝑋,𝑌) =

min
©«

∑︁
𝑖∈[𝐵]

min
−𝐾≤𝑠′≤𝐾

(TD≤𝐾𝑣𝑖 ,𝑠′ (𝑋,𝑌) + 2 · |𝑠 − 𝑠
′ |), 𝐾ª®¬

. (2)

The Formal Setup. At this point we are ready to define precisely

what we want to compute. We will associate a computational prob-

lem to each node in the partition tree 𝑇 . Roughly speaking, the

goal for a node 𝑣 is to approximate the tree distance TD≤𝐾𝑣,𝑠 (𝑋,𝑌).
We now make the details of this approximation precise. Let us first

introduce the following notational shortcuts:

• 𝑋𝑣 = 𝑋 [𝑖 . . 𝑗] (the substring of 𝑋 relevant at 𝑣),

• 𝑌𝑣,𝑠 = 𝑌 [𝑖 + 𝑠 . . 𝑗 + 𝑠] (the substring of 𝑌 relevant at 𝑣 for

one specific shift 𝑠),

• 𝑌𝑣 = 𝑌 [𝑖 − 𝐾 . . 𝑗 + 𝐾] (the entire substring of 𝑌 relevant at

𝑣).

Moreover, for each node 𝑣 in the partition tree we also define:

• A rate (or additive accuracy) 𝑟𝑣 . This parameter serves two

purposes. First, it gives a budget for the number of characters

that can be read at 𝑣 (i.e., we are allowed to read 𝑟𝑣 |𝑋𝑣 |
symbols). Second, it determines the additive approximation

guarantee at 𝑣 , in the sense that the output at 𝑣 is allowed

to have additive error 1/𝑟𝑣 . For the root node we set 𝑟𝑣 =

1000/𝐾 .
• The multiplicative accuracy 𝛼𝑣 > 1. This parameter deter-

mines the multiplicative approximation ratio at 𝑣 . For the

root node we set 𝛼𝑣 = 10.

We are now ready to define the precise computational task for each

node:

Definition 8 (Tree Distance Problem). Given a node 𝑣 in the

partition tree𝑇 , compute a list of numbers Δ𝑣,−𝐾 , . . . ,Δ𝑣,𝐾 such that

1

𝛼𝑣
ED≤𝐾 (𝑋𝑣, 𝑌𝑣,𝑠) −

1

𝑟𝑣
≤ Δ𝑣,𝑠 ≤ 𝛼𝑣 TD≤𝐾𝑣,𝑠 (𝑋,𝑌) +

1

𝑟𝑣
. (3)

Given a node 𝑣 of the partition tree, we will sometimes refer to

solving the Tree Distance Problem at 𝑣 as simply solving 𝑣 .

As a sanity check, let us confirm that an algorithm for the Tree

Distance Problem can distinguish edit distances with a polyloga-

rithmic gap. Assume that we solve the Tree Distance Problem for

the root node 𝑣 , and let Δ = Δ𝑣,0. Then, Equation (3) implies that

0.1 · ED≤𝐾 (𝑋,𝑌) − 0.001𝐾 ≤ Δ ≤ 10 · TD≤𝐾 (𝑋,𝑌) + 0.001𝐾 . Con-
sequently, we can distinguish whether the edit distance ED(𝑋,𝑌)
is at most 𝑘 = 𝐾/(1000𝐵 log𝐵 (𝑛)) or at least 𝐾 : On the one hand,

if ED(𝑋,𝑌) ≤ 𝑘 then Lemma 6 implies that Δ ≤ 0.02𝐾 + 0.001𝐾 =

0.021𝐾 . On the other hand, if ED(𝑋,𝑌) ≥ 𝐾 then Δ ≥ 0.099𝐾 .

Second Ingredient: The Precision Sampling Lemma. The next step

is to assign appropriate sampling rates 𝑟𝑣 to every node in the

partition tree. The rate at any node indicates that we can afford

to read an 𝑟𝑣-fraction of the characters in the computation of that

entire subtree (at the root, we will set 𝑟𝑣 = 1000/𝑘 so we read

𝑂 (𝑛/𝑘) characters in total).

Focus on some node with rate 𝑟𝑣 . Due to the sampling rate, we

are bound to incur an additive error of at least 1/𝑟𝑣 . The challenge
is now the following: We want to assign rates to the 𝐵 children of 𝑣

1105

Almost-Optimal Sublinear-Time Edit Distance in the Low Distance Regime STOC ’22, June 20ś24, 2022, Rome, Italy

in such a way that we can obtain a good approximation of the tree

distance at 𝑣 after combining the results from the children. Naively

assigning the same rate to all children incurs an additive error of at

least 𝐵/𝑟𝑣 , which is too large. To decrease the error we can increase

the rate, but this results in reading more than the 𝑟𝑣 · |𝑋𝑣 | characters
we are aiming for.

Roughly speaking we have an instance of the following problem:

There are unknown numbers 𝐴1, . . . , 𝐴𝑛 ∈ R. We can specify pre-

cisions 𝑢1, . . . , 𝑢𝑛 and obtain estimates 𝐴𝑖 such that |𝐴𝑖 −𝐴𝑖 | ≤ 𝑢𝑖 ,
where the cost of each estimate is 1/𝑢𝑖 (in our setting the cost

corresponds to the number of characters we read). The goal is to

set the precisions appropriately to be able to distinguish whether∑
𝑖 𝐴𝑖 < 0.1 or

∑
𝑖 𝐴𝑖 > 10, say, and minimize the total cost

∑
𝑖 1/𝑢𝑖 .

If we set the precisions equally, we would need to have 𝑢𝑖 < 10/𝑛
(otherwise we cannot distinguish the case where 𝐴𝑖 = 10/𝑛 for all 𝑖

from the case 𝐴𝑖 = 0 for all 𝑖), which incurs in total cost Ω(𝑛2).
Andoni, Krauthgamer and Onak [4] give a very elegant random-

ized solution to this problem with total cost 𝑂 (𝑛) and good error

probability.

Lemma 9. Let 𝜀, 𝛿 > 0. There is a distributionD = D(𝜀, 𝛿) supported
over the real interval (0, 1] with the following properties:

• Accuracy: Let 𝐴1, . . . , 𝐴𝑛 ∈ R and let 𝑢1, . . . , 𝑢𝑛 ∼ D be

sampled independently. There is a recovery algorithm with

the following guarantee: Given (𝑎, 𝑏 · 𝑢𝑖)-approximations 𝐴𝑖
of𝐴𝑖 , the algorithm ((1+ 𝜀) ·𝑎, 𝑏)-approximates

∑
𝑖 𝐴𝑖 in time

𝑂 (𝑛 · 𝜀−2 log(𝛿−1)), with probability at least 1 − 𝛿 and for

any parameters 𝑎 ≥ 1 and 𝑏 ≥ 0.

• Efficiency: Sample 𝑢 ∼ D. Then, for any 𝑁 ≥ 1 there is an

event 𝐸 = 𝐸 (𝑢) happening with probability at least 1 − 1/𝑁 ,

such that E𝑢∼D [1/𝑢 | 𝐸] ≤ 𝑂 (𝜀−2 log(𝛿−1) log𝑁).
The Precision Sampling Lemma was first shown in [4] and later

refined and simplified in [3, 5]. In the full version we include a

proof.

Third Ingredient: A RangeMinimum Problem. The final ingredient

is an efficient algorithm to combine the recursively computed tree

distances. Specifically, the following subproblem can be solved

efficiently:

Lemma 10 (A RangeMinimumProblem). There is an𝑂 (𝐾)-time

algorithm for the following problem: Given integers 𝐴−𝐾 , . . . , 𝐴𝐾 ,
compute for all 𝑠 ∈ { −𝐾, . . . , 𝐾 }:

𝐵𝑠 = min
−𝐾≤𝑠′≤𝐾

𝐴𝑠′ + 2 · |𝑠 − 𝑠′ |.

In [4], the authors use efficient Range Minimum queries (for

instance implemented by segment trees) to approximately solve

this problemwith a polylogarithmic overhead.We present a simpler,

faster and exact algorithm in the full version of this paper.

The Framework. We are ready to assemble the three ingredients

in a baseline algorithm which solves the Tree Distance Problem; see

Algorithm 1 for the pseudocode. We will first sketch the correctness

of this algorithm. Later (in Sections 3.2 and 3.3) we will improve this

algorithm to first obtain the Andoni-Krauthgamer-Onak algorithm,

and second our sublinear-time version.

We quickly discuss the correctness of Algorithm 1. In Lines 1

and 2 we test whether the node 𝑣 can be solved trivially: If 𝑣 is a leaf,

Algorithm 1 The framework

Input: Strings 𝑋,𝑌 , a node 𝑣 in the partition tree𝑇 and a sampling

rate 𝑟𝑣 > 0

Output: Δ𝑣,𝑠 for all shifts 𝑠 ∈ { −𝐾, . . . , 𝐾 }
1 if 𝑣 is a leaf then

2 return Δ𝑣,𝑠 = ED(𝑋𝑣, 𝑌𝑣,𝑠) for all 𝑠 ∈ { −𝐾, . . . , 𝐾 }
3 for each 𝑖 ∈ [𝐵] do
4 Let 𝑣𝑖 be the 𝑖-th child of 𝑣 and sample 𝑢𝑣𝑖 ∼ D

(with appropriate parameters)

5 Recursively compute Δ𝑣𝑖 ,𝑠 with rate 𝑟𝑣/𝑢𝑣𝑖 for
all 𝑠 ∈ { −𝐾, . . . , 𝐾 }

6 Compute 𝐴𝑖,𝑠 = min𝑠′∈{ −𝐾,...,𝐾 } Δ𝑣𝑖 ,𝑠′ + 2 · |𝑠 − 𝑠′ |
using Lemma 10

7 for each 𝑠 ∈ { −𝐾, . . . , 𝐾 } do
8 Let Δ𝑣,𝑠 be the result of the recovery algorithm (Lemma 9)

applied to 𝐴0,𝑠 , . . . , 𝐴𝐵−1,𝑠 with precisions 𝑢𝑣0 , . . . , 𝑢𝑣𝐵−1
9 return min(Δ𝑣,𝑠 , 𝐾) for all 𝑠 ∈ { −𝐾, . . . , 𝐾 }

then we have reached the base case of Definition 5 and computing

the tree distances boils down to computing the edit distance. In

Lines 3 to 9 we use the approximations recursively computed by

𝑣 ’s children to solve 𝑣 . The idea is to approximately evaluate the

following expression for the tree distance (which is equivalent to

Equation (2)):

TD≤𝐾𝑣,𝑠 (𝑋,𝑌) = min
©
«

∑︁
𝑖∈[𝐵]

𝐴𝑖,𝑠 , 𝐾
ª®
¬
,

𝐴𝑖,𝑠 = min
−𝐾≤𝑠′≤𝐾

(TD≤𝐾𝑣𝑖 ,𝑠′ (𝑋,𝑌) + 2 · |𝑠 − 𝑠
′ |).

