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Abstract. An injective function on N, the nonnegative integers, taking values in TV,
is called almost recursive (abbreviated a.r.) if its inverse has a partial recursive exten-
sion. The range of an a.r. function /is called an almost recursively enumerable set in
general; an almost recursive set if in addition/is strictly increasing. These are natural
generalizations of regressive and retraceable sets respectively. We show that an infinite
set is almost recursively enumerable iff it is point decomposable in the sense of
McLaughlin. This leads us to new characterizations of certain classes of immune sets.
Finally, in contrast to the regressive case, we show that a.r. functions and sets are
rather badly behaved with respect to recursive equivalence.

1. Introduction and notation. Almost recursive functions, almost recursive sets
and almost recursively enumerable sets were introduced by Vuckovic in [7]. For
basic facts about retraceable sets the reader is referred to [3]; for regressive sets to
[2] and [1].

Throughout this paper, N denotes the set of nonnegative integers. The word
"set" will usually mean "subset of TV," and the complement TV—A of a set A is
denoted by A. Iff is a partial function on TV we denote its domain and range by
S(/) and p{f) respectively. Tre denotes the eth partial recursive function in the
Kleene enumeration, i.e. ■ne{x)^U{p.yTx(e, x, y)). we denotes 8(TTe). As a pairing
function we use j(x, y) = ^[(x+y)2 + 3y + x], and k(x), l(x) are recursive functions
which satisfy x =j{k(x), l(x)) for all x, and k(j(x, y)) = x, l(j(x, y))=y for all x and y.
Pr(«) denotes the «th prime number (Pr(0)=l, Pr(l) = 2, etc.). We shall use an
effective listing D(x) of finite subsets of N defined as follows: if xx, xa,...,xn are
distinct elements of A^and x = 2*i + 2*2-|-1-2*» then D(x) = {xx, x2,..., xn}, and
T)(O) = 0. Let / be a recursive function. The sequence of sets a>/(0), a>/(1),... is
called a disjoint array if cu/(Ä)==0 for every x, and x^y => ojHx) n wf(y) = 0 for all
x and y. If, in addition, conx) is a finite set for every x, then the sequence is called a
finite disjoint array. A sequence of finite sets D(f{0)), D(f(l)),... (again for some

Received by the editors April 20, 1970 and, in revised form, February 17, 1971.
AMS 1969 subject classifications. Primary 0270; Secondary 0272, 0274, 0275.
Key words and phrases. Almost recursive set, almost recursively enumerable set, retraceable

set, regressive set, hyperhyperimmune set, recursively enumerable sequences, discrete arrays,
recursive equivalence types.

i1) These results are part of the author's doctoral dissertation presented to the University
of Notre Dame in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
The author would like to thank Dr. V. Vuckovic for his advice and encouragement during its
preparation, and the referee for suggesting the construction of Theorem 6.4.

Copyright © 1972, American Mathematical Society

241

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



242 J. W. BERRY [February

recursive/) is called a discrete array if D(f(x)) ± 0 for every x, and x ^ y => D(f(x))
n D(fi(y)) = 0 for every x andy. A disjoint array meets a set ^4 if coHx) n A^0 for
every x; similarly for discrete arrays. For convenient reference we set up the follow-
ing notations for various classes of sets :

RET= the class of all retraceable sets
REG = the class of all regressive sets
AR = the class of all almost recursive sets
ARE=the class of all almost recursively enumerable sets
7= the class of all immune sets
HI=the class of all hyperimmune sets
HHI= the class of all hyperhyperimmune sets
SHI= the class of all strongly hyperimmune sets
SHHI= the class of all strongly hyperhyperimmune sets
FSHI= the class of all finitely strongly hyperimmune sets

2. Basic definitions and results.
Definition 2.1. An injective total function a on A to A is called almost recursive

(abbreviated a.r.) if there is a partial recursive function F such that 8(Ffa p(a) and
F(a(n)) = n for every n e N(i.e., if a'1 has a partial recursive extension). A set A is
called almost recursive (A e AR) if A is finite or the range of a strictly increasing
a.r. function. A is called almost recursively enumerable (A e ARE) if A is finite or
the range of an a.r. function. Note that our definition of the class ARE differs
slightly from that given by Vuckovic at the end of [7], but it is easily shown that the
two are equivalent.

