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Abstract: In this paper, we consider an almost periodic commensal symbiosis model with nonlinear harvest-

ing on time scales. We establish a criterion for the existence and uniformly asymptotic stability of unique

positive almost periodic solution of the system. Our results show that the continuous system and discrete

system can be unifywell. Examples and their numerical simulations are carried out to illustrate the feasibility

of our main results.
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1 Introduction

Many results of differential equations can be easily generalized to difference equations, while other results

seem to be completely different from their continuous counterparts. A major task of mathematics today is to

harmonize continuous and discrete analysis. The theory of time scale, which was first introduced by Stefan

Hilger in his PhD thesis [1], can handle this problem well. For example, it can model insect populations that

are continuous while in season (andmany follows a difference scheme with variable), die out in (say) winter,

while their eggs are incubating or dormant, and then hatch in a new season, giving rise to a nonoverlapping

population [2]. More generally, time scales calculus can be applied to the system whose time domains are

more complex. A good example can be found in economics: a consumer receives income at one point in time,

asset holdings are adjusted at a different point in time, and consumption takes place at yet another point in

time [3]. The time scales calculus has a tremendous potential for applications (see [4-10]).

Many scholars have recently studied the influence of the harvesting to predator-prey or competition

system. Some of them (e.g., [11-14]) argued that nonlinear harvesting is more feasible. Also consider that the

almost periodic phenomenon and non-autonomousmodel are more accurate to describe the actual situation

(e.g., [15,16]). Therefore, we investigate the following commensalism system incorporating Michaelis-Menten
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type harvesting:














x∆(t) = a(t) − b(t) exp{x(t)} + c(t) exp{y(t)},

y∆(t) = d(t) − e(t) exp{y(t)} − q(t)E(t) exp{y(t)}
E(t) + m(t) exp{y(t)} ,

(1.1)

where x(t), y(t) are the density of species x, y at time t ∈ T (T is a time scale). x∆ , y∆ express the delta deriva-

tive of the functions x(t), y(t). E(t) denotes the harvesting effort and q(t) is the catch ability coefficient. The

coefficients are bounded positive almost periodic functions and we use the notations gl = inft∈T+ g(t), g
u =

supt∈T+ g(t).

Obviously, let x(t) = ln x1(t), y(t) = ln y1(t), if T = R+, then system (1.1) is reduced to a continuous version:


















dx1
dt

= x1(t)
(

a(t) − b(t)x1(t) + c(t)y1(t)
)

,

dy1
dt

= y1(t)
(

d(t) − e(t)y1(t)
)

−
q(t)E(t)y21(t)

E(t) + m(t)y1(t)
,

(1.2)

if T = Z+, then system (1.1) can be simplified as the following discrete system:














x1(t + 1) = x1(t) exp
(

a(t) − b(t)x1(t) + c(t)y1(t)
)

,

y1(t + 1) = y1(t) exp
(

d(t) − e(t)y1(t) −
q(t)E(t)y1(t)

E(t) + m(t)y1(t)

)

.

(1.3)

The rest of this paper is arrangedas follows. Thenext partwepresent somenotations. After that, sufficient

conditions for the uniformly asymptotic stability of unique almost periodic solution are established. We end

this paper with two examples to verify the validity of our criteria.

2 Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers. A point t ∈ T is called left-dense

if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if t < sup T and σ(t) = t, and right-scattered if

σ(t) > t. If T has a left-scattered maximum m, then Tk = T\{m}; otherwise Tk = T. If T has a right-scattered

minimum m, then Tk = T\{m}; otherwise Tk = T.

A function p : T → R is called regressive provided 1 + µ(t)p(t) ≠ 0 for all t ∈ Tk. The set of all regressive

and rd-continuous functions p : T → R will be denoted by R = R(T)= R(T, R). We define the set R+ =

R
+(T, R) = {p ∈ R: 1 + µ(t)p(t) > 0 for all t ∈ T}.
If p is a regressive function, then the generalized exponential function ep is defined by

ep(t, s) = exp
{

s
∫

t

ξµ(τ)(p(τ))∆τ
}

for all s, t ∈ T, with the cylinder transformation ξh(z) =

{

Log(1+hz)
h

if h ≠ 0,

z if h = 0.
For further reading we

refer to the book by Bohner and Peterson [2].