For each child 𝑣𝑖 of 𝑣 the algorithm first recursively computes an

approximation Δ𝑣𝑖 ,𝑠′ of TD
≤𝐾
𝑣𝑖 ,𝑠′
(𝑋,𝑌) in Line 5. Then, in Line 6, we

exactly evaluate

𝐴𝑖,𝑠 = min
−𝐾≤𝑠′≤𝐾

Δ𝑣𝑖 ,𝑠′ + 2 · |𝑠 − 𝑠′ |

for all 𝑠 using Lemma 10. In the next step, the Precision Sam-

pling Lemma comes into play. The recursive call returns approx-

imations Δ𝑣𝑖 ,𝑠′ with multiplicative error 𝛼𝑣𝑖 and additive error

1/𝑟𝑣𝑖 = 𝑢𝑣𝑖 /𝑟𝑣 . Hence,𝐴𝑖,𝑠 is also an approximation of𝐴𝑖,𝑠 withmul-

tiplicative error 𝛼𝑣𝑖 and additive error 𝑢𝑣𝑖 /𝑟𝑣 . In this situation, the

Precision Sampling Lemma (Lemma 9) allows to approximate the

sum
∑
𝑖 𝐴𝑖,𝑠 (for some fixed 𝑠) with multiplicative error (1 + 𝜀) · 𝛼𝑣𝑖

and additive error 1/𝑟𝑣Ðjust as required if we set 𝛼𝑣 > (1 + 𝜀) · 𝛼𝑣𝑖 .
Hence, the values Δ𝑣,𝑠 computed in Line 8 are as claimed (up to

taking the minimum with 𝐾 in order to obtain estimates for the

capped tree distance, see Line 9).

In the next Sections 3.2 and 3.3 wewill instantiate this framework

by adding pruning rules to Algorithm 1. That is, we design rules

to directly solve certain nodes 𝑣 without having to recur on 𝑣 ’s

children. In this way we will reduce the number of recursive calls

and thereby the running time of Algorithm 1.

3.2 The Andoni-Krauthgamer-Onak Algorithm

For completeness (and also to showcase how to instantiate the

previous framework), we quickly demonstrate how a single pruning

1106

STOC ’22, June 20ś24, 2022, Rome, Italy Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos

rule leads to the algorithm by Andoni, Krauthgamer and Onak [4].

Specifically, we add the following pruning rule to Algorithm 1:

If |𝑋𝑣 | ≤ 1/𝑟𝑣 , then return Δ𝑣,𝑠 = 0 for all 𝑠 ∈ { −𝐾, . . . , 𝐾 }. This
rule is correct, since the edit distance ED(𝑋𝑣, 𝑌𝑣,𝑠) is at most |𝑋𝑣 |.
Hence, returning zero satisfies the condition in Equation (3).

It remains to analyze the running time. In this regard the anal-

ysis differs quite substantially from our new sublinear-time algo-

rithm. We will therefore be brief here and refer to the full ver-

sion for the complete proof. A single execution of Algorithm 1

(ignoring the recursive calls and lower-order factors such as 𝐵)

takes roughly time 𝑂 (𝐾). However, note that the recursive calls
do not necessarily reach every node in the partition tree: Some

nodes 𝑣 are trivially solved by the new rule and thus their chil-

dren are never explored. Let us call a node 𝑣 active if the recur-

sive computation reaches 𝑣 . One can bound the number of ac-

tive nodes by 𝑛/𝐾 · (log𝑛)𝑂 (log𝐵 (𝑛)) hence obtaining the time

bound 𝑛 · (log𝑛)𝑂 (log𝐵 (𝑛)) .

3.3 Our Algorithm

We are finally ready to describe the pruning rules leading to our

sublinear-time algorithm. In contrast to the previous section, our

pruning rules will allow us to bound the number of active nodes

by poly(𝐾). We will however spend more time for each active

node: In the Andoni-Krauthgamer-Onak algorithm the running

time per node is essentially 𝐾 , whereas in our version we run

some more elaborate tests per node spending time proportional

to 𝑟𝑣 |𝑋𝑣 | + poly(𝐾). Wewill now progressively develop the pruning

rules; the pseudocode is given at the end of this section.

3.3.1 The Big Picture.

First Insight: Matching Substrings. The first insight is that if

ED(𝑋,𝑌) ≤ 𝐾 , then we can assume that for almost all nodes 𝑣

there exists a shift 𝑠∗ ∈ { −𝐾, . . . , 𝐾 } for which 𝑋𝑣 = 𝑌𝑣,𝑠∗ . In this

case, we say that the node 𝑣 is matched. The benefit is that if we

know that 𝑣 is matched with shift 𝑠∗, then instead of approximating

the edit distances between 𝑋𝑣 and all shifts 𝑌𝑣,𝑠 , we can instead

approximate the edit distance between 𝑌𝑣,𝑠∗ and all shifts 𝑌𝑣,𝑠 . That

is, it suffices to compute the edit distances between a string and a

shift of itself.

To see that almost all nodes are matched, consider an optimal

alignment between𝑋 and𝑌 and recall that each level of the partition

tree induces a partition of 𝑋 into substrings 𝑋𝑣 . The number of mis-

aligned characters is bounded by ED(𝑋,𝑌), thus there are at most

ED(𝑋,𝑌) parts 𝑋𝑣 containing a misalignment. For all other parts,

the complete part 𝑋𝑣 is perfectly matched to some substring 𝑌𝑣,𝑠 .

We prove the claim formally in Lemma 23. In light of this insight,

we can assume that there are only 𝐾 unmatched nodesÐotherwise,

the edit distance and thereby also the tree distance between𝑋 and𝑌

exceeds 𝐾 and we can stop the algorithm. In the following we will

therefore focus on matched nodes only.

For now we assume that we can efficiently test whether a node

is matched. We justify this assumption soon (see the Matching

Test in Lemma 16) by giving a property tester for this problem in

sublinear time.

Second Insight: Structure versus Randomness. The second idea

is to exploit a structure versus randomness dichotomy on strings:

As the two extreme cases, a string is either periodic or random-

like. The hope is that whenever 𝑌𝑣 falls into one of these extreme

categories, then we efficiently approximate ED(𝑌𝑣,𝑠∗ , 𝑌𝑣,𝑠) (without
expanding 𝑣 ’s children). Concretely, we use the following measure

to interpolate between periodic and random-like:

Definition 11 (Block Periodicity). Let 𝑌 be a string. The 𝐾-block

periodicity BP𝐾 (𝑌) of 𝑌 is the smallest integer 𝐿 such that 𝑌 can be

partitioned into 𝑌 = ⃝𝐿ℓ=1𝑌ℓ , where each substring 𝑌ℓ is 𝐾-periodic

(i.e., 𝑌ℓ is periodic with period length at most 𝐾).

Suppose for the moment that we could efficiently compute the

block periodicity of a string 𝑌 . Under this assumption, we first

compute BP4𝐾 (𝑌𝑣) for each matched node 𝑣 in the tree and distin-

guish three regimes depending on whether the block periodicity

is small, large or intermediate. In the following section we discuss

the pruning rules that we apply in these regimes.

3.3.2 Pruning Rules.

The Periodic Regime: BP4𝐾 (𝑌𝑣) = 1. For this case, we can approx-

imate the edit distances via the following lemma, where you can

think of 𝑌 = 𝑌𝑣 and 𝑌𝑠 = 𝑌𝑣,𝑠 .

Lemma 12 (Periodic Rule). Let𝑌 be a string and write𝑌𝑠 = 𝑌 [𝐾 +
𝑠 . . |𝑌 | − 𝐾 + 𝑠]. If 𝑌 is periodic with primitive period 𝑃 and |𝑌 | ≥
|𝑃 |2 + 2𝐾 , then for all 𝑠, 𝑠′ ∈ { −𝐾, . . . , 𝐾 }:

ED(𝑌𝑠 , 𝑌𝑠′) = 2 ·min
𝑗∈Z

�� 𝑠 − 𝑠′ + 𝑗 |𝑃 | ��.
Note that if some node 𝑣 that is matched and we know that 𝑌𝑣 is

periodic, then Lemma 12 allows us to return Δ𝑣,𝑠 = 2 ·min𝑗∈Z
�� 𝑠 −

𝑠∗ + 𝑗 |𝑃 |
�� as the desired estimates for each shift 𝑠 . In this way we

do not recur on 𝑣 ’s children and thereby prune the entire subtree

below 𝑣 .

To get some intuition for why Lemma 12 holds, observe that

2 ·min𝑗
�� 𝑠−𝑠′+ 𝑗 |𝑃 | �� is exactly the cost of aligning both𝑌𝑠 and𝑌𝑠′ in

such a way that all occurrences of the period 𝑃 match (i.e., we shift

both strings to the closest-possible occurrence of 𝑃). The interesting

part is to prove that this alignment is best-possible. We give the

complete proof in Section 4.2.

The Random-Like Regime: BP4𝐾 (𝑌𝑣) > 10𝐾 . Next, we give the

analogous pruning rule for the case when the block periodicity

of 𝑌𝑣 is large. We show that in this case, the best possible way to

align any two shifts 𝑌𝑣,𝑠 and 𝑌𝑣,𝑠′ is to insert and delete |𝑠 − 𝑠′ |
many characters. In this sense, 𝑌𝑣 behaves like a random string.

Lemma 13 (Random-Like Rule). Let 𝑌 be a string and write 𝑌𝑠 =

𝑌 [𝐾 + 𝑠 . . |𝑌 | − 𝐾 + 𝑠]. If BP4𝐾 (𝑌) > 10𝐾 , then for all 𝑠, 𝑠′ ∈
{ −𝐾, . . . , 𝐾 }:

ED(𝑌𝑠 , 𝑌𝑠′) = 2 · |𝑠 − 𝑠′ |.

Again, this rule can be used to solve a matched node 𝑣 directly,

pruning the subtree below 𝑣 . We give the proof in Section 4.2.

The Intermediate Regime: 1 < BP4𝐾 (𝑌𝑣) ≤ 10𝐾 . We cannot

directly approximate the edit distance ED(𝑌𝑣,𝑠∗ , 𝑌𝑣,𝑠) in this case.

Instead, we exploit the following lemma to argue that the branching

procedure below 𝑣 is computationally cheap:

1107

Almost-Optimal Sublinear-Time Edit Distance in the Low Distance Regime STOC ’22, June 20ś24, 2022, Rome, Italy

Lemma 14 (Intermediate). Let 𝑣 be a node in the partition tree.

Then, in any level in the subtree below 𝑣 , for all but at most 2 BP4𝐾 (𝑌𝑣)
nodes𝑤 the string 𝑌𝑤 is 4𝐾-periodic.

Indeed, since any node 𝑣 for which 𝑌𝑤 is 4𝐾-periodic can be

solved by the Periodic Rule, this lemma implies that there are at

most 20𝐾 active nodes on any level in the partition subtree below

any matched node 𝑣 .

3.3.3 String Property Testers. Next, we describe how to remove the

assumptions that we can efficiently test whether a node is matched

and that we can compute block periodicities. We start with the

second task.

Computing Block Periodicities? Themost obvious approachwould

be to show how to compute (or appropriately approximate) the

block periodicity. This is indeed possible, but leads to a more com-

plicated and slower algorithm (in terms of poly(𝐾)).
Instead, we twist the previous argument: We first show how to

detect whether a string is periodic (in the straightforward way, see

the following Lemma 15). For any matched node 𝑣 we then run the

following procedure: If 𝑌𝑣 is 4𝐾-periodic, then we solve 𝑣 according

to Lemma 12. Otherwise, we continue to explore 𝑣 ’s childrenÐwith

the following constraint: If at some point there are more than 20𝐾

active nodes which are not 4𝐾-periodic on any level in the recursion

tree below 𝑣 , then we interrupt the computation of this subtree

and immediately solve 𝑣 according to Lemma 13. This approach

is correct, since by Lemma 14 witnessing more than 20𝐾 active

nodes which are not 4𝐾-periodic on any level serves as a certificate

that BP4𝐾 (𝑌𝑣) is large. To test whether 𝑌𝑣 is 4𝐾-periodic, we use

the following tester:

Lemma 15 (Periodicity Test). Let 𝑋 be a string, and let 𝑟 > 0

be a sampling rate. There is an algorithm which returns one of the

following two outputs:

• Close(𝑃), where 𝑃 is a primitive string of length ≤ 𝐾 with

HD(𝑋, 𝑃∗ [0 . . |𝑋 |]) ≤ 1/𝑟 .
• Far, in which case 𝑋 is not 𝐾-periodic.