It is clear that ARCARE, that RET^AR and that REGLARE. Note also that
Vuckovic has proved [7, Theorem 2.1] that if A e AR and A is recursively enumer-
able, then A e RET. ARE is a rather large class of sets. If/is any partial function
let Gf={j(x, y) I x e 8(f)Af(x)=y}. Then it is easily shown that Gf e ARE for any
partial function whose domain is recursively enumerable, in particular, for any
total function whatsoever. Furthermore, ARE contains sets in each of the Uspenskii
classes á?0 to á?4 [6, p. 120]. In [7], Vuckovic has given examples of AR sets in classes
â80, ¿%x, &2 and âSt. So it only remains to construct an ARE set in á?3.

Theorem 2.1. AREn3Sz + 0.

Proof. Let A be an immune retraceable set such that A is recursively enumerable,
and put B=j(NxA). If pA denotes the principal function of A (i.e., that strictly
increasing function whose range is A) then g(x)=j(k(x),pA(l(x))) is an injective
function with range B. Let tp be a partial recursive extension of pa1. Then
F(y)~j(k(y), q>(l(y))) is a partial recursive extension of g'1, so B e ARE. It is well
known that j(N x A) e ¡M3 for any cosimple set A (see e.g. [6, p. 120]). Hence
B e ARE n 3§^.
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In [1], Appel & McLaughlin have proved that if A and Jare regressive, then at
least one of them must be recursively enumerable. Such a property fails to extend
to ARE (even to AR) in the strongest possible manner.

Definition 2.2. For any set A, denote by S(A) the set

{2x\ X6^}u{2x+1 \x$A}.
That is, S(A)=A join A.

Theorem 2.2. Let A be any subset of N. Then
if) A = TS(A),

(ii) S(A) e AR,
(iii)(S(A))-=S(Ä).
Proof. For (i), it is easily shown that A ̂  xS(A) and that S(A) ^ TA. For (ii), note

that F(y) = fèy] (where [x] is the greatest integer function) is a partial recursive
extension of ps(A). (iii) is a trivial computation.

Corollary 2.3. Every Turing degree contains a set B such that both B and B
belong to AR.

3. Two characterizations of almost recursively enumerable sets.
Definition 3.1. A partial recursive function <p of two variables is called ad-

missible if
(0 Ai Vï Vp(i, y) is defined], and
(u) Ai Ki Ax Av [t¥>j => <p(i,y)*¥J, 2)1

If (p is an admissible function, define sets <J>¡ for each /' by

^i = {y I f(i> y) is defined}.
Theorem 3.1. Let a(x) be a total injective function on TV. Then a(x) is an a.r.

function if and only if there exists an admissible function <pa and a total injective
function h such that

(i) Ai [KO £ *d, and
(u) Ai [a(i) = 9a(i,h(i))].
Proof. Suppose first that a is an almost recursive function and let F be a partial

recursive extension of a'1. For each ; define Q>i = {y \ ye 8(F)AF(y) = i}. Put
<Pa(i,y)=y for all ye «Pj. Then <pa is a partial recursive function which is clearly
admissible. Putting h(i) = a(i) for all /', the conditions of the theorem are satisfied.

Conversely, suppose we are given functions <pa and « as in the hypothesis.
Define the sets í>¡ for <pa as in Definition 3.1, and use these to define a partial
recursive function F by setting F(<pa(i, y)) = i for all ye 0¡. Then F is a partial
recursive extension of a"1 and hence a is an a.r. function.