Definition 2.1 (see [2]). Let T be a time scale. For t ∈ T we define the forward and backward jump operators

σ, ρ : T → T and the graininess function µ : T → R+ by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t) − t,

and µ1 = inft∈T+ µ(t), µ2 = supt∈T+ µ(t).

Definition 2.2 (see [6]). A time scale T is called an almost periodic time scale if
∏

:= {τ ∈ R : T + τ ∈ T, ∀t ∈ T} = ̸ {0}.
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Definition 2.3 (see [6]). Let T be an almost periodic time scale. A function x ∈ C(T, Rn) is called an almost

periodic function if the ε-translation set of x

E{ε, x} = {τ ∈
∏

: |x(t + τ) − x(t)| < ε, ∀t ∈ T}

is a relatively dense set in T for all ε > 0, that is, for any given ε > 0, there exists a constant l(ε) > 0 such that

each interval of length l(ε) contains a τ(ε) ∈ E{ε, x} such that

|x(t + τ) − x(t)| < ε, ∀t ∈ T .

Definition 2.4 (see [6]). Let T be an almost periodic time scale and D denotes an open set in Rn. A function

f ∈ C(T × D, Rn) is called an almost periodic function in t ∈ T uniformly for x ∈ D if the ε-translation set of f

E{ε, f , S} = {τ ∈
∏

: |f (t + τ, x) − f (t, x)| < ε, ∀(t, x) ∈ T × S}

is a relatively dense set in T for all ε > 0 and for each compact subset S of D, that is, for any given ε > 0

and each compact subset S of D, there exists a constant l(ε, S) > 0 such that each interval of length l(ε, S)

contains a τ(ε, S) ∈ E{ε, f , S} such that

|f (t + τ, x) − f (t, x)| < ε, ∀(t, x) ∈ T × S.

Lemma 2.5 (see [7]). Assume that a > 0, b > 0 and −a ∈ R
+. Then

y∆(t) ≥ (≤)b − ay(t), y(t) > 0, t ∈ [t0,∞)T (2.1)

implies

y(t) ≥ (≤)
b

a

[

1 +
(ay(t0)

b
− 1

)

e(−a)(t, t0)
]

, t ∈ [t0,∞)T . (2.2)

Consider the following system

x∆(t) = f (t, x) (2.3)

and its associate product system

x∆(t) = f (t, x), z∆(t) = f (t, z) (2.4)

where f : T+ × SH → Rn , SH = {x ∈ Rn : ‖x‖ < H}, f (t, x) is almost periodic in t uniformly for x ∈ SH and is

continuous in x.

Lemma 2.6 (see [8]). Suppose that there exists a Lyapnov function V(t, x, z) defined on T+×SH ×SH satisfying

the following conditions

(i) a(‖x − z‖) ≤ V(t, x, z) ≤ b(‖x − z‖), where a, b ∈ K, K = {α ∈ C(R+, R+) : α(0) = 0 and α is increasing};

(ii) |V(t, x, z) − V(t, x1, z1)| ≤ L(‖x − x1‖ + ‖z − z1‖), where L > 0 is a constant;

(iii) D+V∆
(2.4)(t, x, z) ≤ −cV(t, x, z), where c > 0, −c ∈ ℜ+.

Moreover, if there exists a solution x(t) ∈ S of system (2.3) for t ∈ T+, where S ⊂ SH is a compact set, then

there exists a unique almost periodic solution q(t) ∈ S of system (2.3), which is uniformly asymptotically

stable.

Lemma 2.7 If

du > el , au + cu exp{My} > bl , (2.5)

then any positive solution (x(t), y(t)) of system (1.1) satisfies

lim sup
t→+∞

y(t) ≤ My
def
= (du − el)/el ,

lim sup
t→+∞

x(t) ≤ Mx
def
= (au + cu exp{My} − bl)/bl .

(2.6)

Proof. From the second equation of system (1.1) it follows

y∆(t) ≤ d(t) − e(t) exp{y(t)} ≤ d(t) − e(t)(y(t) + 1)

≤ (du − el) − ely(t).

