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Abstract

We use the concept of the Filippov solution to study the dynamics of a class of

delayed dynamical systems with discontinuous right-hand side, which contains the

widely-studied delayed neural network models with almost periodic self-inhibitions,

interconnections weights and external inputs. We prove that diagonal dominant con-

ditions can guarantee the existence and uniqueness of an almost periodic solution as

well as its global exponential stability. As special cases, we derive a series of results

on the dynamics of delayed dynamical systems with discontinuous activations and pe-

riodic coefficients or constant coefficients, respectively. Furthermore, from the proof

of the existence and uniqueness of the solution, we prove that the solution of a delayed

dynamical system with high-slope activations actually approximates to the Filippov

solution of the dynamical system with discontinuous activations.
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1 Introduction

The purpose of this paper is to study the following delayed integro-differential equations:

dui(t)

dt
= −di(t)ui(t) +

n
∑

j=1

aij(t)gj(uj(t))

+

n
∑

j=1

∫ ∞

0

gj(uj(t− s))dsKij(t, s) + Ii(t), i = 1, · · · , n, (1)

where di(t), aij(t), Ii(t), i, j = 1, · · · , n, are some functions from R
+ to R, gi(·), i =

1, · · · , n, are some nondecreasing functions from R to R, and for any t ∈ R, dsKij(t, s),

i, j = 1, · · · , n, are Lebesgue-Stieltjes measures with respect to s.

The motivation of studying the system (1) originates from the study of the well-known

recurrently connected neural networks, which have been extensively studied in both the-

ory and applications. The neural networks can be modelled by the following differential

equations:

dui(t)

dt
= −diui(t) +

n
∑

j=1

aijgj(uj(t)) + Ii, i = 1, · · · , n (2)

known as Hopfield neural networks (Hopfield & Tank 1984, 1986) and

dui(t)

dt
= ai(ui(t))

[

− diui(t) +

n
∑

j=1

aijgj(uj(t)) + Ii

]

, i = 1, · · · , n (3)

known as Cohen-Grossberg neural networks (Cohen & Grossberg 1983), where ui(t) de-

notes the state variable of the i-th neuron, di represents the self-inhibition with which the

i-th neuron will reset its potential to the resting state in isolations when disconnected from

the network, aij denotes the connection strength of j-th neuron on the i-th neuron, gi(·) de-

notes the activation function of i-th neuron, Ii denotes the external input to the i-th neuron,

and ai(·) denotes amplification function of the i-th neuron. There are a lot of papers in liter-

ature discussing the local and global stability of these systems. For reference, see Cohen &

Grossberg (1983), Hirsch (1989), Michel & Gray (1990), Forti & Tesi (1995), Lu & Chen

(2003) and others.
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In practice, time delays inevitably occur due to the finite switching speed of the ampli-

fiers and communication time. Thus, the neural networks can be modeled by the following

delayed differential equations:

dxi(t)

dt
= −dixi(t) +

n
∑

j=1

aijgj(xj(t)) +

n
∑

j=1

bijgj(xj(t− τij)) + Ii, i = 1, · · · , n, (4)

where bij denotes the delayed feedback of the j-th neuron on the i-th neuron. There are

also many papers discussing the stability of delayed neural networks. See Gopalsamy &

He (1991), Civalleri et.al. (1993), Blair et.al. (1996), Cao & Zhou (1998), Joy (2000),

Chen (2001), Lu et.al. (2003) for references. In these papers, various conditions based on

Lyapunov functionals were given guaranteeing the global stability.

Furthermore, the interconnections also contain asynchronous terms. In general, the in-

terconnection weights aij, bij , self-inhibitions di and inputs Ii should vary through time.

Therefore, we need to study the nonautonomous dynamical systems with time-varying self-

inhibitions, connections, and inputs:

dui(t)

dt
= −di(t)ui(t) +

n
∑

j=1

aij(t)gj(uj(t))

+
n

∑

j=1

bij(t)gj(uj(t− τij)) + Ii(t), i = 1, · · · , n (5)

Recently, a number of researchers have investigated the existence and global attraction of

the periodic solution (Gopalsamy & Sariyasa 2002, Cao 2003, Lu & Chen 2004, Zhou et.al.

2004, Zheng & Chen 2004, Chen et.al. 2005) or almost periodic solution (Huang & Cao

2003, Lu & Chen 2005b) for these non-autonomous delayed differential systems, assuming

that the system is periodic or almost periodic respectively. In particular, Lu & Chen (2005b)

presented the generalized delayed differential system model (1) unifying discrete delays and

distribution delays and studied its dynamical behaviors.

However, all these works were based on the assumption that the activation functions are

continuous even globally Lipshitz. As mentioned by Forti & Nistri (2003), a brief review on
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some common neural network models reveals that neural networks with discontinuous acti-

vations are of importance and do frequently arise in practice. For example, consider the clas-

sical Hopfield neural networks with graded response neurons Hopfield & Tank (1984). The

standard assumption is that the activations used are in high-gain limit, where they closely

approach discontinuous and comparator functions. As shown in Hopfield & Tank (1984,

1986), the high-gain hypothesis is crucial to make negligible the connection to the neural

network energy function of the term depending on neuron self inhibitions, and to favor bi-

nary output formation. For example, the activation function gi(·) is selected as the sign

function sign(s).

Also, a conceptually analogous model based on hard comparators is also used to de-

scribe the discrete-time neural networks in Harrer et.al. (1992). Another important example

is the neural networks introduced in Kennedy & Chua (1988) to solve linear and nonlin-

ear programming problems. Those networks exploit constrained neurons with a diode-like

input-output activations. Again, in order to satisfy the constraints, the diodes are required

to possess a very high slope in the conducting region, i.e., they should approximate the

discontinuous characteristic of an ideal diode Chua et.al. (1987). When dealing with dy-

namical systems possessing high-slope nonlinear elements, it is often of advantage to model

them with a system of differential equations with discontinuous right-hand side, rather than

studying the case where the slope is high but of finite value (Utkin 1977).

