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ALMOST PERIODIC SOLUTIONS OF
POISSON'S EQUATION1

YASUTAKA SIBUYA

Abstract. It is well known that if /(/) is almost periodic with

respect to a real variable t, and if F(,t)=f'f(s)ds is bounded for

— « <t < oo ; then F(t) is also almost periodic in t. We shall prove a

similar result for Poisson's equation.

1. Introduction. In this report, we shall prove the following theorem.

Theorem. Letf(P) be an almost periodic function of P in Rm, and let

u(P) be a bounded continuous function of P in Rm. Assume that u(P)

is a solution of

(1.1) Am = /       (A = divgrad, i.e. Laplacian)

in the sense of distribution. Then u(P) is almost periodic with respect

to P in Rm.

A function f(P) is almost periodic with respect to P in Rm when

(i) / is continuous in Rm;

(ii) for every sequence {Pn} in Rm, the corresponding sequence

{/(P+Pn)} contains a subsequence which is convergent uniformly

in Rm.

This definition is equivalent to the definition based on the condi-

tion that the set of almost periods of / is relatively dense in Rm. If

/ is almost periodic with respect to P in Rm, then f(P) is bounded in

R™.

A function w(P) is a solution of (1.1) in the sense of distribution,

when

f   u(P)A<p(P)dP =   f   f(P)<p(P)dP
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for every C°°-function <p of P with compact support. Since f(P) and

u(P) are bounded in Rm, there exists a positive constant K such that

(1.2) | «(F)-«(0|  $K\P-Q\

for P and Q in Rm, where |P — Q\ denotes the distance between P

and Q [l, Chapter IV].

2. Preliminaries. Let f(t) be an almost periodic function of one

real variable t. It is known that, if Sof(s)ds is bounded for t ER1, then

f'0fis)ds is almost periodic with respect to t. We shall prove our

theorem in a manner similar to J. Favard's proof of the statement

given above [2, pp. 82-85]. To do this, we shall need the estimate

(1.2) and the following fact:

Let Mi(P) and re2(F) be bounded continuous functions of P in

Rm, and assume that ux and U2 are solutions of Au =f in the sense of

distribution. Then UxiP)— u2iP) is identically equal to a constant,

since it is a harmonic function which is bounded in Rm. Hence if

(2.1) inf uxiP) = inf re2(F),
p p

then Mi(P) is identically equal to w2(P).

3. Proof of Theorem : Part I. Since / is almost periodic and u

satisfies the estimate (1.2), it is sufficient to prove that, if {Pn} is a

sequence of points in Rm such that

(3.1) lim f(P + Pn) = g(P)
n—.»

uniformly in Rm, and

(3.2) lim u(P + P„) = v(P)
n—»«

uniformly on every compact set in Rm, then

(3.3) lim u(P + P„) = v(P)    uniformly in Rm.
B—,00

First of all, we shall prove that

(3.4) inf v(P) = inîu(P).

It is evident that v is a solution of Av = g in the sense of distribution

and that v is a bounded continuous function of P in Rm. On the other

hand, (3.1) implies \imn^.x g(P — Pn)=f(P) uniformly in Rm. Hence

if we choose a subsequence {re,} of {«} so that limy^.xv(P—P„,)

= w(P) uniformly on each compact set in Rm, then w is a bounded
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continuous function and a solution of Aw=f in the sense of distribu-

tion. Therefore we get w(P) =u(P)-\-C, where C is a constant. Ob-

serve that we have inf w^inf z/rSinf w and sup M=gsup u^sup w.

Hence C = 0, and we get (3.4).

4. Proof of Theorem: Part II. Assume that (3.3) is not true. Then

there exist a positive constant a and a sequence  {Qnj}  such that

(4.1) | u(Qnj + Pn.) - v(Qnj) |   = a.

Choose a subsequence {ra„} of {n¡} so that

(4.2) lim f(P + Qn, + Pnr) = h(P)
v—► w

uniformly in Rm and

(4.3) lim u(P + Qn, + P„„) = wAP), lim v(P + Qn„) = w2(P)
»—¥ oo i»—* to

uniformly on each compact set in Rm. Then (3.1) and (4.2) imply

that

(4.4) lim g(P + Qnr) = h(P)

uniformly in Rm. Hence Wi and w2 are two bounded continuous func-

tions which are solutions of Aw = h in the sense of distribution. On

the other hand, inf wi = inf w=inf t/ = inf w2. Hence wi must be iden-

tically equal to w2. However, this is impossible, since (4.1) and (4.3)

imply that

| wi(0) - w2(0) |   ^ a ^ 0.

This completes the proof of our theorem.

5. Remarks. As we mentioned in §2, we used two properties of

Laplacian in the proof of our theorem :

(i) inequality (1.2);

(ii) a harmonic function which is bounded in Rm is identically

equal to a constant.

Therefore, if we want to replace Laplacian by another partial

differential operator A with constant coefficients, it might be helpful

to know when an operator A will enjoy two properties similar to (i)

and (ii).

Property (i) is closely related to the translation invariant property

of Laplacian and to the existence of Green's function.

Property (ii) may be replaced by the property that every bounded

solution of Au=0 is almost periodic in Rm. In cases where property
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(i) is satisfied and no nontrivial bounded solution of Au = 0 ap-

proaches zero, it might be possible to show that, if there exist bounded

solutions of Au=f(P), where/(P) is almost periodic, then at least

one of them is almost periodic in Rm. There is such a theorem for

ordinary differential equations with variable coefficients [2, p. 95].

Finally, it might be interesting to know that

Au + u = 0        (A = d2/dx2 + d2/dy2)

is satisfied by u(x, y) =Jo(\/(x2+y2)), where Jo is the Bessel function

of the first kind of order 0. It is evident that u(x, y) is bounded and

lim,.^ Jo(r) =0.
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