The algorithm runs in time𝑂 (𝑟 |𝑋 | log(𝛿−1) +𝐾) and is correct with
probability 1 − 𝛿 .

Note that as we are shooting for a sublinear-time algorithm

we have to resort to a property tester which can only distinguish

between close and far properties (in this case: periodic or far from

periodic). The proof of Lemma 15 is simple, see Section 4.3 for

details.

Testing for Matched Nodes. We need another algorithmic prim-

itive to test whether a node is matched. Again, since our goal is

to design a sublinear-time algorithm, we settle for the following

algorithm which distinguishes whether 𝑣 is matched or far from

matched.

Lemma 16 (Matching Test). Let 𝑋,𝑌 be strings such that |𝑌 | =
|𝑋 | + 2𝐾 , and let 𝑟 > 0 be a sampling rate. There is an algorithm

which returns one of the following two outputs:

• Close(𝑠∗), where 𝑠∗ ∈ { −𝐾, . . . , 𝐾 } satisfies HD(𝑋,𝑌 [𝐾 +
𝑠∗ . . |𝑋 | + 𝐾 + 𝑠∗]) ≤ 1/𝑟 .
• Far, in which case there is no 𝑠∗ ∈ { −𝐾, . . . , 𝐾 } with 𝑋 =

𝑌 [𝐾 + 𝑠∗ . . |𝑋 | + 𝐾 + 𝑠∗].

Algorithm 2

Input: Strings 𝑋,𝑌 , a node 𝑣 in the partition tree 𝑇 and a rate 𝑟𝑣
Output: Δ𝑣,𝑠 for all shifts 𝑠 ∈ { −𝐾, . . . , 𝐾 }
1 if 𝑣 is a leaf or |𝑋𝑣 | ≤ 100𝐾2 then

2 return Δ𝑣,𝑠 = ED≤𝐾 (𝑋𝑣, 𝑌𝑣,𝑠)
(or compute 2-approximations using Theorem 17)

3 Run the Matching Test (Lemma 16) for 𝑋𝑣, 𝑌𝑣
(with parameters 𝑟 = 3𝑟𝑣 and 𝛿 = 0.01 · 𝐾−100)

4 Run the 4𝐾-Periodicity Test (Lemma 15) for 𝑌𝑣
(with parameters 𝑟 = 3𝑟𝑣 and 𝛿 = 0.01 · 𝐾−100)

5 if the Matching Test returns Close(𝑠∗) then
6 if the Periodicity Test returns Close(𝑃) then
7 return Δ𝑣,𝑠 = 2 ·min𝑗∈Z | 𝑠 − 𝑠∗ + 𝑗 |𝑃 | |
8 else

9 Continue in Line 10 with the following exception:

If at some point during the recursive computation there

is some level containing more than 20𝐾 active nodes

below 𝑣 for which the Periodicity Test (in Line 4)

reports Far, then interrupt the recursive computation

and return Δ𝑣,𝑠 = 2 · |𝑠 − 𝑠∗ |
10 for each 𝑖 ∈ [𝐵] do
11 Let 𝑣𝑖 be the 𝑖-th child of 𝑣 and sample

𝑢𝑣𝑖 ∼ D((200 log𝐾)−1, 0.01 · 𝐾−101)
12 Recursively compute Δ𝑣𝑖 ,𝑠 with rate 𝑟𝑣/𝑢𝑣𝑖 for

all 𝑠 ∈ { −𝐾, . . . , 𝐾 }
13 Compute 𝐴𝑖,𝑠 = min𝑠′∈{ −𝐾,...,𝐾 } Δ𝑣𝑖 ,𝑠′ + 2 · |𝑠 − 𝑠′ |

using Lemma 10

14 for each 𝑠 ∈ { −𝐾, . . . , 𝐾 } do
15 Let Δ𝑣,𝑠 be the result of the recovery algorithm (Lemma 9)

applied to 𝐴0,𝑠 , . . . , 𝐴𝐵−1,𝑠 with precisions 𝑢𝑣0 , . . . , 𝑢𝑣𝐵−1
16 return min(Δ𝑣,𝑠 , 𝐾) for all 𝑠 ∈ { −𝐾, . . . , 𝐾 }

The algorithm runs time 𝑂 (𝑟 |𝑋 | log(𝛿−1) + 𝐾 log |𝑋 |) and is correct
with probability 1 − 𝛿 .

The proof of Lemma 16 is non-trivial. The test involves checking

whether 𝑋 and 𝑌 follow a common periodÐin this case we can

simply return any shift respecting the periodic pattern. If instead

we witness errors to the periodic pattern, then we try to identify

a shift under which also the errors align. See Section 4.3 for the

details.

3.3.4 Putting the Pieces Together. We finally assemble our complete

algorithm. The pseudocode is given in Algorithm 2. In this section

we will sketch that Algorithm 2 correctly and efficiently solves the

Tree Distance Problem. The formal analysis is deferred to Section 4.

Correctness. We first sketch the correctness of Algorithm 2. The

recursive calls in Lines 10 to 16 are essentially copied from Algo-

rithm 1 (except for differences in the parameters which are not

important here) and correct by the same argument as before (using

the Precision Sampling Lemma as the main ingredient). The inter-

esting part happens in Lines 1 to 9. In Lines 1 and 2 we test whether

the strings are short enough so that we can afford to compute the

edit distances ED(𝑋𝑣, 𝑌𝑣,𝑠) by brute-force. If not, we continue to

run the Matching Test for 𝑋𝑣 and 𝑌𝑣 and the Periodicity Test for 𝑌𝑣 .

1108

STOC ’22, June 20ś24, 2022, Rome, Italy Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos

There are two interesting casesÐboth assume that the Matching

Test reports Close(𝑠∗) and therefore 𝑋𝑣 ≈ 𝑌𝑣,𝑠∗ where ≈ denotes
equality up to 1/(3𝑟𝑣) Hamming errors. If also the Periodicity Test

returns Close(𝑃) then we are in the situation that 𝑋𝑣 ≈ 𝑌𝑣,𝑠∗ ≈ 𝑃∗.
Moreover 𝑌𝑣,𝑠 is ≈-approximately equal to a shift of 𝑃∗. Lemma 12

implies that the edit distance between 𝑋𝑣 and 𝑌𝑣,𝑠 is approximately

2 ·min𝑗∈Z | 𝑠 − 𝑠∗ + 𝑗 |𝑃 | |. We lose an additive error of 1/(3𝑟𝑣) for
each of the three ≈ relations, hence the total additive error is 1/𝑟𝑣
as hoped, and we do not introduce any multiplicative error.

Next, assume that the Periodicity Test reports Far. Then, as

stated in Line 9 we continue the recursive computation, but with

an exception: If at some point during the recursive computation

there are more than 20𝐾 active nodes on any level for which the

Periodicity Test reports Far, then we interrupt the computation and

return Δ𝑣,𝑠 = 2 · |𝑠 − 𝑠∗ |. Suppose that indeed this exception occurs.

Then there are more than 20𝐾 nodes𝑤 on one level of the partition

tree below 𝑣 for which 𝑌𝑤 is not 4𝐾-periodic. Using Lemma 14

we conclude that BP4𝐾 (𝑌𝑣) > 10𝐾 , and therefore returning Δ𝑣,𝑠 =

2 · |𝑠 − 𝑠∗ | is correct by Lemma 13.

Running Time. We will first think of running Algorithm 2 with𝑇

being a balanced 𝐵-ary partition tree with 𝑛 leaves, just as as in the

Andoni-Krauthgamer-Onak algorithm (we will soon explain why

we need to modify this). To bound the running time of Algorithm 2

we first prove that the number of active nodes in the partition

tree is bounded by poly(𝐾). One can show that there are only

poly(𝐾) unmatched nodes in the tree (see Lemma 23), so we may

only focus on the matched nodes. Each matched node, however,

is either solved directly (in Line 2 or in Line 7) or continues the

recursive computation with at most poly(𝐾) active nodes (in Line 9).
In Section 4 we give more details.

Knowing that the number of active nodes is small, we continue

to bound the total expected running time of Algorithm 2. It is

easy to check that a single execution of Algorithm 2 (ignoring

the cost of recursive calls) is roughly in time 𝑟𝑣 |𝑋𝑣 | + poly(𝐾).
Using the Precision Sampling Lemma, we first bound 𝑟𝑣 by 1/𝐾 ·
(log𝑛)𝑂 (log𝐵 (𝑛)) in expectation, for any node 𝑣 . Therefore, the total
running time can be bounded by∑︁

𝑣 active

(𝑟𝑣 |𝑋𝑣 |+ poly(𝐾))

≤ 1

𝐾
· (log𝑛)𝑂 (log𝐵 (𝑛)) ·

∑︁
𝑣

|𝑋𝑣 | + poly(𝐾)

≤ 𝑛

𝐾
· (log𝑛)𝑂 (log𝐵 (𝑛)) + poly(𝐾) .

Here we used that
∑
𝑤 |𝑋𝑤 | = 𝑛 where the sum is over all nodes𝑤

on any fixed level in the partition tree. It follows that
∑
𝑣 |𝑋𝑣 | ≤

𝑛 log𝑛, summing over all nodes 𝑣 .

Optimizing the Lower-Order Terms. This running time bound

does not match the claimed bound in Theorem 1: The overhead

(log𝑛)𝑂 (log𝐵 (𝑛)) should rather be (log𝐾)𝑂 (log𝐵 (𝐾)) and not de-

pend on 𝑛. If 𝑛 ≤ 𝐾100, say, then both terms match. But we can

also reduce the running time in the general case by łcuttingž the

partition tree at depth log𝐵 (𝐾100). That is, we delete all nodes be-
low that depth from the partition tree and treat the nodes at depth

log𝐵 (𝐾100) as leaves in the algorithm. The remaining tree is still

a partition tree, according to Definition 4. The correctness argu-

ment remains valid, but we have to prove that the running time of

Line 2 does not explode. For each leaf at depth log𝐵 (𝐾100) we have
that |𝑋𝑣 | ≤ 𝑛/𝐾100 and for that reason computing ED≤𝐾 (𝑋𝑣, 𝑌𝑣,𝑠)
for all shifts 𝑠 (say with the Landau-Vishkin algorithm) takes time

𝑂 (𝑛/𝐾99 + 𝐾3). Since there are much less than 𝐾99 active nodes,

the total contribution can again be bounded by 𝑂 (𝑛/𝐾 + poly(𝐾)).

Optimizing the Polynomial Dependence on 𝐾 . Finally, let us pin-

point the exponent of the polynomial dependence on 𝐾 . In the

current algorithm we can bound the number of active nodes by

roughly 𝐾2 (there are at most 𝐾 nodes per level for which the

matching test fails, and the subtrees rooted at these nodes contain

at most 𝐾 active nodes per level). The most expensive step in Al-

gorithm 2 turns out to be the previously mentioned edit distance

computation in Line 2. Using the Landau-Vishkin algorithm (with

cap 𝐾) for 𝑂 (𝐾) shifts 𝑠 , the running time of Line 2 incurs a cubic

dependence on𝐾 , and therefore the total dependence on𝐾 becomes

roughly 𝐾5.

We give a simple improvement to lower the dependence to 𝐾4

and leave further optimizations of the poly(𝐾) dependence as future
work. The idea is to use the following result on approximating the

edit distances for many shifts 𝑠 :

Theorem 17 (Edit Distance for Many Shifts). Let 𝑋,𝑌 be strings

with |𝑌 | = |𝑋 | + 2𝐾 . We can compute a (multiplicative) 2-approxi-

mation of ED≤𝐾 (𝑋,𝑌 [𝐾 + 𝑠 . . |𝑋 | + 𝐾 + 𝑠]), for all shifts 𝑠 ∈
{ −𝐾, . . . , 𝐾 }, in time 𝑂 (|𝑋 | + 𝐾2).