In the last few years, there are several papers studying neural networks with discontin-

uous activations. Forti & Nistri (2003) discussed the absolute stability of Hopfield neural

networks (2) with bounded and discontinuous activations. Lu & Chen (2005a) proved the

global convergence for Cohen-Grossberg neural networks (3) with unbounded and discon-

tinuous activations. Also, Lu & Chen (2006), Forti et.al. (2005) studied the dynamics of

delayed neural networks (4). Papini & Taddei (2005) discussed the periodic solution of the

periodic delayed neural networks (5) with discontinuous activations and periodic parame-

ters. In all these papers, the authors use the solution in the Filippov sense (Filippov 1967) to

handle differential equations with discontinuous right-hand side. The concept of the solu-
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tion in the sense of Filippov is useful in engineering applications. Since a Filippov solution

is a limit of the solutions of a sequence of ordinary differential equations with continu-

ous right-hand side. Hence, we can model a system which is near a discontinuous system

and expect that the Filippov trajectory of the discontinuous system will be close to the real

trajectories. This approach is of significance in many applications. For instance, variable

structure control, non-smooth analysis, etc, (see Utkin 1977, Aubin & Cellina 1984, Paden

& Sastry 1987). In fact, the solution in the Filippov sense satisfies the corresponding differ-

ential inclusions induced by the convex extension of discontinuity (see definitions 1 and 2

in the latter section for details).

The generalized viability of the differential inclusions was investigated in the textbooks

Aubin & Cellina (1984) Aubin (1991). Periodicity and almost periodicity for differential in-

clusions or Filippov systems have been studied in the recent decades. Methodologically, the

existence of a periodic solution of differential inclusion or differential system with discon-

tinuous right-hand side (despite that some researchers did not study the Filippov solution)

can be proved by the fixed-point theory, i.e., the periodic boundary condition can be re-

garded as a fixed point of certain evolving operator ( Hu & Papageorgiou 1995, Li & Xue

2002, Bader & Kryszewski 2003, Li & Kloeden 2006, Dhage 2006, Zuev 2006). And, some

authors constructed a sequence of differential systems with continuous right-hand sides hav-

ing periodic solutions and proved that the solution sequence converges to a periodic solution

of the original differential inclusion (Haddad 1981, Filippakis & Papageorgiou 2006). As

for the stability, the first approximation was used to deal with the local asymptotical stabil-

ity for periodic differential inclusions (Smirnov 1995) and Lyapunov method was extended

to handle the global stability (Bacciotti et.al. 2000, Bacciotti 2005). Furthermore, similar

method was utilized to study the almost periodic solution of almost periodic differential

inclusions, especially with delays. See Andres (1999) and Ivanov (1997) for references.

Continuing with our previous work (Lu & Chen 2005a, 2006), in this paper, we con-

sider the delayed dynamical system (1) with discontinuous activations and time-varying

coefficients. We also introduce the concept of solutions in the Filippov sense for delayed
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dynamical system (1) and prove its existence by the idea introduced by Haddad (1981): we

construct a sequence of delayed systems, of which the activations are with high-slope and

converge to the discontinuous activations. Firstly, we prove that under diagonal dominant

conditions, the sequence of solutions has at least a subsequence converging to a solution of

the system (1) with discontinuous activations by a well-known diagonal-selection argument.

Secondly, we use the Lyapunov functional method to obtain an asymptotical almost periodic

solution which leads to the existence of an almost periodic solution (Yoshizawa 1975). We

also use this kind of Lyapunov functional to obtain the global exponential stability of this

almost periodic solution. Since a periodic function or a constant can be viewed as a special

almost periodic function, the results also apply to the systems with periodic (or constant)

self-inhibition, connection weights and outer inputs. Furthermore, from the proof of the ex-

istence and uniqueness of the solution, we can conclude that each solution sequence of the

delayed dynamical system with high-slope activations which converges to the discontinuous

activations will actually converge to the unique solution of delayed dynamical system (1) in

the Filippov sense with discontinuous activations.

This paper is organized as follows. In section 2, we present some necessary definitions

and assumptions. We present and prove the main result in section 3. As consequences,

in section 4, we give some corollaries for some specific cases. We conclude this paper in

section 5.

2 Preliminaries

In this section, we present some definitions and assumptions which will be used throughout

the paper. First of all, we present the definition of a solution for the delayed differential

equations (1) with discontinuous right-hand side.

Consider the following system:
dx

dt
= f(x) (6)
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where f(·) is not continuous. Filippov (1967) proposed the following definition of the

solution for the system (6).

Definition 1 A set-value map defined as

φ(x) =
⋂

δ>0

⋂

µ(N)=0

co

[

f(O(x, δ) −N)

]

(7)

where co(E) is the closure of the convex hull of some setE, O(x, δ) = {y ∈ R
n : ‖y−x‖ ≤

δ}, and µ(N) is the Lebesgue measure of the set N . A solution of the Cauchy problem for

(6) with initial condition x(0) = x0 is an absolutely continuous function x(t), t ∈ [0, T ),

which satisfies: x(0) = x0, and differential inclusion:

dx

dt
∈ φ(x), a.e. t ∈ [0, T ) (8)

Furthermore, Aubin & Cellina (1984), Aubin (1991), Haddad (1981) have proposed follow-

ing functional differential inclusion with memory:

dx

dt
(t) ∈ F (t, A(t)x) (9)

where F : R × C([−τ, 0],Rn) 7→ R
n is a given set-value map, and

[A(t)x](θ) = xt(θ) = x(t+ θ) (10)

Inspired by these works, in this paper, we use the definition of a solution for the delayed

differential systems introduced by Lu & Chen (2006), Forti et.al. (2005), Papini & Taddei

(2005), which generalize the previous concepts. We denote co[gi(s)] = [g−i (s), g+
i (s)] and

co[g(x)] = co[g1(x1)]×co[g2(x2)]×· · ·×co[gn(xn)], where × denotes the Cartesian product.

Definition 2 For a continuous function φ(θ) = [φ1(θ), · · · , φn(θ)]
⊤ and a measurable

function λ(θ) = [λ1(θ), · · · , λn(θ)]⊤ ∈ co[g(φ(θ))] for almost all θ ∈ (−∞, 0], an absolute

continuous function u(t) = u(t, φ, λ) = [u1(t), · · · , un(t)]⊤ associated with a measurable
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function γ(t) = [γ1(t), · · · , γn(t)]⊤ is said to be a solution of the Cauchy problem for the

system (1) on [0, T ) (T might be ∞) with initial value (φ(θ), λ(θ)), θ ∈ (−∞, 0], if










































dui(t)
dt

= −di(t)ui(t) +
n
∑

j=1

aij(t)γj(t)

+
∫ ∞

0
γj(t− s)dsKij(t, s) + Ii(t) a, e. t ∈ [0, T ),

γi(t) ∈ K[gi(ui(t))] a.e. t ∈ [0, T ),

ui(θ) = φi(θ) θ ∈ (−∞, 0],

γi(θ) = λi(θ) a.e. θ ∈ (−∞, 0],

(11)

holds for all i = 1, · · · , n.