Theorem 3.2. Let A be an infinite set. Then A e ARE if and only if there exists
a recursive function f such that {a>Hx)} is a disjoint array satisfying:

(i) Ax Wnx) n A is a singleton] and

(ii) A^ U*6W «/w
(We say that such an array witnesses the fact that A e ARE.)
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Proof. First suppose that A e ARE and let a he an a.r. function with p(a) = A.
Let F be a partial recursive extension of a-1. Define a sequence of sets F¡ by setting

xe Ei<>F(x) = i.

This is a recursively enumerable predicate so there exists a recursive function/such
that Ei = wm for every /'. Clearly fafW} is a disjoint array satisfying (i) and (ii).

For the converse suppose that we are given a disjoint array faHx)} satisfying (i)
and (ii). Define a function a by setting a(«) = the unique element of co/(n) n A. a(n)
is well defined for every n by (i), and is injective by the disjointness of the array.
Now define a partial recursive function F by

F(x) = i o xe œfm.

Disjointness of the array guarantees that F is well defined. F is clearly a partial
recursive extension of a-1, and hence p(a) = A is in ARE.

In [5], McLaughlin defined a set A to be point decomposable if there is a disjoint
array satisfying (i) and (ii) above. Thus the point decomposable sets are exactly
the infinite almost recursively enumerable sets.

We shall repeatedly need the following result, which is implicit in Theorem 6 of
[8].

Theorem 3.3 (Yates). Let A be an infinite set. Then the following two statements
are equivalent:

(i) A has no infinite retraceable subset.
(ii) There is no recursive function f such that faHx)} is a disjoint array which

meets A.

The class of infinite sets with these two properties is SHHI. Note that the
implication (ii) => (i) follows at once from our Theorem 3.2.

Theorem 3.4. Every infinite set in ARE contains an infinite retraceable subset.

Proof. We note that this result follows at once from Theorems 3.2 and 3.3 It is
instructive, however, to observe that it can also be proved directly by a simple
technique which bypasses Yates' theorem. Namely, let a be an a.r. function with
range A, and F a partial recursive extension of a"1. Define an(x) by a°(x) = x;
an+1(x)=a(an(x)). If A = A the theorem is trivially true, so suppose A + N and
consider the set: Ax={a(x), a2(x),...} for any x$A. This is clearly an infinite
regressive subset of A and hence, by Proposition 7 of [2], contains an infinite
retraceable subset.

Theorem 3.5. Let A and B be separable sets in ARE. Then A\J Be ARE.

Proof. Let Ex and E2 be recursively enumerable sets such that Exn E2 = 0,
A<=Ex and B<=E2. Let faf(X)} and fag<x)} be disjoint arrays witnessing A e ARE and
B e ARE, respectively. Let/' and g' be recursive functions such that, for every x,
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wrM — ojfM n Ex and ojg.M = ojg(X} n E2. Then {ojrix)} and {ojg>(xl} are disjoint
arrays which still witness A e ARE and B e ARE respectively. Then the disjoint
array o>rm, ay<0), cur(1), <o9.(1) • • - witnesses Av Be ARE.

Lemma 3.6. Let A be any nonrecursive set, and put B=A join TV. Then B <£ AR.

Proof. Suppose Be AR and let F be a partial extension of pB 1. Then the follow-
ing algorithm clearly decides whether x e B for any x: if x is odd, then x e B; if x
is even calculate F(x+1) and F(x-l): xeB iff F(x+l) = F(x-l) + 2. Hence B is
recursive, but this is a contradiction since A was not recursive.

Note if A is any nonrecursive set in ARE, then A join Ne ARE-AR. This
simplifies and extends Theorem 3.2 of [7].

4. Almost finiteness properties. Theorem 3.2 clearly suggests that we study the
relationships between AR and the classes of immune sets listed at the end of §1.
From Theorems 3.3 and 3.4 we have immediately:

Theorem 4.1. (1) An infinite set A is in SHHI iff it has no infinite ARE subset.
(2) IfiAe SHHI or Ae SHI then A $ ARE.