(2.7)
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By using Lemma 2.5 we get

lim sup
t→+∞

y(t) ≤ (du − el)/el
def
= My . (2.8)

For a sufficiently small ε > 0, from (2.5) and (2.8), there exists a t1 ∈ T+ such that

y(t) ≤ My + ε, ∀t > t1.

au + cu exp{My + ε} − bl > 0,
(2.9)

From (2.9) and the first equation of system (1.1), we have

x∆(t) ≤ a(t) + c(t) exp{My + ε} − b(t) exp{x(t)} ≤ (au + cu exp{My + ε} − bl) − blx(t). (2.10)

By using Lemma 2.5 again, we have

lim sup
t→+∞

x(t) ≤ (au + cu exp{My + ε} − bl)/bl . (2.11)

Setting ε → 0, one has

lim sup
t→+∞

x(t) ≤ (au + cu exp{My} − bl)/bl def= Mx . (2.12)

Lemma 2.8 Under the hypothesis (2.5) and

El(dl − eu)

(eu − dl)ml + quEu
> exp{My} > exp{Ny} > bu − al

cl
, (2.13)

then any positive solution (x(t), y(t)) of system (1.1) satisfies

lim inf
t→+∞

y(t) ≥ Ny
def
= ln

dl(El + ml exp{My}) − quEu exp{My}
eu(El + ml exp{My})

,

lim inf
t→+∞

x(t) ≥ Nx
def
= ln

al + cl exp{Ny}
bu

.

(2.14)

Proof. Lemma 2.7 means that for any ε > 0, there exists a t2 > t1 (the definition of t1 in Lemma 2.7) such that

y(t) ≤ My + ε, x(t) ≤ Mx + ε, ∀t > t2. (2.15)

It follows from the second equation of system (1.1) that

y∆(t) ≥ dl − eu exp{y(t)} − quEu exp{My + ε}
El + ml exp{My + ε}

, ∀t > t2. (2.16)

We claim that for t ≥ t2,

dl − eu exp{y(t)} − quEu exp{My + ε}
El + ml exp{My + ε}

≤ 0. (2.17)

Suppose that there exists a t̂ ≥ t2 such that

dl − eu exp{y(̂t)} − quEu exp{My + ε}
El + ml exp{My + ε}

> 0 (2.18)

and for any t ∈ [t2, t̂)T+

dl − eu exp{y(t)} − quEu exp{My + ε}
El + ml exp{My + ε}

≤ 0. (2.19)

Then

y(̂t) < ln
dl(El + ml exp{My + ε}) − quEu exp{My + ε}

eu(El + ml exp{My + ε})
(2.20)

and for any t ∈ [t2, t̂)T+ ,

y(t) ≥ ln
dl(El + ml exp{My + ε}) − quEu exp{My + ε}

eu(El + ml exp{My + ε})
, (2.21)



Almost periodic solutions of a commensalism system | 1507

which implies y∆(t) < 0. It is a contradiction, so that (2.17) holds, i.e.,

y(t) ≥ ln
dl(El + ml exp{My + ε}) − quEu exp{My + ε}

eu(El + ml exp{My + ε})
, (2.22)

thereby

lim inf
t→+∞

y(t) ≥ ln
dl(El + ml exp{My + ε}) − quEu exp{My + ε}

eu(El + ml exp{My + ε})
. (2.23)

Setting ε → 0,

lim inf
t→+∞

y(t) ≥ ln
dl(El + ml exp{My}) − quEu exp{My}

eu(El + ml exp{My})
def
= Ny . (2.24)

For above ε and (2.24), there exists a t3 > t2 such that

y(t) ≥ Ny − ε, ∀t > t3. (2.25)

It follows from the first equation of system (1.1) and above inequation that

x∆(t) ≥ al − bu exp{x(t)} + cl exp{Ny − ε}. (2.26)

By analyzing (2.26) similar to (2.17)-(2.24), one has

lim inf
t→+∞

x(t) ≥ ln
al + cl exp{Ny}

bu
def
= Nx . (2.27)

3 Positive almost periodic solution

From Lemma 2.7 and Lemma 2.8, let Ω = {(x(t), y(t)) : (x(t), y(t)) is a solution of (1.1) and 0 < Nx ≤ x(t) ≤

Mx , 0 < Ny ≤ y(t) ≤ My}. Obviously, Ω is an invariant set.