As for the almost periodicity, we use the following concept introduced by Levitan & Zhikov

(1982), Yoshizawa (1975).

Definition 3 A continuous function x(t) : R → R
n is said to be almost periodic on R if for

any ǫ > 0, it is possible to find a real number l = l(ǫ) > 0, for any interval with length l(ǫ),

there exists a number ω = ω(ǫ) in this interval such that ||x(t + ω) − x(t)|| < ǫ, for all

t ∈ R.

In the sequel, we also need some assumptions for the delayed system (1):

Assumption A1: Every gi(·) is nondecreasing and local Lipschizian, except on a set

of isolated points {ρi
k}. More precisely, for each i = 1, · · · , n, gi(·) is monotonically

nondecreasing and continuous except on a set of isolated points {ρi
k}, where the right and

left limits g+
i (ρi

k) and g−i (ρi
k) satisfy g+

i (ρi
k) > g−i (ρi

k); in each compact set of R, gi(·) has

only finite number of discontinuities; moreover, denote the set of discontinuities by order

{ρi
k : ρi

k+1 > ρi
k, k ∈ Z} and there exist positive constants Gi,k > 0, i = 1, · · · , n, k ∈ Z

such that |gi(ξ) − gi(ζ)| ≤ Gi,k|ξ − ζ| holds for all ξ, ζ ∈ (ρi
k, ρ

i
k+1).

Assumption A2: di(t) and aij(t) are all continuous functions, i, j = 1, · · · , n and

di(t) ≥ δ > 0, aii(t) < 0 hold for all i = 1, · · · , n and t ∈ R; for any s ∈ R, the Lebesgue-

Stieltjes measures dsKij(t, s) : t 7→ dsKij(t, s) are continuous, i.e., lim
h→0

∫ ∞

0
|dsKij(t +
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h, s)−dsKij(t, s)| = 0 holds for all i, j = 1, · · · , n and t ∈ R, and dsKij(t, s) is dominated

by some Lebesgue-Stieltjes dK̄ij(s) independent of t satisfying
∫ ∞

0
eδs|dK̄ij(s)| < +∞ for

all i, j = 1, · · · , n and some δ > 0. Here the domination means |dsKij(t, s)| ≤ |dK̄ij(s)|

i.e.,
∫ ∞

0
f(s)|dsKij(t, s)| ≤

∫ ∞

0
f(s)|dK̄ij(s)| holds for all t ≥ 0 and any nonnegative

measurable function f(·); moreover, di(t), aij(t), Ii(t), and dsKij(t, s) all possess almost

periodic property, i.e., for any ǫ > 0, there exists l = l(ǫ) such that for any interval [α, α+ l],

there exists ω ∈ [α, α + l] such that

|di(t+ ω) − di(t)| < ǫ |aij(t+ ω) − aij(t)| < ǫ

|Ii(t+ ω) − Ii(t)| < ǫ

∫ ∞

0

|dsKij(t+ ω, s) − dsKij(t, s)| < ǫ

hold for all i, j = 1, · · · , n and t ∈ R;

Assumption A3: The initial condition satisfies that φ(θ) ∈ C((−∞, 0],Rn) is bounded

and λ(θ) is measurable and essentially bounded.

Throughout this paper, we use the following notations. We denote the solution of sys-

tem (11) by u(t, φ, λ) (u(t) for simplicity). We denote by ‖u‖ξ a norm of vector u =

[u1, · · · , un]
⊤ ∈ R

n : ‖u‖ξ =
n
∑

i=1

ξi|ui| where ξi > 0, i = 1, · · · , n. O(V, ǫ) denotes the

open ǫ-neighborhood of a set V ⊂ R
n: O(V, ǫ) = {y ∈ R

n : inf
x∈V

‖y − x‖ < ǫ} for some

norm ‖ · ‖. Z denotes the integer set and N denotes the natural number set.

3 Main Results

In this section, we give the main results of the paper.

Main Theorem Suppose that the assumptions A1 − A3 are satisfied. If there exist

constants ξi > 0, i = 1, · · · , n, and δ > 0 such that di(t) ≥ δ and

ξiaii(t) +

n
∑

j=1,j 6=i

ξj|aji(t)| +
n

∑

j=1

ξj

∫ ∞

0

eδs|dK̄ji(s)| < 0 (12)
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hold for all t ≥ 0 and i = 1, · · · , n, then,

1. for every initial value (φ, λ), the system (1) has a unique solution in the sense (11);

2. there exists a unique almost periodic solution u∗(t) for the system (1), which is glob-

ally exponentially stable, i.e., for any other solution u(t) with the initial condition (φ, λ),

there exists a constant M = M(φ, λ) > 0 such that

‖u(t) − u∗(t)‖ξ ≤Me−δt

holds for all t ≥ 0.

We divide the proof of Main Theorem into several steps. First, we construct a sequence

of delayed dynamical systems with high-slope continuous activations and prove the solu-

tions are uniformly bounded. Second, based on the uniform boundedness and the compact-

ness, we prove that for each initial value, the dynamical system (1) has at least a solution,

which is a clustering point of the solution sequence of the delayed dynamical system se-

quence with high-slope activations converging to the discontinuous activations. Third, we

prove that all solutions of the system (1) is globally exponentially asymptotically stable,

which also implies that for any initial value, the solution is unique. Finally, we prove that

the system (1) has a unique almost periodic solution, which is surely globally exponentially

attractive.

Similar to the idea proposed in Haddad (1981), the solution of the system (1) in the

sense (11) can be regarded as an approximation of the solutions of delayed neural networks

with high-slope activations. This is the main idea in proving the existence of the solution

and an almost periodic solution. More precisely, define a family of functions Ξ containing

f(x) = [f1(x1), f2(x2), · · · , fn(xn)]T ∈ C(Rn,Rn) satisfying

1. every fi(·) is monotonically nondecreasing, for all i = 1, 2, · · · , n;

2. every fi(·) is uniformly locally bounded, i.e., for any compact set Z ⊂ R
n, there

exists a constant M > 0 independent of f such that |fi(x)| ≤ M holds for all x ∈ Z

and i = 1, · · · , n;
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3. every fi(·) is locally Lipschitzean continuous, i.e., for any compact set Z ⊂ R
n,

there exists λ > 0 such that |fi(ξ) − fi(ζ)| ≤ λ|ξ − ζ| holds for all ξ, ζ ∈ Z, and

i = 1, 2, · · · , n.