Since every hyperhyperimmune set with recursively enumerable complement is
in STTT, such sets are never in ARE. P. R. Young has proved [9, Lemma 2.8] that
FSHI sets with recursively enumerable complements are never in ARE. Yates'
construction of a hyperhyperimmune retraceable set [8] shows that these implica-
tions may fail if the complement is not recursively enumerable since such a set is in
TTTTT, FSHI, and ARE. We now give an alternate construction of such a set.

Theorem 4.2. There exists a hyperhyperimmune set in ARE.

Proof. Let/o,/i,... be any nonrepetitive listing of all recursive functions which
index finite disjoint arrays. Let/be a recursive function such that

»no = {Pr(« +1), Pr(«+1)2, Pr(« +1)3,...}.

We define A by stages and put:

A(n) = {x\x is listed in A by the end of stage «}.

At the same time we define another set B; Bin) is defined similarly and will contain
elements which are ineligible to be placed in A at any later stage, so that
B= U"=o Bin) will be a subset of I.

Stage 0. Put Am = {2}. Let r0 = pn[2 $ w/o(n)]. Such a number r0 must exist since
{«Vow) is a finite disjoint array. Put T?l0) = w/o0.o).

Stage n+l. Let x = p.y[y e <u/(n+1) A y i B{n)]. Put Ain + 1) = AM U {x}. Let rn+1
= p.k[ojfn+im n Ain+1) = 0]. Since A{n+1) is a finite set, such a k must exist. Now
put B«+1> = B™ u a,ww. Finally, A= U"=o A™.

We note the following facts about the construction. At the end of stage «, A(n)
and B(n) are both well defined finite sets so that our prescription for stage « +1 can
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actually be followed. It is clear from the construction that wHn) n A is a singleton
for each n. Also A^ [JnsN cu/(ri), and hence the disjoint array fafM} is witness to the
fact that A e ARE. On the other hand, if fagM} is any finite disjoint array, then
g=fi for some i. Then by our construction we have <«j,l(ri) n A = 0, so that fag{x)}
cannot witness the nonhyperhyperimmunity of A. Hence A is hyperhyperimmune.

Corollary 4.3. There exists a hyperhyperimmune retraceable set.

Proof. By Theorem 3.4 and the fact that every infinite subset of a hyperhyper-
immune set is also hyperhyperimmune.

Definition 4.1. A set A is called finitely almost recursively enumerable
(A e FARE) if A is finite or if there is a recursive function / such that fafix)} is a
finite disjoint array satisfying

(i) Ax faux) n Ais a singleton], and
(ii) A^ {JxeNa>nx).
A set A is called strongly finitely almost recursively enumerable (A e SFARE) if

A is finite or if there exists a recursive function / such that {D(f(x))} is a discrete
array satisfying

(i) f\x [D(f(x)) n A is a singleton], and
(ii) A^ Ue* D(f(x)).
Clearly SFARE^FARE^ ARE; A e FSHI => A $ FARE, and A e HI =>

A $ SFARE. These relationships are all summarized in Figure 1.
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Hyperhyperimmune
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Not almost
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indicates that the implication always holds.
indicates that the implication holds if the complement is recursively enumerable,
but fails in general.

Figure I

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] ALMOST RECURSIVELY ENUMERABLE SETS 247

A set is immune iff it is infinite but has no infinite recursively enumerable subset.
Using the classes ARE, FARE, and SFARE, we can make the following analogous
statements :

Theorem 4.4. A set is hyperimmune iff it is infinite but has no infinite SFARE
subset; a set is hyperhyperimmune iff it is infinite but has no infinite FARE subset;
a set is strongly hyperhyperimmune iff it is infinite but has no infinite ARE subset.