Theorem 3.1 Under the hypothesis (2.5) and (2.13), the Ω = ̸ ∅.

Proof. Since the coefficients are almost periodic sequences, there exists a sequence {τk} ⊆ T+ with τk → ∞

as k → ∞ such that

a(t + τk) → a(t), b(t + τk) → b(t), c(t + τk) → c(t), d(t + τk) → d(t),

e(t + τk) → e(t), q(t + τk) → q(t), m(t + τk) → m(t), E(t + τk) → E(t).

(3.1)

From Lemma 2.7 and Lemma 2.8, for sufficiently small ε > 0, there exists a t4 ∈ T+ such that

Nx − ε ≤ x(t) ≤ Mx + ε, Ny − ε ≤ y(t) ≤ My + ε, ∀t > t4. (3.2)

Write xk(t) = x(t + τk) and yk(t) = y(t + τk) for t > t4 − τk and k = 1, 2, · · ·. For arbitrary q ∈ N+, it is

easy to see that there exists sequences {xk(t) : k ≥ q} and {yk(t) : k ≥ q} such that the sequence {xk(t)} and
{yk(t)} has a subsequence, denoted by {x*k(t)} (x*k(t) = x(t + τ*k)) and {y*k(t)} (y*k(t) = y(t + τ*k)), respectively,

converging on any finite interval of T+ as k → ∞. Therefore there exist two almost periodic sequences {z(t)}
and {w(t)} such that for t ∈ T+,

x*k(t) → z(t), y*k(t) → w(t), as k → ∞. (3.3)

Apparently the above sequence {τ*k} ⊆ T+ with τ*k → ∞ as k → ∞ such that

a(t + τ*k) → a(t), b(t + τ*k) → b(t), c(t + τ*k) → c(t), d(t + τ*k) → d(t),

e(t + τ*k) → e(t), q(t + τ*k) → q(t), m(t + τ*k) → m(t), E(t + τ*k) → E(t).

(3.4)
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which, together with (3.3) and















x*∆k (t) = a(t + τ*k) − b(t + τ
*
k) exp{x*k(t)} + c(t + τ*k) exp{y*k(t)},

y*∆k (t) = d(t + τ*k) − e(t + τ
*
k) exp{y*k(t)} −

q(t + τ*k)E(t + τ
*
k) exp{y*k(t)}

E(t + τ*
k
) + m(t + τ*

k
) exp{y*

k
(t)} ,

(3.5)

yields














z∆(t) = a(t) − b(t) exp{z(t)} + c(t) exp{w(t)},

w∆(t) = d(t) − e(t) exp{w(t)} − q(t)E(t) exp{w(t)}
E(t) + m(t) exp{w(t)} .

(3.6)

Obviously, (z(t), w(t)) is a solution of system (1.1) and

Nx − ε ≤ z(t) ≤ Mx + ε, Ny − ε ≤ w(t) ≤ My + ε, ∀t ∈ T+. (3.7)

Since ε is arbitrary, thus

Nx ≤ z(t) ≤ Mx , Ny ≤ w(t) ≤ My , ∀t ∈ T+. (3.8)

Theorem3.2Assume that (2.5) and (2.13) are hold. If λ = min{A, B} > 0 and −λ ∈ R
+, then system (1.1) admits

a unique almost periodic solution (x(t), y(t)), which is uniformly asymptotically stable and (x(t), y(t)) ∈ Ω,

where
A = 2(µ1 + 1)b

l exp{Nx} − (µ22 + µ2)(bu)2 exp{2Mx} − 1,

B = 2
[

el +
qlEl

(Eu + mu exp{My})2
]

exp{Ny}

−µ2

[

eu +
quEu

(El + ml exp{Ny})2
]2

exp{2My} − (µ2 + 1)(cu)2 exp{2My},

(3.9)

Proof. By Theorem 3.1, there exists a solution (x(t), y(t)) such that

Nx ≤ x(t) ≤ Mx , Ny ≤ y(t) ≤ My , ∀t ∈ T+. (3.10)

Define

‖(x(t), y(t))‖ = |x(t)| + |y(t)|. (3.11)

Suppose that U1(t) = (x(t), y(t)), U2(t) = (z(t), w(t)) are arbitrary two positive solutions of system (1.1), then