For any f ∈ Ξ, by the theory given in Hale (1977), the following system:



















































du
f
i

dt
(t) = −di(t)u

f
i (t) +

n
∑

j=1

aij(t)σ
f
j (t)

+
n
∑

j=1

∫ ∞

0
σf

j (t− s)dsKij(t, s) + Ii(t)

uf
i (θ) = φi(θ), θ ∈ (−∞, 0]

σf
i (θ) =







λi(θ), θ ≤ 0

fi(u
f
i (θ)), θ ≥ 0

i = 1, · · · , n,

admits a unique solution uf(t) = [u1(t), u2(t), · · · , un(t)]
⊤ on [0, T ), where T might be ∞.

Step 1. we prove that the solutions uf(t) are uniformly bounded with respect to f ∈ Ξ.

Lemma 1 Under the condition (12), the solutions uf(t) are uniformly bounded with re-

spect to f ∈ Ξ, i.e. there exists M = M(φ, λ) > 0, which is independent of f ∈ Ξ, such

that ‖uf(t)‖ξ ≤ M holds for all f ∈ Ξ and t ≥ 0. Consequently, the existence interval of

uf(t) can be extended to [0,∞).

Proof: Define

V f (t) =

n
∑

i=1

ξi|u
f
i (t)|e

δt +

n
∑

i,j=1

ξi

∫ ∞

0

∫ t

t−s

|σf
j (θ)|eδ(s+θ)dθ|dK̄ij(s)|
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Differentiating it, we have

d

dt
V f(t) =

n
∑

i=1

δeδtξi|u
f
i (t)| +

n
∑

i=1

ξie
δtsign(uf

i (t))

{

− di(t)u
f
i (t)

+ aii(t)fi(u
f
i (t)) +

n
∑

j=1,j 6=1

aij(t)fj(u
f
j (t)) +

n
∑

j=1

∫ ∞

0

σf
j (t− s)dsKij(t, s)

}

+

n
∑

i=1

ξie
δtsign(uf

i (t))Ii(t) +

n
∑

i,j=1

ξi|fj(u
f
j (t))|e

δt

∫ ∞

0

eδs|dK̄ij(s)|

−
n

∑

i,j=1

ξje
δt

∫ ∞

0

|σf
j (t− s)||K̄ij(s)|

≤
n

∑

i=1

ξi|u
f
i (t)|e

δt(−di(t) + δ) +

n
∑

i=1

eδt|fi(u
f
i (t))|

{

aii(t)ξi

+
n

∑

j=1,j 6=i

|aji(t)|ξj +
n

∑

j=1

ξj

∫ ∞

0

eδs|dK̄ji(s)|

}

+ eδtÎ

≤ eδtÎ

where Î = sup
t≥0

‖I(t)‖ξ < +∞. It follows that

‖uf(t)‖ξ ≤ e−δtV f (t) = e−δt[

∫ t

0

V̇ f(s)ds+ V f (0)] ≤ e−δt

∫ t

0

eδsÎds+ e−δtV f(0)

≤
Î

δ
(1 − e−δt) + e−δtV f(0) <

Î

δ
+ V f(0)

Noting that V f(0) is independent of f ∈ Ξ, we obtain the uniform boundedness of the

solutions uf(t) by letting M = Î
δ

+ V f(0). Moreover, f(·) is locally Lipschtiz continuous,

we conclude that the existence interval of the solution uf(t) can be extended to the infinite

interval [0,+∞) with the results given in Hale (1977). Lemma 1 is proved.

Now, for any sequence

{

gm(x) = [gm
1 (x1), · · · , g

m
n (xn)]⊤

}

m∈N

∈ Ξ satisfying

lim
m→∞

dH(Graph(gm(K)), co[g(K)]) = 0, for all K ⊂ R
n, (13)

where dH(·, ·) denotes the Hausdorff metric of R
n, we construct a sequence of delayed
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systems with high-slope continuous activations as follows:

dum
i (t)

dt
= −di(t)u

m
i (t) +

n
∑

j=1

aij(t)σ
m
j (t)

+

n
∑

j=1

∫ ∞

0

σm
j (t− s)dsKij(t, s) + Ii(t), i = 1, · · · , n, (14)

where um
i (θ) = φi(θ), θ ∈ (−∞, 0], and σm

j (θ) =







λj(θ) θ ≤ 0

gm
j (uj(θ)) θ > 0

. For instance,

let {ρk,i} be the set of discontinuous points of gi(·). Pick a strictly decreasing sequence

{δk,i,m} with lim
m→∞

δk,i,m = 0 and define Ik,i,m = [ρk,i − δk.i.m, ρk,i + δk,i,m] such that for

every k1 6= k2, Ik1,i,m

⋂

Ik2,i,m = ∅ hold. Then, we define functions gm
i (·) as follows:

gm
i (s) =







gi(s) s /∈
⋃

k∈Z

Ik,i,m,

gi(ρk,i+δk,i,m)−gi(ρk,i−δk,i,m)

2δk,i,m
[s− ρk,i − δk,i,m] + gi(ρk,i + δk,i,m) s ∈ Ik,i,m.

It can be seen that the sequence {gm(·)}m∈N ⊂ Ξ satisfies condition (13).

Step 2. We will point out that the solution sequence of the system sequence (14) con-

verges to a solution of the system (1) in the sense (11).

Lemma 2 Under the assumptions of the Main Theorem, for each initial value pair (φ, λ),

the system (1) has a solution in the sense (11) on the whole time interval [0,∞).

Proof: By lemma 1, we know that all the solutions {um(t)}m∈N are uniformly bounded,

which implies that {u̇m(t)}m∈N is uniformly essentially bounded. By the Arzela-Ascoli

lemma and diagonal selection principle, we can select a subsequence of {um(t)}m∈N (still

denoted by um(t)) such that um(t) converges uniformly to a continuous function u(t) on

any compact interval of R. Since {u̇m(t)}m∈N is uniformly essentially bounded, for any

T > 0, u(t) is Lipschitz continuous on [0, T ]. This implies that u̇(t) exists for almost all

t ∈ [0, T ] and is bounded almost everywhere in [0, T ].

We claim that {u̇m(t)}m∈N weakly converges to u̇(t) on the space L∞([0, T ],Rn).