This result can be proven by a modification of the Landau-

Vishkin algorithm [23]; we provide the details in the full version. It

remains to argue that computing a 2-approximation in Line 2 does

not mess up the correctness proof. This involves the multiplica-

tive approximation guarantee of our algorithm which we entirely

skipped in this overview, and for this reason we defer the details to

Section 4.

Implementation Details. We finally describe how to implement

the interrupt condition in Line 9. Note that the order of the recur-

sive calls in Line 12 is irrelevant. In the current form the algorithm

explores the partition tree in a depth-first search manner, but we

might as well use breadth-first search. For any node 𝑣 which reaches

Line 9 we may therefore continue to compute all recursive computa-

tions using breadth-first search. If at some point we encounter one

search level containing more than 200𝐾 active nodes for which the

Periodicity Test reports Far, we stop the breadth-first search and

jump back to Line 9. With this modification the algorithmmaintains

one additional counter which does not increase the asymptotic time

complexity.

4 OUR ALGORITHM IN DETAIL

In this section we give the formal analysis of Algorithm 2. We split

the proof into the following parts: In Section 4.1 we prove some

lemmas about periodic and block-periodic strings. In Section 4.2 we

give the structural lemmas about edit distances in special cases. In

Section 4.3 we prove the correctness of the string property testers

(the łMatching Testž and łPeriodicity Testž). In Section 4.4 we

finally carry out the correctness and running time analyses for

1109

Almost-Optimal Sublinear-Time Edit Distance in the Low Distance Regime STOC ’22, June 20ś24, 2022, Rome, Italy

Algorithm 2, and in Section 4.5 we give a formal proof of our main

theorem.

In the following proofs we will often use the following simple

proposition.

Proposition 18 (Alignments Have Small Stretch). Let 𝑋,𝑌 be

strings of equal length. If 𝐴 is an optimal alignment between 𝑋 and

𝑌 , then |𝑖 −𝐴(𝑖) | ≤ 1
2 ED(𝑋,𝑌) for all 0 ≤ 𝑖 ≤ |𝑋 |.

Proof. Since𝐴 is an optimal alignment between𝑋 and𝑌 , we can

write the edit distance ED(𝑋,𝑌) as ED(𝑋 [0 . . 𝑖], 𝑌 [0 . . 𝐴(𝑖)]) +
ED(𝑋 [𝑖 . . |𝑋 |], 𝑌 [𝐴(𝑖) . . |𝑌 |]). Both edit distances are at least |𝑖 −
𝐴(𝑖) | which is the length difference of these strings, respectively. It

follows that ED(𝑋,𝑌) ≥ 2 · |𝑖 −𝐴(𝑖) |, as claimed. □

4.1 Some Facts about Periodicity

We prove the following two lemmas, both stating roughly that if a

string 𝑋 closely matches a shift of itself, then 𝑋 is close to periodic.

The first lemma is easy and well-known. The second lemma is new.

Lemma 19 (Self-Alignment Implies Periodicity). Let 𝑋 be a

string. For any shift 𝑠 > 0, if 𝑋 [0 . . |𝑋 | − 𝑠] = 𝑋 [𝑠 . . |𝑋 |] then 𝑋 is

𝑠-periodic (with period 𝑋 [0 . . 𝑠]).

Proof. By assumption we have that 𝑋 [𝑗] = 𝑋 [𝑠 + 𝑗] for each
𝑗 ∈ [|𝑋 | − 𝑠]. It follows that for 𝑃 = 𝑋 [0 . . 𝑠] we have 𝑋 [𝑗] =
𝑃 [𝑗 mod 𝑠] for all indices 𝑗 ∈ [|𝑋 |] and thus 𝑋 = 𝑃∗ [0 . . |𝑋 |].

□

Lemma 20 (Self-Alignment Implies Small Block Periodicity).

Let 𝑋 be a string. For any shift 𝑠 > 0, if

ED(𝑋 [0 . . |𝑋 | − 𝑠], 𝑋 [𝑠 . . |𝑋 |]) < 2𝑠

then BP2𝑠 (𝑋) ≤ 4𝑠 .

Proof. Let𝑌 = 𝑋 [0 . . |𝑋 |−𝑠],𝑍 = 𝑋 [𝑠 . . |𝑋 |] and let𝐴 denote

an optimal alignment between 𝑌 and 𝑍 . We will greedily construct

a sequence of indices 0 = 𝑖0 < · · · < 𝑖𝐿 = |𝑌 | as follows: Start
with 𝑖0 = 0. Then, having assigned 𝑖ℓ we next pick the smallest

index 𝑖ℓ+1 > 𝑖ℓ for which𝑌 [𝑖ℓ . . 𝑖ℓ+1] ≠ 𝑍 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1)]. Using
that 𝐴 is an optimal alignment, we have constructed a sequence of

𝐿 < 2𝑠 indices, since

2𝑠 > ED(𝑌, 𝑍) =
𝐿−1∑︁
ℓ=0

ED(𝑌 [𝑖ℓ . . 𝑖ℓ+1], 𝑍 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1)]) ≥ 𝐿.

Moreover, by Proposition 18 we have that |𝑖 − 𝐴(𝑖) | < 𝑠 for all

𝑖 . The greedy construction guarantees that 𝑌 [𝑖ℓ . . 𝑖ℓ+1 − 1] =

𝑍 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1 − 1)]. Therefore, and since 𝑌, 𝑍 are substrings

of 𝑋 , we have 𝑋 [𝑖ℓ . . 𝑖ℓ+1 − 1] = 𝑋 [𝑠 + 𝐴(𝑖ℓ) . . 𝑠 + 𝐴(𝑖ℓ+1 − 1)].
We will now apply Lemma 19 to these substrings of 𝑋 with shift

𝑠′ = 𝑠 + 𝐴(𝑖ℓ) − 𝑖ℓ . Note that 0 < 𝑠′ < 2𝑠 (which satisfies the

precondition of Lemma 19) and thus 𝑋 [𝑖ℓ . . 𝑖ℓ+1 − 1] is 2𝑠-periodic.
Finally, consider the following partition of𝑋 into 2𝐿+1 substrings

𝑋 =

(
⃝𝐿−1ℓ=0 𝑋 [𝑖ℓ . . 𝑖ℓ+1 − 1] ◦ 𝑋 [𝑖ℓ+1 − 1]

)
◦ 𝑋 [|𝑋 | − 𝑠 . . |𝑋 |] .

We claim that these substrings are 2𝑠-periodic: For 𝑋 [𝑖ℓ . . 𝑖ℓ+1 − 1]
we have proved this in the previous paragraph, and the strings

𝑋 [𝑖ℓ+1 − 1] and 𝑋 [|𝑋 | − 𝑠 . . |𝑋 |] have length less than 2𝑠 and

are thus trivially 2𝑠-periodic. This decomposition certifies that

BP2𝑠 (𝑋) ≤ 2𝐿 + 1 ≤ 4𝑠 . □

4.2 Edit Distances between Periodic and
Random-Like Strings

The goal of this section is to prove the structural Lemmas 12

and 13 which determine the edit distance between certain struc-

tured strings.

Lemma 12 (Periodic Rule). Let𝑌 be a string and write𝑌𝑠 = 𝑌 [𝐾 +
𝑠 . . |𝑌 | − 𝐾 + 𝑠]. If 𝑌 is periodic with primitive period 𝑃 and |𝑌 | ≥
|𝑃 |2 + 2𝐾 , then for all 𝑠, 𝑠′ ∈ { −𝐾, . . . , 𝐾 }:

ED(𝑌𝑠 , 𝑌𝑠′) = 2 ·min
𝑗∈Z

�� 𝑠 − 𝑠′ + 𝑗 |𝑃 | ��.
Proof. For simplicity set Δ = 2 ·min𝑗∈Z

��𝑠−𝑠′+ 𝑗 |𝑃 |�� and 𝑝 = |𝑃 |.
We will argue that Δ is both an upper bound and lower bound for

ED(𝑌𝑠 , 𝑌𝑠′). The upper bound is simple: Due to the periodicity of 𝑌 ,

we can transform 𝑌𝑠′ into 𝑌𝑠 by deleting and inserting min𝑗∈Z
�� 𝑠 −

𝑠′ + 𝑗 |𝑃 |
�� many characters. Thus, ED(𝑌𝑠 , 𝑌𝑠′) ≤ Δ.

Next, we prove the lower bound. For contradiction suppose that

ED(𝑌𝑠 , 𝑌𝑠′) < Δ. We assumed that |𝑌𝑠 | = |𝑌 | − 2𝐾 ≥ 𝑝2, and we can
therefore split𝑌𝑠 into 𝑝 parts of length 𝑝 plus some rest. Let 𝑖ℓ = ℓ ·𝑝
for all 𝑖 ∈ { 0, . . . , 𝑝 } and let 𝑖𝑝+1 = |𝑌𝑠 |; we treat 𝑌𝑠 [𝑖ℓ . . 𝑖ℓ+1] as
the ℓ-th part. Let 𝐴 denote an optimal alignment between 𝑌𝑠 and

𝑌𝑠′ ; we have

ED(𝑌𝑠 , 𝑌𝑠′) =
𝑝∑︁
ℓ=0

ED(𝑌𝑠 [𝑖ℓ . . 𝑖ℓ+1], 𝑌𝑠′ [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1)]).

We assumed that ED(𝑌𝑠 , 𝑌𝑠′) < Δ ≤ |𝑃 | (the latter inequality is

by the definition of Δ) and therefore at least one of the first 𝑝

summands must be zero, say the ℓ-th one, ℓ < 𝑝 . It follows that the

two strings 𝑌𝑠 [𝑖ℓ . . 𝑖ℓ+1] and 𝑌𝑠′ [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1)] are equal. Both
are length-𝑝 substrings of 𝑌 and thus rotations of the global period

𝑃 . We assumed that 𝑃 is primitive (i.e., 𝑃 is not equal to any of its

non-trivial rotations) and therefore 𝑠 + 𝑖ℓ ≡ 𝑠′ + 𝐴(𝑖ℓ) (mod 𝑝).
By the definition of Δ we must have that |𝐴(𝑖ℓ) − 𝑖ℓ | ≥ Δ/2. But
this contradicts Proposition 18 which states that |𝐴(𝑖ℓ) − 𝑖ℓ | ≤
ED(𝑌𝑠 , 𝑌𝑠′)/2 < Δ/2. □

Lemma 13 (Random-Like Rule). Let 𝑌 be a string and write 𝑌𝑠 =

𝑌 [𝐾 + 𝑠 . . |𝑌 | − 𝐾 + 𝑠]. If BP4𝐾 (𝑌) > 10𝐾 , then for all 𝑠, 𝑠′ ∈
{ −𝐾, . . . , 𝐾 }:

ED(𝑌𝑠 , 𝑌𝑠′) = 2 · |𝑠 − 𝑠′ |.

Proof. Let Δ = 2 · |𝑠 − 𝑠′ |. First note that ED(𝑌𝑠 , 𝑌𝑠′) ≤ Δ

since we can transform 𝑌𝑠 into 𝑌𝑠′ by simply inserting and deleting

|𝑠 − 𝑠′ | symbols. For the lower bound, suppose that ED(𝑌𝑠 , 𝑌𝑠′) < Δ.