‖U1(t)‖ ≤ Mx +My, ‖U2(t)‖ ≤ Mx +My. Consider the product system of (1.1)



















































x∆(t) = a(t) − b(t) exp{x(t)} + c(t) exp{y(t)},

y∆(t) = d(t) − e(t) exp{y(t)} − q(t)E(t) exp{y(t)}
E(t) + m(t) exp{y(t)} ,

z∆(t) = a(t) − b(t) exp{z(t)} + c(t) exp{w(t)},

w∆(t) = d(t) − e(t) exp{w(t)} − q(t)E(t) exp{w(t)}
E(t) + m(t) exp{w(t)} .

(3.12)

Construct the Lyapunov functional V(t, U1(t), U2(t)) on T+ × Ω × Ω

V(t, U1(t), U2(t)) = (x(t) − z(t))2 + (y(t) − w(t))2. (3.13)

The norm

‖U1(t) − U2(t)‖ = |x(t) − z(t)| + |y(t) − w(t)| (3.14)

is equivalent to

‖U1(t) − U2(t)‖* = [(x(t) − z(t))2 + (y(t) − w(t))2]
1
2 , (3.15)
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i.e., there exist constants B1 > 0 and B2 > 0 such that

B1‖U1(t) − U2(t)‖ ≤ ‖U1(t) − U2(t)‖* ≤ B2‖U1(t) − U2(t)‖, (3.16)

thus we have

(B1‖U1(t) − U2(t))
2‖ ≤ V(t, U1(t), U2(t)) ≤ (B2‖U1(t) − U2(t)‖)2. (3.17)

Let a, b ∈ C(R+, R+), a(x) = B21x
2, b(x) = B22x

2, then the assumption (i) of Lemma 2.6 is satisfied.

On the other side,

|V(t, U1(t), U2(t)) − V(t, U
*
1(t), U

*
2(t))| = |(x(t) − z(t))2 + (y(t) − w(t))2 − (x*(t) − z*(t))2 − (y*(t) − w*(t))2|

≤ |(x(t) − z(t)) − (x*(t) − z*(t))| × |(x(t) − z(t)) + (x*(t) − z*(t))|

+|(y(t) − w(t)) − (y*(t) − w*(t))| × |(y(t) − w(t)) + (y*(t) − w*(t))|

≤ |(x(t) − z(t)) − (x*(t) − z*(t))| × (|x(t)| + |z(t)| + |x*(t)| + |z*(t))|)

+|(y(t) − w(t)) − (y*(t) − w*(t))| × (|y(t)| + |w(t)| + |y*(t)| + |w*(t)|)

≤ γ(|x(t) − x*(t)| + |y(t) − y*(t)| + |z(t) − z*(t)| + |w(t) − w*(t)|)

= γ(‖U1(t) − U
*
1(t)‖ + ‖U2(t) − U

*
2(t)‖),

(3.18)

where U*
1(t) = (x*(t), y*(t)), U*

2(t) = (z*(t), w*(t)), γ = 4max{Mx ,My}. Hence, the assumption (ii) of Lemma

2.6 is also satisfied.

Calculating the D+V∆ along the system (3.12),

D+V∆
(3.12)(t, U1(t), U2(t)) = (x(t) − z(t))∆[(x(t) − z(t)) + (x(σ(t)) − z(σ(t)))]

+(y(t) − w(t))∆[(y(t) − w(t)) + (y(σ(t)) − w(σ(t)))]

= (x(t) − z(t))∆[(x(t) − z(t)) + (µ(t)x∆(t) + x(t) − µ(t)z∆(t) + z(t))]

+(y(t) − w(t))∆[(y(t) − w(t)) + (µ(t)y∆(t) + y(t) − µ(t)w∆(t) + w(t))]

= (x(t) − z(t))∆[2(x(t) − z(t)) + µ(t)(x(t) − z(t))∆]

+(y(t) − w(t))∆[2(y(t) − w(t)) + µ(t)(y(t) − w(t))∆]

= V1 + V2,

(3.19)

where
V1 = (x(t) − z(t))∆[2(x(t) − z(t)) + µ(t)(x(t) − z(t))∆],

V2 = (y(t) − w(t))∆[2(y(t) − w(t)) + µ(t)(y(t) − w(t))∆].
(3.20)

From (3.12), one has











(x(t) − z(t))∆ = −b(t)(exp{x(t)} − exp{z(t)}) + c(t)[exp{y(t)} − exp{w(t)}],

(y(t) − w(t))∆ = −e(t)(exp{y(t)} − exp{w(t)}) − q(t)E(t)
[ exp{y(t)}
E(t) + m(t) exp{y(t)} −

exp{w(t)}
E(t) + m(t) exp{w(t)}

]

.