12



Because C∞
0 ([0, T ],Rn is dense in the Banach space L1([0, T ],Rn) and is the conjugate

space L∞([0, T ],Rn)). Therefore, for each p(t) ∈ C∞
0 ([0, T ],Rn), we have

∫ T

0

〈u̇m(t) − u̇(t), p(t)〉dt = −

∫ T

0

〈ṗ(t), um(t) − u(t)〉dt.

By the uniform essential boundedness of {u̇m(t)}m∈N and the Lebesgue dominant con-

vergence theorem, we conclude that {u̇m(t)}m∈N weakly converges to u̇(t) on the space

L∞([0, T ],Rn).

By the Mazur’s convexity theorem (see page 120-123, Yoshida 1978), for any m, we

can find finite number of constants αm
l ≥ 0 satisfying

∞
∑

l=m

αm
l = 1, such that

lim
m→∞

ym(t) = u(t), unifomly on [0, T ], lim
m→∞

ẏm(t) = u̇(t), a.e. t ∈ [0, T ],

where ym(t) =
∞
∑

l=m

αm
l u

l(t).

Let ηm
j (t) =

∞
∑

l=m

αm
l σ

l
j(uj(t)). Then,

ẏm
i (t) = −di(t)y

m
i (t) +

n
∑

j=1

aij(t)η
m
j (t)

+

n
∑

j=1

∫ ∞

0

ηm
j (t− s)dsKij(t, s) + Ii(t), i = 1, · · · , n.

Let ϕm(t) =
∫ t

0
ηm(s)ds, which is absolutely continuous and has uniformly essentially

bounded derivative. By the same arguments, we can find γm(t) =
∞
∑

l=m

βm
l η

l(t) such that

lim
m→∞

γm(t) = γ(t), almost everywhere in t ∈ (−∞, T ], γ(t) is measurable.

Now, denoting zm(t) =
∞
∑

l=m

βm
l y

m(t), we have

żm
i (t) = −di(t)z

m
i (t) +

n
∑

j=1

aij(t)γ
m
j (t)

+

n
∑

j=1

∫ ∞

0

γm
j (t− s)dsKij(t, s) + Ii(t), i = 1, · · · , n. (15)
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Let m→ ∞, by Lebesgue dominant convergence theorem, we obtain

u̇i(t) = −di(t)ui(t) +
n

∑

j=1

aij(t)γj(t)

+

n
∑

j=1

∫ ∞

0

γj(t− s)dsKij(t, s) + Ii(t), i = 1, · · · , n, a.e. t ∈ [0, T ].

The remaining is to prove γ(t) ∈ co[g(u(t))] on t ∈ [0, T ]. Since um(t) converges to u(t)

uniformly with respect to t ∈ [0, T ] and co[g(·)] is an upper-semi-continuous set-valued

map, for any ǫ > 0, there exists N > 0 such that gm(um(t)) ∈ O(co[g(u(t))], ǫ) holds for

all m > N and t ∈ [0, T ]. Noting that co[g(u(t))] is convex and compact, we conclude

γm(t) ∈ O(co[g(u(t))], ǫ), which implies γ(t) ∈ O(co[g(u(t))], ǫ) holds for any t ∈ [0, T ].

Because of the arbitrariness of ǫ, we conclude that γ(t) ∈ co[g(u(t))], t ∈ [0, T ]. Since T

is also arbitrary, the solution can be extended to [0,∞). This completes the proof.

Remark 1 In the proof of Lemma 2, by the Arzela-Ascoli lemma and diagonal selection

principle, we select a subsequence umk(t) of the sequence um(t), which is uniformly con-

vergent and u̇mk(t) is weakly convergent. But it is not enough to guarantee the convergence

of u̇mk(t) almost everywhere. That is the reason why we need to cite the Mazur convex-

ity theorem. By Mazur convexity theorem, we select a new subsequence which is a convex

combination of the original sequence and prove that it converges almost everywhere. This

technique is repeatedly used in the paper. For example, we use it to obtain the output γ(t)

of the activations by selecting a sequence γm(t) and proving limm→∞ γm(t) = γ(t).

Step 3. We will point out that any solution of the system (1) in the sense (11) is asymp-

totically stable by lemma 3.

Lemma 3 Suppose that the assumptions of the Main Theorem are satisfied. For any two

solutions u(t) = u(t, φ, λ) and v(t) = v(t, ψ, χ) of the system (1) in the sense (11) asso-

ciated with the outputs γ(t) and µ(t) and initial value pairs (φ, λ) and (ψ, χ) respectively,

14



there exists a constant M = M(φ, ψ, λ, χ) satisfying that M(φ, φ, λ, λ) = 0 holds for all

(φ, λ) such that

‖u(t) − v(t)‖ξ ≤Me−δt

holds for all t ≥ 0. Moreover, the solution of the system (1) in the sense (11) is unique.

Proof: Let u(t) = [u1(t), · · · , un(t)]
⊤ be a solution of

d

dt
ui(t) = −di(t)ui(t) +

n
∑

j=1

aij(t)γj(t) +
n

∑

j=1

∫ ∞

0

γj(t− s)dsKij(t, s) + Ii(t),

and v(t) = [v1(t), · · · , vn(t)]⊤ be a solution of

d

dt
vi(t) = −di(t)vi(t) +

n
∑

j=1

aij(t)µj(t) +
n

∑

j=1

∫ ∞

0

µj(t− s)dsKij(t, s) + Ii(t),

Then,

d

dt

[

ui(t) − vi(t)

]

= −di(t)

[

ui(t) − vi(t)

]

+
n

∑

j=1

aij(t)

[

γj(t) − µj(t)

]

+

n
∑

j=1

∫ ∞

0

[

γj(t− s) − µj(t− s)

]

dsKij(t, s), i = 1, · · · , n.