Therefore, we can apply Lemma 20 for an appropriate substring

of 𝑌 : Assume without loss of generality that 𝑠 ≤ 𝑠′ and let 𝑍 =

𝑌 [𝐾 + 𝑠 . . |𝑌 | − 𝐾 + 𝑠′]. Then clearly 𝑌𝑠 = 𝑍 [0 . . |𝑍 | − 𝑠′ + 𝑠] and
𝑌𝑠′ = 𝑍 [𝑠′ − 𝑠 . . |𝑍 |], so Lemma 20 applied to 𝑍 with shift 𝑠′ − 𝑠
yields that BP2(𝑠′−𝑠) (𝑌 ′) ≤ 4 · (𝑠′ − 𝑠). Using that 𝑠′ − 𝑠 ≤ 2𝐾

we conclude that BP4𝐾 (𝑌 ′) ≤ 8𝐾 . We can obtain 𝑌 by adding

at most 𝐾 characters to the start and end of 𝑍 . It follows that

BP4𝐾 (𝑌) ≤ BP4𝐾 (𝑍) + 2 ≤ 10𝐾 . This contradicts the assumption

in the lemma statement, and therefore ED(𝑌𝑠 , 𝑌𝑠′) ≥ Δ. □

1110

STOC ’22, June 20ś24, 2022, Rome, Italy Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos

Lemma 14 (Intermediate). Let 𝑣 be a node in the partition tree.

Then, in any level in the subtree below 𝑣 , for all but at most 2 BP4𝐾 (𝑌𝑣)
nodes𝑤 the string 𝑌𝑤 is 4𝐾-periodic.

Proof. Focus on some level of the computation subtree below 𝑣 .

We will bound the number of nodes𝑤 in this level for which 𝑌𝑤 is

not 4𝐾-periodic. Note that if 𝑌𝑣 was partitioned into 𝑌𝑣 = ⃝𝑤𝑌𝑤 ,
then by the definition of block periodicity we would immediately

conclude that at most BP4𝐾 (𝑌𝑣) many parts 𝑌𝑤 are not 4𝐾-periodic.

However, recall that for a node 𝑤 with associated interval 𝐼𝑤 =

[𝑖 . . 𝑗], we defined 𝑌𝑤 as 𝑌𝑤 = 𝑌 [𝑖 − 𝐾 . . 𝑗 + 𝐾]. This means that

the substrings 𝑌𝑤 overlap with each other and therefore do not

partition 𝑌𝑣 .

To deal with this, note that we can assume that |𝑌𝑤 | > 4𝐾 , since

otherwise 𝑌𝑤 is trivially 4𝐾-periodic. Hence, each 𝑌𝑤 can overlap

with at most two neighboring nodes (since the intervals 𝐼𝑤 are

disjoint). Therefore, we can divide the𝑤 ’s in two groups such that

the 𝑌𝑤 ’s in each group do not not overlap with each other. For each

group, we apply the argument from above to derive that there are

at most BP4𝐾 (𝑌𝑣) many 𝑌𝑤 ’s which are not 4𝐾-periodic. In this

way, we conclude that there are at most 2 BP4𝐾 (𝑌𝑣) nodes in the

level which are not 4𝐾-periodic, as desired. □

4.3 Some String Property Testers

The main goal of this section is to formally prove Lemmas 15 and 16,

that is, the Matching Test and Periodicity Test. As a first step, we

need the following simple lemma about testing equality of strings.

Lemma 21 (Equality Test). Let 𝑋,𝑌 be two strings of the same

length, and let 𝑟 > 0 be a sampling rate. There is an algorithm which

returns of the following two outputs:

• Close, in which case HD(𝑋,𝑌) ≤ 1/𝑟 .
• Far(𝑖), in which case 𝑋 [𝑖] ≠ 𝑌 [𝑖].

The algorithm runs in time 𝑂 (𝑟 |𝑋 | log(𝛿−1)) and is correct with

probability 1 − 𝛿 .

Proof. The idea is standard: For 𝑟 |𝑋 | ln(𝛿−1) many random

positions 𝑖 ∈ [|𝑋 |], test whether𝑋 [𝑖] = 𝑌 [𝑖]. If no error is found,
then we report Close. This equality test is clearly sound: If 𝑋 = 𝑌 ,

then it will never fail. It remains to argue that if HD(𝑋,𝑌) > 1/𝑟
then the test fails with probability at least 1 − 𝛿 . Indeed, each
individual sample finds a Hamming error with probability (𝑟 |𝑋 |)−1.
Hence, the probability of not finding any Hamming error across all

samples is at most(
1 − 1

𝑟 |𝑋 |

)𝑟 |𝑋 | ln(𝛿−1)
< exp(− ln(𝛿−1)) = 𝛿.

The running time is bounded by 𝑂 (𝑟 |𝑋 | log(𝛿−1)). □

Lemma 15 (Periodicity Test). Let 𝑋 be a string, and let 𝑟 > 0

be a sampling rate. There is an algorithm which returns one of the

following two outputs:

• Close(𝑃), where 𝑃 is a primitive string of length ≤ 𝐾 with

HD(𝑋, 𝑃∗ [0 . . |𝑋 |]) ≤ 1/𝑟 .
• Far, in which case 𝑋 is not 𝐾-periodic.

The algorithm runs in time𝑂 (𝑟 |𝑋 | log(𝛿−1) +𝐾) and is correct with
probability 1 − 𝛿 .

Proof. We start analyzing the length-2𝐾 prefix 𝑌 = 𝑋 [0 . . 2𝐾].
In time 𝑂 (𝐾) we can compute the smallest period 𝑃 such that

𝑌 = 𝑃∗ [0 . . |𝑌 |] by searching for the first match of 𝑌 in 𝑌 ◦ 𝑌 , e.g.
using the Knuth-Morris-Pratt patternmatching algorithm [19]. If no

such match exists, we can immediately report Far. So suppose that

we find a period 𝑃 . It must be primitive (since it is the smallest such

period) and it remains to test whether𝑋 globally follows the period.

For this task we use the Equality Test (Lemma 21) with inputs 𝑋

and 𝑃∗ (of course, we cannot write down the infinite string 𝑃∗, but
we provide oracle access to 𝑃∗ which is sufficient here). On the

one hand, if 𝑋 is indeed periodic with period 𝑃 , then the Equality

Test reports Close. On the other hand, if 𝑋 is 1/𝑟 -far from any

periodic string, then it particular HD(𝑋, 𝑃∗) > 1/𝑟 and therefore

the Equality Test reports Far. The only randomized step is the

Equality Test. We therefore set the error probability of the Equality

Test to 𝛿 and achieve total running time 𝑂 (𝑟 |𝑋 | log(𝛿−1) + 𝐾). □

Lemma 16 (Matching Test). Let 𝑋,𝑌 be strings such that |𝑌 | =
|𝑋 | + 2𝐾 , and let 𝑟 > 0 be a sampling rate. There is an algorithm

which returns one of the following two outputs:

• Close(𝑠∗), where 𝑠∗ ∈ { −𝐾, . . . , 𝐾 } satisfies HD(𝑋,𝑌 [𝐾 +
𝑠∗ . . |𝑋 | + 𝐾 + 𝑠∗]) ≤ 1/𝑟 .
• Far, in which case there is no 𝑠∗ ∈ { −𝐾, . . . , 𝐾 } with 𝑋 =

𝑌 [𝐾 + 𝑠∗ . . |𝑋 | + 𝐾 + 𝑠∗].
The algorithm runs time 𝑂 (𝑟 |𝑋 | log(𝛿−1) + 𝐾 log |𝑋 |) and is correct
with probability 1 − 𝛿 .

Proof. For convenience, we write 𝑌𝑠 = 𝑌 [𝐾 + 𝑠 . . |𝑋 | + 𝐾 + 𝑠].
Our goal is to obtain a single candidate shift 𝑠∗ (that is, knowing 𝑠∗

we can exclude all other shifts from consideration). Having obtained

a candidate shift, we can use the Equality Test (Lemma 21 with

parameters 𝑟 and 𝛿/3) to verify whether we indeed have𝑋 = 𝑌𝑠∗ . In

the positive case, Lemma 21 implies that HD(𝑋,𝑌𝑠∗) ≤ 1/𝑟 , hence
returning 𝑠∗ is valid. The difficulty lies in obtaining the candidate

shift. Our algorithm proceeds in three steps:

(1) Aligning the Prefixes: We start by computing the set 𝑆

consisting of all shifts 𝑠 for which 𝑋 [0 . . 2𝐾] = 𝑌𝑠 [0 . . 2𝐾].
One way to compute this set in linear time𝑂 (𝐾) is by using

a pattern matching algorithm with pattern 𝑋 [0 . . 2𝐾] and
text 𝑌 [0 . . 4𝐾] (like the Knuth-Morris-Pratt algorithm [19]).

It is clear that 𝑆 must contain any shift 𝑠 for which globally

𝑋 = 𝑌𝑠 . For that reason we can stop if |𝑆 | = 0 (in which case

we return Far) or if |𝑆 | = 1 (in which case we test the unique

candidate shift 𝑠∗ ∈ 𝑆 and report accordingly).

(2) Testing for Periodicity: After running the previous step

we can assume that |𝑆 | ≥ 2. Take any elements 𝑠 < 𝑠′ from 𝑆 ;

we have that 𝑋 [0 . . 2𝐾] = 𝑌𝑠 [0 . . 2𝐾] = 𝑌𝑠′ [0 . . 2𝐾]. It
follows that 𝑋 [0 . . 2𝐾 − 𝑠′ + 𝑠] = 𝑋 [𝑠′ − 𝑠 . . 2𝐾], and thus

by Lemma 19 we conclude that 𝑋 [0 . . 2𝐾] is periodic with
period 𝑃 = 𝑋 [0 . . 𝑠′−𝑠], where |𝑃 | ≤ 𝑠′−𝑠 ≤ 2𝐾 . Obviously

the same holds for 𝑌𝑠 [0 . . 2𝐾] and 𝑌𝑠′ [0 . . 2𝐾].
We will now test whether 𝑋 and 𝑌𝑠 are also globally periodic

with this period 𝑃 . To this end, we apply the Equality Test

two times (each time with parameters 2𝑟 and 𝛿/3) to check

whether 𝑋 = 𝑃∗ [0 . . |𝑋 |] and 𝑌𝑠 = 𝑃∗ [0 . . |𝑌𝑠 |]. If both
tests return Close, then we have HD(𝑋, 𝑃∗ [0 . . |𝑋 |]) ≤
1/(2𝑟) andHD(𝑌𝑠 , 𝑃∗ [0 . . |𝑌𝑠 |]) ≤ 1/(2𝑟) by Lemma 21 and

1111

Almost-Optimal Sublinear-Time Edit Distance in the Low Distance Regime STOC ’22, June 20ś24, 2022, Rome, Italy

hence, by the triangle inequality,HD(𝑋,𝑌𝑠) ≤ 1/𝑟 . Note that
we have witnessed a matching shift 𝑠∗ = 𝑠 .

(3) Aligning the LeadingMismatches:Assuming that the pre-

vious step did not succeed, one of the Equality Tests returned

Far(𝑖0) for some position 𝑖0 > 2𝐾 with 𝑋 [𝑖0] ≠ 𝑃∗ [𝑖0]
or 𝑌𝑠 [𝑖0] ≠ 𝑃∗ [𝑖0]. Let us refer to these indices as mis-

matches. Moreover, we call a mismatch 𝑖 a leading mismatch

if the 2𝐾 positions to the left of 𝑖 are not mismatches. We

continue in two steps: First, we find a leading mismatch.

Second, we turn this leading mismatch into a candidate shift.