(3.21)

By the mean value theorem,

exp{x(t)} − exp{z(t)} = exp{ξ1(t)}(x(t) − z(t)),

exp{y(t)} − exp{w(t)} = exp{ξ2(t)}(y(t) − w(t)),

exp{y(t)}
E(t) + m(t) exp{y(t)} −

exp{w(t)}
E(t) + m(t) exp{w(t)} =

exp{ξ3(t)}(y(t) − w(t))
(E(t) + m(t) exp{ξ3(t)})2

,

(3.22)
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where ξ1(t) lies between x(t) and z(t) and ξi(t)(i = 2, 3) lie between y(t) andw(t). Thus (3.21) can be expressed

as follows










(x(t) − z(t))∆ = −b(t) exp{ξ1(t)}(x(t) − z(t)) + c(t) exp{ξ2(t)}(y(t) − w(t)),

(y(t) − w(t))∆ = −e(t) exp{ξ2(t)}(y(t) − w(t)) −
[q(t)E(t) exp{ξ3(t)}(y(t) − w(t))

(E(t) + m(t) exp{ξ3(t)})2
]

,
(3.23)

which together with (3.20) yield

V1 =
{

− b(t) exp{ξ1(t)}(x(t) − z(t)) + c(t) exp{ξ2(t)}(y(t) − w(t))
}

[

2(x(t) − z(t)) + µ(t)
(

− b(t) exp{ξ1(t)}(x(t) − z(t)) + c(t) exp{ξ2(t)}(y(t) − w(t))
)]

=
[

− 2b(t) exp{ξ1(t)} + µ(t)b2(t) exp{2ξ1(t)}
](

x(t) − z(t)
)2

+2c(t) exp{ξ2(t)}
[

1 − µ(t)b(t) exp{ξ1(t)}
]

(x(t) − z(t))(y(t) − w(t))

+µ(t)c2(t) exp{2ξ2(t)}
(

y(t) − w(t)
)2

≤
[

− 2(µ(t) + 1)b(t) exp{ξ1(t)} + (µ2(t) + µ(t))b2(t) exp{2ξ1(t)} + 1
](

x(t) − z(t)
)2

+(µ(t) + 1)c2(t) exp{2ξ2(t)}
(

y(t) − w(t)
)2

≤
[

− 2(µ1 + 1)b
l exp{Nx} + (µ22 + µ2)(bu)2 exp{2Mx} + 1

](

x(t) − z(t)
)2

+(µ2 + 1)(c
u)2 exp{2My}

(

y(t) − w(t)
)2
,

(3.24)

analogously

V2 ≤
{

− 2
[

el +
qlEl

(Eu + mu exp{My})2
]

exp{Ny} + µ2
[

eu +
quEu

(El + ml exp{Ny})2
]2

exp{2My}
}(

y(t) − w(t)
)2

.

(3.25)

Therefore, one has

D+V∆
(3.12)(t, U1(t), U2(t)) ≤

{

− 2(µ1 + 1)b
l exp{Nx} + (µ22 + µ2)(bu)2 exp{2Mx} + 1

}(

x(t) − z(t)
)2

+
{

(µ2 + 1)(c
u)2 exp{2My} − 2

[

el +
qlEl

(Eu + mu exp{My})2
]

exp{Ny}

+µ2

[

eu +
quEu

(El + ml exp{Ny})2
]2

exp{2My}
}(

y(t) − w(t)
)2

= −A
(

x(t) − z(t)
)2

− B
(

y(t) − w(t)
)2

≤ −λV(t, U1(t), U2(t)).

(3.26)

Also, the assumption (iii) of Lemma 2.6 is satisfied.