Let

L1(t) =

n
∑

i=1

ξi|ui(t) − vi(t)|e
δt +

n
∑

i,j=1

ξj

∫ ∞

0

∫ t

t−s

|γj(θ) − µj(θ)|e
δ(s+θ)dθ|dK̄ij(s)|

and M = M(φ, ψ, λ, χ) = L1(0). By the chain rule (see Clarke 1983 or Lu & Chen 2005a
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for details), differentiating it gives

d

dt
L1(t) =

n
∑

i=1

δeδtξi|ui(t) − vi(t)| +
n

∑

i=1

ξie
δtsign

(

ui(t) − vi(t)

)

{

− di(t)[ui(t) − vi(t)] + aii(t)[γi(t) − µi(t)] +

n
∑

j=1,j 6=1

aij(t)[γj(t) − µj(t)]

+

n
∑

j=1

∫ ∞

0

[γj(t− s)) − µj(t− s)]dsKij(t, s)

}

+

n
∑

i,j=1

ξi|γj(t) − µj(t)|

eδt

∫ ∞

0

eδs|dK̄ij(s)| −
n

∑

i,j=1

ξje
δt

∫ ∞

0

|γj(t− s) − µj(t− s)||K̄ij(s)|

≤
n

∑

i=1

ξi|uj(t) − vj(t)|e
δt(−di(t) + δ) +

n
∑

i=1

eδt|γj(t) − µj(t)|

{

aii(t)ξi

+
n

∑

j=1,j 6=i

|aji(t)|ξj +
n

∑

j=1

ξj

∫ ∞

0

eδs|dK̄ji(s)|

}

≤ 0,

which implies ‖u(t)−v(t)‖ξ ≤ L1(0)e−δt = M(φ, ψ, λ, χ)e−δt. It is clear thatM(φ, φ, λ, λ) =

0. Therefore, the solution in unique. Lemma 3 is proved.

In lemma 2, we have proved that some subsequence of um(t) converges to the solution

u(t). In fact, we can prove that um(t) itself converges to the solution u(t).

Proposition 1 Suppose that the assumptions of the Main Theorem are satisfied. For any

function sequence {g̃m(x) = (g̃m
1 (x1), · · · , g̃

m
n (xn))T : m = 1, 2, · · · } ⊂ Ξ satisfying the

condition (13) on any compact set in R
n, let ũm(t) = [ũm

1 (t), · · · , ũm
n (t)]⊤ be the solution

of the following system:

dũm
i

dt
= −di(t)ũ

m
i (t) +

n
∑

j=1

aij(t)g̃j(ũ
m
j (t)) +

n
∑

j=1

∫ ∞

0

σ̃m
j (t− s)dsKij(t, s) + Ii(t),

ũm
i (θ) = φi(θ), θ ∈ [−∞, 0], σ̃m

i (θ) =







λi(θ) θ ≤ 0

g̃m
i (ũm

i (θ)) θ ≥ 0
, i = 1, · · · , n, (16)
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and u(t) = u(t, φ, λ) be the solution of the delayed system (1) in the sense (11) with initial

value (φ, λ). Then, ũm(t) uniformly converges to u(t) on any finite time interval [0, T ].

Proof: First, we prove that um(t) converges to the solution of the delayed system (1) in

the sense (11) by reduction to absurdity. Assume that there exist T > 0, ǫ0 ≥ 0, and an

subsequence of integers {mk}k∈N such that

max
t∈[0,T ]

|umk(t) − u(t)| ≥ ǫ0. (17)

By the same arguments used in the proof of lemma 2, we can select a subsequence {umkl}l≥0

of {umk}k≥0, which converges to a solution v(t) = v(t, φ, λ) of the delayed system (1) in

the sense (11) uniformly in any finite interval [0, T ] with the initial value (φ, λ). By lemma

3, u(t) = v(t), which leads a contradiction with (17). This completes the proof.

Remark 2 Proposition 1 indicates that the solution v(t) = v(t, φ, λ) of the delayed system

(1) in the sense (11) does not depend on the choice of the sequence {gm(x)}m∈N ⊂ Ξ

satisfying the condition (13).

The following lemma points out that any solution is asymptotically almost periodic

(Yoshizawa 1975).

Lemma 4 Suppose that the assumptions of the Main Theorem are satisfied. Let u(t, φ, λ)

be a solution of the system (1) in the sense (11). For any ǫ > 0, there exist T > 0 and

l = l(ǫ) such that any interval [α, α + l] contains an ω such that

‖u(t+ ω) − u(t)‖ξ ≤ ǫ

holds for all t ≥ T .

Proof: We introduce the following auxiliary functions

ǫi(t, ω) = ui(t+ ω)[di(t+ ω) − di(t)] +
n

∑

j=1

γj(t+ ω)[aij(t+ ω) − aij(t)]

+

∫ ∞

0

n
∑

j=1

γj(t+ ω − s)d[Kij(t+ ω, s) −Kij(t, s)] + Ii(t+ ω) − Ii(t).(18)
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From the assumption A2 and the boundedness of u(t) and γ(t), one can see that for any

ǫ > 0, there exists l = l(ǫ) > 0 such that every interval [α, α + l] contains at least one

number ω with
n
∑

i=1

ξi|ǫi(t, ω)| < δ
2
ǫ for all t ≥ 0.

Denote z(t) = u(t+ ω) − u(t). Then,

dzi(t)

dt
= −di(t)zi(t) +

n
∑

j=1

aij(t)[γj(t+ ω) − γj(t)]

+
n

∑

j=1

∫ ∞

0

[γj(t+ ω − s) − γj(t− s)]dsKij(t, s) + ǫi(t, ω).

Let

L2(t) =

n
∑

i=1

ξi|zi(t)|e
δt +

n
∑

i,j=1

ξi

∫ ∞

0

∫ t

t−s

|γj(θ + ω) − γj(θ)|e
δ(θ+s)dθ|dK̄ij(s)|.

Pick a sufficiently large T such that e−δtL2(0) < ǫ
2

holds for all t ≥ T . Differentiating

L2(t) gives

dL2(t)

dt
=

n
∑

i=1

ξiδe
δt|zi(t)| +

n
∑

i=1

ξie
δtsign(zi(t))

{

− di(t)zi(t)

+ aii(t)[γi(t+ ω) − γi(t)] +
∑

j=1,j 6=i

aij(t)[γj(t+ ω) − γj(t)]

+
n

∑

j=1

∫ ∞

0

[γj(t+ ω − s) − γj(t− s)]dsKij(t, s)

+ ǫi(t, ω)

}

+

n
∑

i,j=1

ξie
δt|γj(t+ ω) − γj(t)|

∫ ∞

0

eδs|dK̄ij(s)|

−
n

∑

i,j=1

ξie
δt

∫ ∞

0

|γj(t+ ω − s) − γj(t− s)||dK̄ij(s)|

≤
n

∑

i

ξie
δt|zi(t)|(−di(t) + δ) +

n
∑

i=1

|γj(t+ ω) − γj(t)|e
δt

{

ξiaii(t)

+
∑

j=1,j 6=i

ξj|aji(t)| +
n

∑

j=1

ξj

∫ ∞

0

eδs|dK̄ji(s)|

}

+
n

∑

i=1

ξie
δt|ǫi(t, ω)|

≤ eδt δ

2
ǫ, t ≥ T.
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Therefore,

n
∑

i=1

ξi|zi(t)| ≤ e−δL2(t) = e−δ

[

L2(0) +

∫ t

0

L̇2(s)ds

]

≤ e−δtL2(0) + e−δt

∫ t

0

eδsds
δ

2
ǫ <

ǫ

2
+
ǫ

2
= ǫ

holds for all t ≥ T , which competes the proof.