(a) Finding a Leading Mismatch: To find a leading mis-

match, we use the following binary search-style algo-

rithm: Initialize 𝐿 ← 0 and 𝑅 ← 𝑖0. We maintain the

following two invariants: (i) All positions in [𝐿 . . 𝐿 + 2𝐾]
are not mismatches, and (ii) 𝑅 is a mismatch. Both prop-

erties are initially true. We will now iterate as follows:

Let 𝑀 ← ⌈(𝐿 + 𝑅)/2⌉ and test whether there is a mis-

match 𝑖 ∈ [𝑀 . .𝑀 + 2𝐾]. If there is such a mismatch 𝑖 ,

we update 𝑅 ← 𝑖 . Otherwise, we update 𝐿 ← 𝑀 . It is easy

to see that in both cases both invariants are maintained.

Moreover, this procedure is guaranteed to make progress

as long as 𝐿+4𝐾 < 𝑅. If at some point 𝑅 ≤ 𝐿+4𝐾 , then we

can simply check all positions in [𝐿 . . 𝑅]Ðone of these
positions must be a leading mismatch 𝑖 .

(b) Finding a Candidate Shift: Assume that the previous

step succeeded in finding a leading mismatch 𝑖 . Then we

can produce a single candidate shift as follows: Assume

without loss of generality that𝑋 [𝑖] ≠ 𝑃∗ [𝑖], and let 𝑖 ≤ 𝑗
be the smallest position such that 𝑌𝑠 [𝑗] ≠ 𝑃∗ [𝑗]. Then
𝑠∗ = 𝑠 + 𝑗 − 𝑖 is the only candidate shift (if it happens to

fall into the range { −𝐾, . . . , 𝐾 }).
Indeed, for any 𝑠′′ > 𝑠∗ we can find a positionwhere𝑋 and

𝑌𝑠′′ differ. To see this, we should assume that 𝑠′′ respects
the period (i.e., 𝑃∗ = 𝑃∗ [𝐾 + 𝑠′′ . .∞]), since otherwise
we find a mismatch in the length-2𝐾 prefix. But then

𝑌𝑠′′ [𝑗 + 𝑠 − 𝑠′′] = 𝑌𝑠 [𝑗] (4)

≠ 𝑃∗ [𝑗] (5)

= 𝑃∗ [𝑗 + 𝑠 − 𝑠′′] (6)

= 𝑋 [𝑗 + 𝑠 − 𝑠′′], (7)

which proves that𝑋 ≠ 𝑌𝑠′′ and thereby disqualifies 𝑠
′′ as a

feasible shift. Here we used (4) the definition of 𝑌𝑠 , (5) the

assumption that 𝑌𝑠 [𝑗] ≠ 𝑃∗ [𝑗], (6) the fact that both 𝑠
and 𝑠′′ respect the period 𝑃 and (7) the assumption that 𝑖

was a leading mismatch which implies that 𝑋 matches 𝑃∗

at the position 𝑗 + 𝑠 − 𝑠′′ < 𝑖 .
A similar argument works for any shift 𝑠′′ < 𝑠∗. In this

case one can show that 𝑋 [𝑖] ≠ 𝑃∗ [𝑖] = 𝑌𝑠′′ [𝑖] which
also disqualifies 𝑠′′ as a candidate shift.

We finally bound the error probability and running time of this

algorithm. We only use randomness when calling the Equality Test

which runs at most three times. Since each time we set the error

parameter to 𝛿/3, the total error probability is 𝛿 as claimed. The

running time of the Equality Tests is bounded by 𝑂 (𝑟 |𝑋 | log(𝛿−1))
by Lemma 21. In addition, steps 1 and 2 take time 𝑂 (𝐾). Step 3

iterates at most log |𝑋 | times and each iteration takes time 𝑂 (𝐾).
Thus, the total running time is 𝑂 (𝑟 |𝑋 | log(𝛿−1) + 𝐾 log |𝑋 |). □

4.4 Putting the Pieces Together

Setting the Parameters. Throughout this sectionwe assume that𝑇

is a balanced 𝐵-ary partition tree with min(𝑛, 𝐾100) leaves, where
each leaf 𝑣 is labeledwith an interval 𝐼𝑣 of length |𝐼𝑣 | ≈ max(1, 𝑛

𝐾100).
In particular there are at most 2 ·𝐾100 nodes in the tree and its depth

is bounded by ⌈log𝐵 min
(
𝑛, 𝐾100

)
⌉. We also specify the following

parameters for every node 𝑣 in the partition tree:

• Rate 𝑟𝑣 : If 𝑣 is the root then we set 𝑟𝑣 = 1000/𝐾 . Otherwise, if
𝑣 is a child of𝑤 then sample 𝑢𝑣 ∼ D((200 log𝐾)−1, 𝐾−200)
independently and set 𝑟𝑣 = 𝑟𝑤/𝑢𝑣 . (This assignment matches

the values in Algorithm 2.)

• Multiplicative accuracy 𝛼𝑣 = 10 · (1−(200 log𝐾)−1)𝑑 (where

𝑑 is the depth of 𝑣). Note that 𝛼𝑣 ≥ 5, since 𝑑 ≤ log(𝐾100).
For these parameters our goal is to compute Δ𝑣,−𝐾 , . . . ,Δ𝑣,𝐾 in the

sense of Definition 8.

Correctness. We start with the correctness proof.

Lemma 22 (Correctness of Algorithm 2). Let 𝑋,𝑌 be strings.

Given any node 𝑣 in the partition tree, Algorithm 2 correctly solves

the Tree Distance Problem.

Proof. The analysis of Lines 10 to 16 (that is, combining the

recursive computations) is precisely as in the analysis of the unmod-

ified Andoni-Krauthgamer-Onak algorithm (see the full version).

We therefore omit the details an assume that these steps succeed.

In this proof we show that Lines 1 to 9 are correct as well. (We

postpone the error analysis to the end of the proof.) There are three

possible cases:

• The Strings are Short: First assume that |𝑋𝑣 | ≤ 100𝐾2 or

that 𝑣 is a leaf node, in which case the condition in Line 1 trig-

gers. The algorithm computes and returns a multiplicative

2-approximation Δ𝑣,𝑠 of ED(𝑋𝑣, 𝑌𝑣,𝑠) for all shifts 𝑠 using
Theorem 17. We need to justify that 2 ≤ 𝛼𝑣 so that Δ𝑣,𝑠 is

a valid approximation in the sense of Equation (3). Indeed,

using the parameter setting in the previous paragraph we

have 𝛼𝑣 ≥ 5.

If the algorithm does not terminate in this first case, we may assume

that |𝑋𝑣 | ≥ 100𝐾2. The algorithm continues running and applies

the Matching Test (Lemma 16) to 𝑋𝑣, 𝑌𝑣 and the 4𝐾-Periodicity

Test (Lemma 15) to 𝑌𝑣 , both with rate parameter 𝑟 = 3𝑟𝑣 and error

parameter 𝛿 = 0.01 · 𝐾−100. We again postpone the error analysis

and assume that both tests returned a correct answer. We continue

analyzing the remaining two cases:

• The Strings are Periodic: Assume that the Matching Test

reports Close(𝑠∗) and that the 4𝐾-Periodicity Test reports

Close(𝑃), where 𝑃 is a primitive string with length |𝑃 | ≤ 4𝐾 .

The algorithm returnsΔ𝑣,𝑠 = 2·min𝑗∈Z
�� 𝑠−𝑠∗− 𝑗 |𝑃 | �� in Line 7.

We argue that this approximation is valid using Lemma 12

and by applying the triangle inequality three times. To this

end we define 𝑍 = 𝑃∗ [0 . . |𝑌𝑣 |] (that is, 𝑍 is equal to𝑌𝑣 after

łcorrectingž the periodicity errors) and 𝑍𝑠 = 𝑍 [𝐾 + 𝑠 . . |𝑍 | −

1112

STOC ’22, June 20ś24, 2022, Rome, Italy Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos

𝐾 + 𝑠]. By Lemma 12 we have that

ED(𝑍𝑠∗ , 𝑍𝑠) = 2 ·min
𝑗∈Z

�� 𝑠 − 𝑠∗ − 𝑗 |𝑃 | �� = Δ𝑣,𝑠 ,

for all shifts 𝑠 . Here we use the assumption that |𝑋𝑣 | ≥
100𝐾2 ≥ |𝑃 |2 and its consequence |𝑍 | = |𝑌𝑣 | ≥ |𝑃 |2 + 2𝐾 to

satisfy the precondition of Lemma 12. Using that the Periodic-

ity Test reported Close(𝑃), we infer thatHD(𝑌𝑣,𝑠 , 𝑍𝑠) ≤ 1
3𝑟𝑣

for all shifts 𝑠 , and using that the Matching Test reported

Close(𝑠∗) we obtain HD(𝑋𝑣, 𝑌𝑣,𝑠∗) ≤ 1/(3𝑟𝑣). By applying

the triangle inequality three times we conclude that

Δ𝑣,𝑠 = ED(𝑍𝑠∗ , 𝑍𝑠)
≤ ED(𝑍𝑠∗ , 𝑌𝑣,𝑠∗) + ED(𝑌𝑣,𝑠∗ , 𝑋𝑣)
+ ED(𝑋𝑣, 𝑌𝑣,𝑠) + ED(𝑌𝑣,𝑠 , 𝑍𝑠)

≤ ED(𝑋𝑣, 𝑌𝑣,𝑠) + 1/𝑟𝑣,
and similarlyΔ𝑣,𝑠 ≥ ED(𝑋𝑣, 𝑌𝑣,𝑠)−1/𝑟𝑣 . It follows thatΔ𝑣,𝑠 is
an additive 1/𝑟𝑣-approximation of ED(𝑋𝑣, 𝑌𝑣,𝑠), as required
in Equation (3). (Here, we do not suffer any multiplicative

error.)

• The Strings are Random-Like: Finally assume that the

Matching Test reportsClose(𝑠∗), but the 4𝐾-Periodicity Test
reports Far. In this case the algorithm reaches Line 9 and con-

tinues with the recursive computation (in Line 10). However,

if at any level in the computation subtree rooted at 𝑣 there

are more than 20𝐾 active nodes for which the Periodicity

Test (in Line 4) reports Far, then the recursive computation

is interrupted and we return Δ𝑣,𝑠 = 2 · |𝑠 − 𝑠∗ |. We have

already argued that the unrestricted recursive computation

is correct, but it remains to justify why interrupting the

computation makes sense.

So suppose that the recursive computation is interrupted,

i.e., assume that there are more than 20𝐾 descendants𝑤 of 𝑣

at some level for which the Periodicity Test reported Far. As-

suming that all Periodicity Tests computed correct outputs,

we conclude that for all these descendants𝑤 the strings 𝑌𝑣
are not 4𝐾-periodic. From Lemma 14 we learn that neces-

sarily BP4𝐾 (𝑌𝑣) > 10𝐾 . Hence Lemma 13 applies and yields

that

ED(𝑌𝑣,𝑠∗ , 𝑌𝑣,𝑠) = 2 · |𝑠 − 𝑠∗ | = Δ𝑣,𝑠 .

Using again the triangle inequality and the assumption that

ED(𝑌𝑣,𝑠∗ , 𝑋𝑣) ≤ 1/𝑟𝑣 (by the Matching Test), we derive that

Δ𝑣,𝑠 = ED(𝑌𝑣,𝑠∗ , 𝑌𝑣,𝑠)
≤ ED(𝑌𝑣,𝑠∗ , 𝑋𝑣) + ED(𝑋𝑣, 𝑌𝑣,𝑠)
≤ ED(𝑋𝑣, 𝑌𝑣,𝑠) + 1/𝑟𝑣 .

The lower bound can be proved similarly and therefore Δ𝑣,𝑠
is an additive 1/𝑟𝑣-approximation of ED(𝑋𝑣, 𝑌𝑣,𝑠).