ByLemma2.6, there exists auniqueuniformly asymptotically stable almost periodic solution (x(t), y(t)) ∈
Ω of system (1.1).

Now we consider the following single specie model with Michaelis-Menten type harvesting on time

scales:

y∆(t) = d(t) − e(t) exp{y(t)} − q(t)E(t) exp{y(t)}
E(t) + m(t) exp{y(t)} , (3.27)

For system (3.27), when we conduct the similar analysis of Lemma 2.7, Lemma 2.8, Theorem 3.1 and Theorem

3.2, one can easily obtain the following results and we omit the proof details here.
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Lemma 3.3 If du > el, then positive solution y(t) of system (3.27) satisfies

lim sup
t→+∞

y(t) ≤ M
′

y
def
= (du − el)/el . (3.28)

Lemma 3.4 If Lemma 3.3 and the following inequality

El(dl − eu) >
(

(eu − dl)ml + quEu
)

exp{M
′

y} (3.29)

hold, then any positive solution y(t) of system (3.27) satisfies

lim inf
t→+∞

y(t) ≥ N
′

y
def
= ln

dl(El + ml exp{M′

y}) − quEu exp{M
′

y}
eu(El + ml exp{M′

y})
. (3.30)

Let Ω
′

= {y(t) : y(t) is a solution of (3.27) and 0 < N
′

y ≤ y(t) ≤ M
′

y}. It is obvious that Ω
′

is an invariant set.

Theorem 3.5Assume that Lemma 3.3 and Lemma 3.4 hold, then Ω
′

= ̸ ∅. Moreover, if C > 0, then system (3.27)

admits a unique uniformly asymptotically stable almost periodic solution y(t), and y(t) ∈ Ω
′

, where

C = 2
[

el +
qlEl

(Eu + mu exp{My})2
]

exp{Ny} − µ2
[

eu +
quEu

(El + ml exp{Ny})2
]2

exp{2My}. (3.31)

4 Numerical Simulations

We give the following examples to illustrate the feasibility of our main results.

Example 4.1. Consider the continuous version:


















dx1
dt

= x1(t)
(

2 + 0.25 sin(
√
2t) − (1.5 − 0.5 cos(

√
5t))x1(t) + (0.6 + 0.15 cos(

√
5t))y1(t)

)

,

dy1
dt

= y1(t)
(

3.15 + 0.05 sin(
√
3t) − (2 + sin(

√
3t))y1(t)

)

−
(0.08 + 0.06 sin(

√
6t))y21(t)

1 + (1.2 + 0.2 cos(
√
3t))y1(t)

,

(4.1)

By calculating, one has

du − el = 1.2 > 0, au + cu exp{My} − bl = 2.6166 > 0,

El(dl − eu)

(eu − dl)ml + quEu
= 2.5 > exp{My} = 1.8221 > exp{Ny} = 1.0032 >

bu − al

cl
= 0.5556.

(4.2)

Obviously, the assumption in (2.5) and (2.13) are satisfied. We obtain from Example 1.2 in [2] that µ(t) ≡ 0,

moreover, from (3.9) we have µ1 ≡ 0, µ2 ≡ 0. Thus

A = 2bl exp{Nx} − 1 = 1.2014 > 0,

B = 2
[

el +
qlEl

(Eu + mu exp{My})2
]

exp{Ny} − (cu)2 exp{2My} = 2.1484 > 0,
(4.3)

λ = min{A, B} > 0 and −λ ∈ R
+. From Figure 1, it is easy to see that for system (4.1) there exists a positive

almost periodic solution denoted by (x*1(t), y
*
1(t)).

Example 4.2. Consider the discrete version:


































x1(t + 1) = x1(t) exp
(

0.72 + 0.02 sin(
√
2t) − (0.72 + 0.02 cos(

√
3t))x1(t) + (0.07 + 0.01 sin(

√
5t))y1(t)

)

,

y1(t + 1) = y1(t) exp
(

1 + 0.02 cos(
√
2t) − (0.25 − 0.01 sin(

√
3t))y1(t)

−
(0.02 + 0.001 cos(

√
3n))(1.5 + 0.5 sin(

√
2t))y1(t)

1.5 + 0.5 sin(
√
2t) + (1.3 + 0.1 cos(

√
6t))y1(t)

)

.