Step 4. Now, we are to prove that the system (1) has at least an almost periodic solution

in the sense (11).

Lemma 5 Under the assumptions of the Main Theorem, the system (1) has at least one

almost periodic solution in the sense (11).

Proof: Let u(t) = u(t, φ, λ) be a solution of system (11). Pick a sequence {tk}k∈N satisfying

lim
k→∞

tk = ∞ and sup
t≥0

n
∑

i=1

ξi|ǫi(t, tk)| ≤
1
k
, where ǫi(t, tk), i = 1, · · · , n, are the auxiliary

functions (18) defined in the proof of lemma 4.

Let uk(t) = u(t+ tk) and γk(t) = γ(t+ tk). It is clear that the sequence {u(t+ tk)}k∈N

is uniformly continuous and bounded. By the Arzela-Ascoli lemma and diagonal selection

principle, we can select a subsequence of u(t + tk) (still denoted by u(t + tk)), which

converges to some absolutely continuous function u∗(t) uniformly on any compact interval

[0, T ].

In the following, we will prove that u∗(t) is an almost periodic solution of system (1) in

the sense (11). First, we prove that u∗(t) is a solution of the system (1) in the sense (11).

With the notations above, we have

dui(t+ tk)

dt
= −di(t)ui(t+ tk) +

n
∑

j=1

aij(t)γj(t+ tk)

+

n
∑

j=1

∫ ∞

0

γj(t+ tk − s)dsKij(t, s) + Ii(t) + ǫi(t, tk), i = 1, · · · , n.

19



With the similar method used in the proof of lemma 2, we can select a subsequence from

u(t + tk) (still denoted by u(t + tk)) and constants νk
l ≥ 0 with finite νk

l > 0 satisfying
∞
∑

l=k

νk
l = 1 such that

1. vk(t) =
∞
∑

l=k

νk
l u(t+ tl) converges to a Lipschitz continuous function u∗(t) uniformly

on [0, T ]; {v̇k(t)} converges to v̇∗(t) for almost all t ∈ [0, T ].

2. ζk(t) =
∞
∑

l=k

νk
l γ(t + tl) converges to a measurable function ζ(t) for almost all t ∈

[0, T ].

Moreover, for each k, we have

dvk
i (t)

dt
= −di(t)v

k
i (t) +

n
∑

j=1

aij(t)ζ
k
j (t)

+
n

∑

j=1

∫ ∞

0

ζk
j (t− s)dsKij(t, s) + Ii(t) + ǭi(t, k), i = 1, · · · , n,

where ǭi(t, k) =
∞
∑

l=k

νk
l ǫi(t, tk). Letting k → ∞, we have

du∗i (t)

dt
= −di(t)u

∗
i (t) +

n
∑

j=1

aij(t)ζj(t)

+
n

∑

j=1

∫ ∞

0

ζj(t− s)dsKij(t, s) + Ii(t), i = 1, · · · , n.

Repeating the proof of lemma 2, we can prove ζ(t) ∈ co[g(u∗(t))], which means that u∗(t)

is a solution of the system (1) in the sense (11).

Second, we prove that u∗(t) is almost periodic. By lemma 4, for any ǫ > 0, there exist

K > 0 and l = l(ǫ) such that each interval [α, α+ l] contains an ω such that

‖u(t+ tk + ω) − u(t+ tk)‖ξ < ǫ

holds for all k ≥ K and t ≥ 0. As k → ∞, we conclude that ‖u∗(t+ω)−u∗(t)‖ξ < ǫ holds

for all t ≥ 0. This implies that u∗(t) is an almost periodic function. The proof is completed.
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Proof of Main Theorem: By lemma 5, we know that there exists an almost periodic

solution for the system (1) in the sense (11). By lemma 3, we have

‖u(t) − u∗(t)‖ξ = O(e−δt). (19)

Finally, we prove that the almost periodic solution of the system (1) is unique. In fact,

suppose that u∗(t) and v∗(t) are two almost periodic solutions of the system (1). Applying

lemma 3 again gives

‖v∗(t) − u∗(t)‖ξ = O(e−δt). (20)

From Levitan & Zhikov (1982), one can see that if u∗(t) and v∗(t) are two almost periodic

functions satisfying (20), then v∗(t) = u∗(t). Therefore, the almost periodic solution of the

system (1) is unique. Theorem 1 is proved.

Remark 3 Main Theorem in this paper has close relation and essential difference from the

previous works (Lu & Chen 2005a, 2005b, Lu & Chen 2006).

1. In case that the activations are Lipschitz continuous, the results were established by

Lu & Chen (2005b). In this paper, we generalize the results to the case when the

Lipschtiz constants tend to infinite.

2. Different from our previous paper Lu & Chen (2006), the model discussed in this pa-

per is universal, which unifies discrete delays and distribution delays, in particular,

includes the model studied in Lu & Chen (2006) and many others. Moreover, in this

paper, we discuss almost periodicity, which includes the stability of the equilibrium

studied by Lu & Chen (2006) and periodicity studied in Papini et.al (2006) as special

cases. We also investigate the uniqueness of the almost solution, which was not con-

cerned in Lu & Chen (2006). In this sense, this paper is an advance of the previous

works (Forti & Nistri 2003, Forti et.al. 2005, Lu & Chen 2005a, 2006).
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4 Applications of the main result

In this section, we discuss the following delayed dynamical systems as specific cases in the

Main Theorem.

Case 1. dsKij(t, s) = bij(t)δ(s − τij), where δ(s) denotes the Dirac-δ function. Then,

the delayed system (1) becomes a system with discrete delays:

dui(t)

dt
= −di(t)ui(t) +

n
∑

j=1

aij(t)gj(uj(t))

+
n

∑

j=1

bij(t)gj(uj(t− τij)) + Ii(t), i = 1, · · · , n. (21)

In this case, the assumptions with dsKij(t, s) can be simplified as that all bij(t), i, j =

1, · · · , n, are almost-periodic functions.