We finally analyze the error probability of Algorithm 2. There are

three sources of randomness in the algorithm: The Matching and

Periodicity Tests in Lines 3 and 4 and the application of the Precision

Sampling Lemma. For each node, therefore have three error events:

With probability at most 2𝛿 = 0.02 ·𝐾−100 one of the property tests
fails. We apply the Precision Sampling Lemma with 𝛿 = 0.01 ·𝐾−101
for 2𝐾 shifts in every node, hence the error probability is bounded

by 0.02 · 𝐾−100 as well. In summary: The error probability per

node is 0.04 · 𝐾100. Recall that there are at most 2𝐾100 nodes in

the partition tree, and thus the total error probability is bounded

by 0.08 ≤ 0.1. □

Running Time. This concludes the correctness part of the anal-

ysis and we continue bounding the running time of Algorithm 2.

We proceed in two steps: First, we give an upper bound on the

number of active nodes in the partition tree (see Lemmas 23 and 24).

Second, we bound the expected running time of a single execution

of Algorithm 2 (ignoring the cost of recursive calls). The expected

running time is bounded by their product.

Recall that a node 𝑣 is matched if there is some 𝑠 ∈ { −𝐾, . . . , 𝐾 }
such that𝑋𝑣 = 𝑌𝑣,𝑠 . Moreover, we say that 𝑣 is active if the recursive

computation of Algorithm 2 reaches 𝑣 .

Lemma 23 (Number of Unmatched Nodes). If ED(𝑋,𝑌) ≤ 𝐾
and the partition tree has depth 𝐷 , then there are at most 𝐾𝐷 nodes

which are not matched.

Proof. Focus on any level in the partition tree and let 0 = 𝑖0 <

· · · < 𝑖𝑤 = 𝑛 denote the partition induced by that level, i.e., let

[𝑖ℓ . . 𝑖ℓ+1] = 𝐼𝑣 where 𝑣 is the ℓ-th node in the level (from left to

right). Let 𝐴 be an optimal alignment between 𝑋 and 𝑌 , then:

ED(𝑋,𝑌) =
𝑤−1∑︁
ℓ=0

ED(𝑋 [𝑖ℓ . . 𝑖ℓ+1], 𝑌 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1)]).

Since we assumed that ED(𝑋,𝑌) ≤ 𝐾 , there can be at most 𝐾

nonzero terms in the sum. For any zero term we have that

𝑋 [𝑖ℓ . . 𝑖ℓ+1] = 𝑌 [𝐴(𝑖ℓ) . . 𝐴(𝑖ℓ+1)],
and therefore the ℓ-th node in the current level is matched with shift

𝐴(𝑖ℓ) −𝑖ℓ . By Proposition 18 we have that |𝐴(𝑖ℓ) −𝑖ℓ | ≤ ED(𝑋,𝑌) ≤
𝐾 . This completes the proof. □

Lemma 24 (Number of Active Nodes). Assume that ED(𝑋,𝑌) ≤
𝐾 . If the partition tree has depth𝐷 , then there are at most𝑂 ((𝐾𝐷𝐵)2)
active nodes, with probability 0.98.

Proof. Recall that (unconditionally) there are at most 2𝐾100

nodes in the partition tree. Hence, by a union bound, all Matching

Tests in Line 3 succeed with probability at least 1 − 0.02 = 0.98. We

will condition on this event throughout the proof. We distinguish

between three kinds of nodes 𝑣 :

(1) 𝑣 itself and all of 𝑣 ’s ancestors are not matched,

(2) 𝑣 itself is matched, but all of 𝑣 ’s ancestors are not matched,

(3) some ancestor of 𝑣 (and therefore also 𝑣 itself) is matched.

By the previous lemma we know that there are at most𝐾𝐷 nodes

which are not matched. It follows that there are at most 𝐾𝐷 nodes

of the first kind.

It is also easy to bound the number of nodes 𝑣 of the second kind:

Observe that 𝑣 ’s parent is a node of the first kind. Hence, there can

be at most 𝐾𝐷 · 𝐵 nodes of the second kind.

Finally, we bound the number of nodes of the third kind. Any

such node 𝑣 has a unique ancestor 𝑤 of the second kind. There

are two cases for 𝑤 : Either the condition in Line 6 succeeds and

the algorithm directly solves 𝑤 . This is a contradiction since we

assumed that 𝑣 (a descendant of 𝑤) is active. Or this condition

fails, and the algorithm continues branching with the exception

that if in the subtree below 𝑤 there are more than 20𝐾 active

1113

Almost-Optimal Sublinear-Time Edit Distance in the Low Distance Regime STOC ’22, June 20ś24, 2022, Rome, Italy

nodes per level for which the Periodicity Test in Line 4 reports

Far, then we interrupt the recursive computation. We claim that

consequently in the subtree below𝑤 (consisting only of nodes of the

third kind), there are at most 20𝐾𝐵 active nodes per level. Indeed,

suppose there were more than 20𝐾𝐵 active nodes on some level.

Then consider their parent nodes; there must be more than 20𝐾

parents. For each such parent 𝑢 the Matching Test reported Close

(since 𝑢 is a matched node, and we assumed that all Matching Tests

succeed) and the Periodicity Test reported Far (since otherwise the

condition in Line 4 triggers and solves 𝑢 directly, but we assumed

that 𝑢 is the parent of some other active node). Note that we have

witnessed more than 20𝐾 nodes on one level below 𝑤 for which

the Periodicity Test reported Far. This is a contradiction.

In total the number of active nodes below 𝑤 is bounded by

20𝐾𝐵 ·𝐷 . Recall that there are at most 𝐾𝐷 ·𝐵 nodes𝑤 of the second

kind, hence the total number of active nodes of the third kind is

20(𝐾𝐷𝐵)2. Summing over all three kinds, we obtain the claimed

bound. □

We are ready to bound the total running time. In the following

lemmawe prove that the algorithm is efficient assuming that the edit

distance between 𝑋 and 𝑌 is small. This assumption can be justified

by applying Algorithm 2 with the following modification: We run

Algorithm 2 with a time budget and interrupt the computation as

soon as the budget is depleted. In this case we can immediately

infer that the edit distance between 𝑋 and 𝑌 must be large.

Lemma 25 (Running Time of Algorithm 2). Let 𝑋,𝑌 be strings

with ED(𝑋,𝑌) ≤ 𝐾 . Then Algorithm 2 runs in time

𝑛/𝐾 · (log𝐾)𝑂 (log𝐵 (𝐾)) +𝑂 (𝐾4𝐵2),

with constant probability 0.9.

Proof. We first bound the expected running time of a single

execution of Algorithm 2 where we ignore the cost of recursive

calls. Let 𝐷 denote the depth of the partition tree. We proceed in

the order of the pseudocode:

• Lines 1 and 2: If the test in Line 1 succeeds, then Line 2 takes

time 𝑂 (|𝑋𝑣 | + 𝐾2) by Theorem 17, where |𝑋𝑣 | ≤ 100𝐾2 or

|𝑋𝑣 | ≤ 𝑂 (𝑛/𝐾100). The total time of this step is therefore

bounded by 𝑂 (𝐾2 + 𝑛/𝐾100).
• Lines 3 and 4: Running the Matching and Periodicity Tests

(Lemmas 15 and 16) takes time 𝑂 (𝑟𝑣 |𝑋𝑣 | log𝐾 + 𝐾 log |𝑋𝑣 |).
We want to replace the log |𝑋 | by log𝐾 , so assume that the

second summand dominates, i.e., 𝑟𝑣 |𝑋𝑣 | log𝐾 ≤ 𝐾 log |𝑋𝑣 |.
At any node 𝑣 the rate 𝑟𝑣 is always at least 1000/𝐾 (since

at the root the rate is exactly 1000/𝐾 and below the root

the rate never decreases), hence |𝑋𝑣 |/log |𝑋𝑣 | ≤ poly(𝐾). It
follows that we can bound the total time of this step indeed

by 𝑂 (𝑟𝑣 |𝑋𝑣 | log𝐾 + 𝐾 log𝐾).
• Lines 5 to 9: Here we merely produce the output according to

some fixed rules. The time of this step is bounded by 𝑂 (𝐾).
• Lines 10 to 16: This step takes time𝑂 (𝐾𝐵) and the analysis is
exactly as in the analysis of the Andoni-Krauthgamer-Onak

algorithm, see the full version for details.

In total, the time of a single execution is bounded by𝑂 (𝑟𝑣 |𝑋𝑣 | log𝐾+
𝐾2 + 𝑛/𝐾100). We will simplify this term by plugging in the (ex-

pected) rate 𝑟𝑣 for any node 𝑣 (we defer the detailed analysis to the

full version of this paper).

Recall that 𝑟𝑣 = 1000 · (𝐾 · 𝑢𝑣1 . . . 𝑢𝑣𝑑)−1 where 𝑣0, 𝑣1, . . . , 𝑣𝑑 =

𝑣 is the root-to-node path leading to 𝑣 and each 𝑢𝑖 is sampled

from D(𝜀 = (200 log𝐾)−1, 𝛿 = 0.01 · 𝐾−101), independently. Using
Lemma 9 there exist events 𝐸𝑤 happening each with probability

1 − 1/𝑁 such that

E(1/𝑢𝑤 | 𝐸𝑤) ≤ 𝑂 (𝜀−2 log(𝛿−1) log𝑁) ≤ polylog(𝐾).
In the last step we set 𝑁 = 100𝐾100. Taking a union bound over all

active nodes𝑤 (there are atmost 2𝐾100many), the event𝐸 =
∧
𝑤 𝐸𝑤

happens with probability at least 0.98 and we will condition on 𝐸

from now on. Under this condition we have:

E(𝑟𝑣 | 𝐸) =
1000

𝐾

𝑑∏
𝑖=1

E(1/𝑢𝑣𝑖 | 𝐸𝑣𝑖)

≤ (log𝐾)
𝑂 (𝑑)

𝐾
≤ (log𝐾)

𝑂 (log
𝐵
(𝐾))

𝐾
.

Finally, we can bound the total expected running time (condi-

tioned on 𝐸) as follows, summing over all active nodes 𝑣 :

∑︁
𝑣

𝑂

(
|𝑋𝑣 | ·

(log𝐾)𝑂 (log𝐵 (𝐾))
𝑘

+ 𝐾2 + 𝑛

𝐾100

)
.

Using that
∑
𝑤 |𝑋𝑤 | = 𝑛 whenever 𝑤 ranges over all nodes on a

fixed level in the partition tree, and thus
∑
𝑣 |𝑋𝑣 | ≤ 𝑛 · 𝐷 where 𝑣

ranges over all nodes, we can bound the first term in the sum by

𝑛/𝐾 · (log𝐾)𝑂 (log𝐵 (𝐾)) . The second term can be bounded by 𝐾2

times the number of active nodes. By Lemma 24 this becomes

𝑂 (𝐾4𝐷2𝐵2) = 𝑂 (𝐾4𝐵2). By the same argument the third term

becomes at most 𝑛/𝐾90 and is therefore negligible.

We conditioned on two events: The event 𝐸 and the event that

the number of active nodes is bounded by𝑂 (𝐾2𝐷2𝐵2) (Lemma 24).

Both happen with probability at least 0.98, thus the total success

probability is 0.96 ≥ 0.9. □

4.5 Main Theorem

We finally recap and formally prove our main theorem and its two

corollaries.

Theorem 1 (Main Theorem). Let 2 ≤ 𝐵 ≤ 𝑘 be a parameter. The

(𝑘,Θ(𝑘 log𝐵 (𝑘) · 𝐵))-gap edit distance problem can be solved in time

𝑛

𝑘
· (log𝑘)𝑂 (log𝐵 (𝑘)) +𝑂 (𝑘4 poly(𝐵)) .