(4.4)
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Figure 1: Dynamic behaviors of the solutions (x*1(t), y
*
1(t)) of system (4.1) with the initial conditions (x*1(0), y

*
1(0)) = (1, 1.5),

(2, 3) and (3, 5), respectively.
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Figure 2: Dynamic behaviors of the solutions (x*1(t), y
*
1(t)) of system (4.4) with the initial conditions (x*1(0), y

*
1(0)) = (1, 1.5),

(2, 2.5) and (3, 3.5), respectively.

By calculating, one has

du − el = 0.13 > 0, au + cu exp{My} − bl = 0.1326 > 0,

El(dl − eu)

(eu − dl)ml + quEu
= 2.0833 > exp{My} = 1.1573 > exp{Ny} = 1.03 >

bu − al

cl
= 0.6667.

(4.5)

Obviously, the assumption in (2.5) and (2.13) are satisfied. We obtain from Example 1.2 in [2] that µ(t) ≡ 1,

moreover, from (3.9) we have µ1 ≡ 1, µ2 ≡ 1. Thus

A = 4bl exp{Nx} − 2(bu)2 exp{2Mx} − 1 = 0.2829 > 0,

B = 2
[

el +
qlEl

(Eu + mu exp{My})2
]

exp{Ny}

−
[

eu +
quEu

(El + ml exp{Ny})2
]2

exp{2My} − 2(cu)2 exp{2My} = 0.6277 > 0,

(4.6)

λ = min{A, B} > 0 and −λ ∈ R
+. From Figure 2, it is easy to see that for system (4.4) there exists a positive

almost periodic solution denoted by (x*1(t), y
*
1(t)).

In addition, we perform numerical simulation on the system (3.27).
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Figure 3: Dynamic behaviors of the solutions y*1(t) of system (4.7) with the initial conditions y*1(0) = 1.5, 1 and 0.5,

respectively.

Example 4.3. Consider the continuous version:

dy1
dt

= y1(t)
(

3.2+0.1 sin(
√
5t)− (2.8 +0.2 cos(

√
3t))y1(t)

)

−
(0.11 + 0.03 sin(

√
6t))(0.9 + 0.1 sin(

√
3))y21(t)

0.9 + 0.1 sin(
√
3) + (1.2 + 0.2 cos(

√
2t))y1(t)

(4.7)

We obtain from Example 1.2 in [2] that µ(t) ≡ 0, moreover, from (3.9) we have µ1 ≡ 0, µ2 ≡ 0. Thus, by

calculating one has

du − el = 0.7 > 0, C = 5.2554 > 0,

El(dl − eu) = 0.08 >
(

(eu − dl)ml + quEu
)

exp{My} = 0.0262.
(4.8)

From Figure 3, it is easy to see that for system (4.7) there exists a positive almost periodic solution denoted by

y*1(t).

Example 4.4. Consider the following discrete system:

y1(t + 1) = y1(t) exp
(

1.1 + 0.1 cos(
√
2t) − (0.89 − 0.01 sin(

√
3t))y1(t)

−
(0.02 + 0.01 cos(

√
5t))(1.4 + 0.1 sin(

√
2t))y1(t)

1.4 + 0.1 sin(
√
2t) + (0.6 + 0.2 cos(

√
6t))y1(t)

)

.

(4.9)

We obtain from Example 1.2 in [2] that µ(t) ≡ 0, moreover, from (3.9) we have µ1 ≡ 0, µ2 ≡ 0. Thus, by

calculating one has

du − el = 0.32 > 0, C = 0.1593 > 0,

El(dl − eu) = 0.13 >
(

(eu − dl)ml + quEu
)

exp{My} = 0.0072.
(4.10)

From Figure 4, it is easy to see that for system (4.9) there exists a positive almost periodic solution denoted

by y*1(t).

5 Discussion

In this paper, the sufficient conditions of existence and stability of positive almost periodic solutions for

system (1.1) on time scale are obtained. Our results shows that the continuous system and discrete system

can be unified well on time scales system.
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Figure 4: Dynamic behaviors of the solutions y*1(t) of system (4.9) with the initial conditions y*1(0) = 1.8, 1.5 and 1, respec-

tively.
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