Case 2. dsKij(t, s) = bij(t)kij(s)ds. In this case, the delayed system (1) becomes the

following system with distributed delays:

dui(t)

dt
= −di(t)ui(t) +

n
∑

j=1

aij(t)gj(uj(t))

+
n

∑

j=1

bij(t)

∫ ∞

0

kij(s)gj(uj(t− s))ds+ Ii(t), i = 1, · · · , n. (22)

As Direct consequences of Main Theorem, we have

Corollary 1 Suppose that aij(t), bij(t) and Ii(t) are continuous almost periodic functions

and the activations satisfy assumption A1. If there exist positive constants ξi, i = 1, · · · , n,

and δ > 0 such that di(t) ≥ δ and

ξiaii(t) +
n

∑

j=1,j 6=i

ξj|aji(t)| +
n

∑

j=1

ξjb
∗
ji < 0 (23)

hold for all t ≥ 0 and i = 1, · · · , n, where b∗ji = max
t∈R

|bji(t)|, then,
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(i). for any initial data satisfying assumption A3, the dynamical system with discrete

delays (21) has a unique solution in the sense (11);

(ii). the system (21) has a unique almost periodic solution u∗(t), which is globally

exponentially stable.

Corollary 2 Suppose that aij(t), bij(t), Ii(t) are almost periodic functions and the activa-

tions satisfy assumption A1. If there exist positive constants ξi, i = 1, · · · , n, and δ > 0

such that di(t) ≥ δ and

ξiaii(t) +
n

∑

j=1,j 6=i

ξj|aji(t)| +
n

∑

j=1

ξjb
∗
ji

∫ ∞

0

eδs|kji(s)|ds < 0 (24)

hold for all t ≥ 0 and i = 1, · · · , n, then,

(i). for any initial data with assumptionA3, the dynamical system with distributed delays

(22) has a unique solution in the sense (11);

(ii). the system (22) has a unique almost periodic solution u∗(t), which is globally

exponentially stable.

Since any periodic function can be regarded as an almost-periodic function, all the re-

sults apply to periodic case. Now, replacing assumption A2, we assume the following as-

sumption.

Assumption A4: di(t), aij(t) are all continuous functions, i, j = 1, · · · , n and di(t) ≥

di > 0, aii(t) < 0 hold for all i = 1, · · · , n and t ∈ R; for any s ∈ R, dsKij(t, s) : t 7→

dsKij(t, s) is continuous with respect to t ∈ R, i.e., lim
h→0

∫ ∞

0
|dKij(t+h, s)−dsKij(t, s)| = 0

hold for all i, j = 1, · · · , n and t ∈ R, dsKij(t, s) : s 7→ dsKij(t, s) is a Lebesgue-Stieltjes

measure, i, j = 1, · · · , n, satisfying |dsKij(t, s)| ≤ |dK̄ij(s)|, where there exists δ > 0

such that
∫ ∞

0
eδs|dK̄ij(s)| < +∞; moreover, there exists ω > 0 such that

di(t+ ω) = di(t) aij(t+ ω) = aij(t)

Ii(t+ ω) = Ii(t) dKij(t+ ω, s) = dsKij(t, s)
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hold for all i, j = 1, · · · , n and t ∈ R.

Thus, we have

Corollary 3 Suppose that the discontinuous activations satisfy assumptionsA1 and the as-

sumption A4 is satisfied. If there exist positive constants ξi, i = 1, · · · , n, and δ > 0 such

that di(t) ≥ δ and

ξiaii(t) +

n
∑

j=1,j 6=i

ξj|aji(t)| +
n

∑

j=1

ξj

∫ ∞

0

eδs|dK̄ji(s)| < 0

hold for all t ≥ 0 and i = 1, · · · , n, then,

(i). for each initial data with assumption A3, the system (1) has a unique solution in the

sense (11);

(ii). there exists a unique periodic solution u∗(t) for system (1), which is globally expo-

nentially stable.

Furthermore, a constant can be regarded as a periodic function with any period. There-

fore, for the following delayed system

dui(t)

dt
= −diui(t) +

n
∑

j=1

aijgj(uj(t))

+

n
∑

j=1

∫ ∞

0

gj(uj(t− s))dsKij(s) + Ii, i = 1, · · · , n, (25)

we have

Corollary 4 Suppose that the discontinuous activations satisfy assumptions A1. If there

exist positive constants ξi, i = 1, · · · , n, and δ > 0 such that di ≥ δ and

ξiaii +
n

∑

j=1,j 6=i

ξj|aji| +
n

∑

j=1

ξj

∫ ∞

0

eδs|dK̄ji(s)| ≤ 0

hold for all t ≥ 0 and i = 1, · · · , n, then,
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(i). for each initial data with the assumption A3 , the system (25) has a unique solution

in sense of (11);

(ii). the system (25) has a unique equilibrium u∗, which is globally exponentially stable.

As for the system

dui(t)

dt
= −diui(t) +

n
∑

j=1

aijgj(uj(t))

+

n
∑

j=1

bijgj(uj(t− τij)) + Ii(t), i = 1, · · · , n, (26)

which has been studied by Lu & Chen (2006) and Forti et.al. (2005) with τij = τ , i, j =

1, · · · , n, we have

Corollary 5 Suppose that the discontinuous activations satisfy assumptions A1. If there

exist positive constants ξi, i = 1, · · · , n, and δ > 0 such that di(t) ≥ δ and

ξiaii +
n

∑

j=1,j 6=i

ξj|aji| +
n

∑

j=1

ξj |bji| < 0 (27)

holds for all t ≥ 0 and i = 1, · · · , n, then,

(i). for each initial data with the assumption A3 , the system (26) has a unique solution

in sense of (11);

(ii). the system (26) has a unique equilibrium u∗, which is globally exponentially stable.

5 Conclusions

In this paper, we study the almost periodic dynamics of a class of delayed integro-differential

systems with discontinuous activations. This class of delayed differential systems include

delayed Hopfield and cellular neural networks with discontinuous activations and almost
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periodic coefficients as well as periodic or constant coefficients as special cases. We prove

that under some diagonal dominant conditions, this system has a unique almost periodic

solution, which is globally exponential stable. As direct consequences, we obtain several

results for the systems with periodic and constant coefficients.
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