Proof. For now we keep𝐾 as a parameter and will later set𝐾 in

terms of 𝑘 . We run Algorithm 2 to compute an approximation Δ =

Δ𝑟,0 where 𝑟 is the root node in the partition tree. By the correctness

of Algorithm 2 (Lemma 22) we have that 0.1 ED≤𝐾 (𝑋,𝑌)−0.001𝐾 ≤
Δ ≤ 10 TD≤𝐾 (𝑋,𝑌) + 0.001𝐾 , and using the equivalence of edit

distance and tree distance (Lemma 6) we conclude that Δ ≤ 20𝐵𝐷 ·
ED≤𝐾 (𝑋,𝑌) + 0.001𝐾 , where 𝐷 ≤ log𝐵 ((𝐾)100) is the depth of the

partition tree. It follows that we can distinguish whether the edit

distance ED(𝑋,𝑌) is at most 𝐾/(1000𝐵𝐷) or at least 𝐾 . Indeed:
• If ED(𝑋,𝑌) ≤ 𝐾/(1000𝐵𝐷), then Δ ≤ 0.02𝐾 + 0.001𝐾 =

0.021𝐾 .

1114

STOC ’22, June 20ś24, 2022, Rome, Italy Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos

• If ED(𝑋,𝑌) ≥ 𝐾 , then Δ ≥ 0.1𝐾 − 0.001𝐾 = 0.099𝐾 .

To bound the running time, we run the previous algorithm with

time budget 𝑛/𝐾 · (log𝐾)𝑂 (log𝐵 (𝐾)) + 𝑂 (𝐾4𝐵2) (with the same

constants as in Lemma 25). If the algorithm exceeds the time budget,

then we interrupt the computation and report that ED(𝑋,𝑌) ≥ 𝐾 .
This is indeed valid, since Lemma 25 certifies that ED(𝑋,𝑌) > 𝐾 in

this case.

To obtain the claimed statement, we have to pick 𝐾 . We set 𝐾 =

Θ(𝑘 log𝐵 (𝑘) · 𝐵), where the constant is picked in such a way that

𝐾/(1000𝐵𝐷) ≥ 𝐾/(1000𝐵 · log𝐵 ((𝐾)100)) ≥ 𝑘 . Then the algorithm

distinguishes edit distances 𝑘 versus 𝐾 = Θ(𝑘 log𝐵 (𝑘) · 𝐵). □

Corollary 2 (Subpolynomial Gap). In time 𝑂 (𝑛/𝑘 + 𝑘4+𝑜 (1)) we
can solve (𝑘, 𝑘 · 2𝑂 (

√
log𝑘))-gap edit distance.

Proof. Simply plugging 𝐵 = 2
√
log𝑘 into Theorem 1 leads to

the correct gap, but we suffer a factor 𝑘𝑜 (1) in the running time.

For that reason, let 𝑘 be a parameter to be specified later and apply

Theorem 1 with parameter 𝑘 and 𝐵 = 2
√
log𝑘 . In that way we can

distinguish the gap 𝑘 versus 𝑘 · 2Θ(
√
log𝑘) in time

𝑂 (𝑛/𝑘 · (log𝑘)𝑂 (log𝐵 (𝑘)) + 𝑘4+𝑜 (1)).

This term can be written as𝑂 (𝑛/𝑘 · 2𝛼 (𝑘) + 𝑘4+𝑜 (1)), where 𝛼 (𝑘) =
𝑂

(√︃
log𝑘 log log𝑘

)
.

Finally, set 𝑘 = 𝑘 · 22𝛼 (𝑘) . For 𝑘 at least a sufficiently large

constant we have that 2𝛼 (𝑘) ≤ 22𝛼 (𝑘) , and therefore the running

time becomes 𝑂 (𝑛/𝑘 + 𝑘4+𝑜 (1)) as claimed. (For small constant 𝑘 ,

we can exactly compute the 𝑘-capped edit distance in linear time

𝑂 (𝑛) using the Landau-Vishkin algorithm [23].) The algorithm

distinguishes the gap 𝑘 versus 𝑘 · 2𝑂 (
√
log𝑘)

= 𝑘 · 2Θ̃(
√
log𝑘) . Since

𝑘 ≤ 𝑘 , this is sufficient to prove the claim. □

Corollary 3 (Polylogarithmic Gap). For any 𝜀 ∈ (0, 1), in time

𝑂 (𝑛/𝑘1−𝜀 + 𝑘4+𝑜 (1)) we can solve (𝑘, 𝑘 · (log𝑘)𝑂 (1/𝜀))-gap edit dis-
tance.

Proof. Let 𝑐 be the constant so that the time bound in Theorem 1

becomes 𝑛/𝑘 · (log𝑘)𝑐 log𝐵 (𝑘) +𝑂 (𝑘4 poly(𝐵)). We apply Theorem 1

with parameter 𝐵 = (log𝑘)𝑐/𝜀 . Then the gap is indeed 𝑘 versus 𝑘 ·
(log𝑘)𝑂 (1/𝜀) as claimed. Since (log𝑘)𝑐 log𝐵 (𝑘) = 𝑘𝜀 the running

time bound becomes 𝑂 (𝑛/𝑘1−𝜀 + 𝑘4+𝑜 (1)). □

REFERENCES
[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. 2015. Tight

Hardness Results for LCS and Other Sequence Similarity Measures. In Proceedings
of the 56th IEEE Annual Symposium on Foundations of Computer Science (FOCS
’15). IEEE Computer Society, 59ś78.

[2] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and
Ryan Williams. 2016. Simulating branching programs with edit distance and
friends: or: a polylog shaved is a lower bound made. In Proceedings of the 48th
ACM Symposium on Theory of Computing (STOC ’16). ACM, 375ś388.

[3] Alexandr Andoni. 2017. High frequency moments via max-stability. In 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017,
New Orleans, LA, USA, March 5-9, 2017. IEEE, 6364ś6368.

[4] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2010. Polylogarith-
mic Approximation for Edit Distance and the Asymmetric Query Complexity.
In Proceedings of the 51st IEEE Annual Symposium on Foundations of Computer
Science (FOCS ’10). IEEE Computer Society, 377ś386.

[5] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2011. Streaming
Algorithms via Precision Sampling. In Proceedings of the 52nd IEEE Annual Sym-
posium on Foundations of Computer Science (FOCS ’11). IEEE Computer Society,
363ś372.

[6] Alexandr Andoni and Huy L. Nguyen. 2010. Near-Optimal Sublinear Time
Algorithms for Ulam Distance. In Proceedings of the 21st ACM-SIAM Symposium
on Discrete Algorithms (SODA ’10). SIAM, 76ś86.

[7] Alexandr Andoni and Negev Shekel Nosatzki. 2020. Edit Distance in Near-Linear
Time: it’s a Constant Factor. In Proceedings of the 61st IEEE Annual Symposium on
Foundations of Computer Science (FOCS ’20). IEEE Computer Society, 990ś1001.

[8] Alexandr Andoni and Krzysztof Onak. 2012. Approximating Edit Distance in
Near-Linear Time. SIAM J. Comput. 41, 6 (2012), 1635ś1648.

[9] Arturs Backurs and Piotr Indyk. 2015. Edit distance cannot be computed in
strongly subquadratic time (unless SETH is false). In Proceedings of the 47th ACM
Symposium on Theory of Computing (STOC ’15). ACM, 51ś58.

[10] Ziv Bar-Yossef, S. Thathachar Jayram, Robert Krauthgamer, and Ravi Kumar.
2004. Approximating Edit Distance Efficiently. In Proceedings of the 45th IEEE
Annual Symposium on Foundations of Computer Science (FOCS ’04). IEEE Computer
Society, 550ś559.

[11] Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova,
Ronitt Rubinfeld, and Rahul Sami. 2003. A sublinear algorithm for weakly ap-
proximating edit distance. In Proceedings of the 35th ACM Symposium on Theory
of Computing (STOC ’03). ACM, 316ś324.

[12] Tugkan Batu, Funda Ergun, and Cenk Sahinalp. 2006. Oblivious string embed-
dings and edit distance approximations. In Proceedings of the 17th ACM-SIAM
Symposium on Discrete Algorithms (SODA ’06). SIAM, 792ś801.

[13] Joshua Brakensiek and Aviad Rubinstein. 2020. Constant-factor approximation
of near-linear edit distance in near-linear time. In Proceedings of the 52nd ACM
Symposium on Theory of Computing (STOC ’20). ACM, 685ś698.

[14] Karl Bringmann and Marvin Künnemann. 2015. Quadratic Conditional Lower
Bounds for String Problems and Dynamic Time Warping. In Proceedings of the
56th IEEE Annual Symposium on Foundations of Computer Science (FOCS ’15). IEEE
Computer Society, 79ś97.

[15] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and
Michael Saks. 2020. Approximating Edit Distance Within Constant Factor in
Truly Sub-Quadratic Time. J. ACM 67, 6 (2020), 22 pages.

[16] Elazar Goldenberg, Tomasz Kociumaka, Robert Krauthgamer, and Barna Saha.
2021. Gap Edit Distance via Non-Adaptive Queries: Simple and Optimal. CoRR
abs/2111.12706 (2021).

[17] Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. 2019. Sublinear Algo-
rithms for Gap Edit Distance. In Proceedings of the 61st IEEE Annual Symposium on
Foundations of Computer Science (FOCS ’20). IEEE Computer Society, 1101ś1120.

[18] Dan Gusfield. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press.

[19] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. 1977. Fast Pattern
Matching in Strings. SIAM J. Comput. 6, 2 (1977), 323ś350.

[20] Tomasz Kociumaka and Barna Saha. 2020. Sublinear-Time Algorithms for Com-
puting & Embedding Gap Edit Distance. In Proceedings of the 61st IEEE Annual
Symposium on Foundations of Computer Science (FOCS ’20). IEEE Computer Soci-
ety, 1168ś1179.

[21] Michal Koucký and Michael E. Saks. 2020. Constant factor approximations to
edit distance on far input pairs in nearly linear time. In Proceedings of the 52nd
ACM Symposium on Theory of Computing (STOC ’20). ACM, 699ś712.

[22] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. 1998. Incremental
String Comparison. SIAM J. Comput. 27, 2 (1998), 557ś582.

[23] Gad M. Landau and Uzi Vishkin. 1988. Fast String Matching with 𝑘 Differences.
J. Comput. Syst. Sci. 37, 1 (1988), 63ś78.

[24] Vladimir Iosifovich Levenshtein. 1966. Binary codes capable of correcting dele-
tions, insertions and reversals. Soviet Physics Doklady 10, 8 (1966), 707ś710.

[25] Rafail Ostrovsky and Yuval Rabani. 2007. Low distortion embeddings for edit
distance. J. ACM 54, 5 (2007), 23.

[26] T. K. Vintsyuk. 1968. Speech discrimination by dynamic programming. Cyber-
netics 4, 1 (1968), 52ś57. Russian Kibernetika 4(1):81-88 (1968).

[27] Robert A. Wagner and Michael J. Fischer. 1974. The String-to-String Correction
Problem. J. ACM 21, 1 (1974), 168ś173.

1115

	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview
	3.1 The Andoni-Krauthgamer-Onak Framework
	3.2 The Andoni-Krauthgamer-Onak Algorithm
	3.3 Our Algorithm

	4 Our Algorithm in Detail
	4.1 Some Facts about Periodicity
	4.2 Edit Distances between Periodic and Random-Like Strings
	4.3 Some String Property Testers
	4.4 Putting the Pieces Together
	4.5 Main Theorem

	References