Proof. If A has a SFARE infinite subset, then there is a discrete array which
meets A, so A is not hyperimmune. Conversely, suppose A is not hyperimmune.
Then some discrete array {D(f(x))} meets A. Put Ex = D(f(x)) n A. Then each set
Ex is nonvoid. Picking exactly one element from each set Ex produces an infinite
SFARE subset of A. The second statement is proved similarly and the third is
Theorem 4.1.

Theorem 4.5. Let A be an infinite set. Then A e FARE if and only if Ä is the
range of an injective total function a such that a'1 has a finite to one partial recursive
extension.

Proof. The proof is a straightforward variation on the proof of Theorem 3.2,
so we omit it.

Theorem 4.6. Let A be an infinite set in ARE with A recursively enumerable.
Then A e FARE.

Proof. This can be proved by a minor modification of the proof of Lemma 2.8
in [9] (of which our theorem is simply a slightly stronger version). We omit the
details.

Theorem 4.7. Let A be an infinite almost recursive set. Then if either A is recur-
sively enumerable or A is not hyperimmune, we have A e FARE.

Proof. If A is recursively enumerable, by Theorem 4.6, we have A e FARE so let
us assume that A is not hyperimmune. hetpA be the principal function of A, and F
a partial recursive extension of pa1. Since A is not hyperimmune, there is a recur-
sive function <p such that pA(x) i <p(x) for every x. Define a sequence of sets F, by

x e Et o x e 8(F) A F(x) = i A x i ?(i).

It is easily seen that the sets F¡ are finite and pairwise disjoint. The predicate x e F,
is recursively enumerable so there is a recursive function / such that E¡ = a>m for
every i. Since F¡ n A={pA(i)} for each i, the finite disjoint array fam} witnesses the
fact that A e FARE.

Corollary 4.8. If A is an infinite set which is in AR but not in FARE then A is
hyperimmune but not cohypersimple. (Such sets certainly exist: for example, a
hyperhyperimmune retraceable set is in AR but cannot be in FARE.)
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Theorem 4.9. Let A e SFARE be an infinite set, with A recursively enumerable.
Then A is recursively enumerable (and hence recursive).

Proof. Let / be a recursive function such that {D(f(x))} is a discrete array wit-
nessing A e SFARE. Let r he a recursive function such that r(x) = cardinality of
D(f(x)) for every x. Let g(x, i) be a partial recursive function of two variables
such that

D(f(x)) = {g(x, 0), g(x, 1),... g(x, «)}

where « = r(x) — 1. Then we have

xeAo\/[xe D(f(z)) A r{z) = 1]
Z

[r(s) -^ 1 -I

x e D(f(z)) A    A   [g(z, i)ïx=> g(z, i) eA]\.
1 = 0 J

Note that this predicate is recursively enumerable, so A is a recursively enumerable
set.

It would seem to follow from this theorem that SFARE is a rather restricted
class of sets. However, by Theorem 2.2 every Turing degree contains a set A such
that both A and I are in SFARE.

5. Recursive equivalence types. We denote recursive equivalence (in the sense
of Dekker & Myhill [4]) by ~.

Theorem 5.1. Let A be an almost recursively enumerable set, and A~B. Then B
is almost recursively enumerable.

Proof. If A is finite the result is trivial. If A is infinite let a be an a.r. function
with range A, and let A~B via the partial recursive function <p. Then b(n) = <p(a(n))
defines an almost recursive function with range B.

Theorem 5.2. Let A e FARE and A~B. Then B e FARE.

Proof. Similar to that of 5.1 noting that if a"1 has a finite-one partial recursive
extension then so does b = <p ° a.

Thus any R.E.T. which contains an ARE (FARE) set, consists entirely of ARE
(FARE) sets. Dekker [2, Proposition 5a] proves that every regressive function is
recursively equivalent to a strictly increasing regressive function, and hence that
every regressive isol contains a retraceable set. In contrast to this we have :

Theorem 5.3. There exists an almost recursive function which is not recursively
equivalent to any strictly increasing (almost recursive) function.

Proof. We require the construction of a function a(n) which is almost recursive
and has the following property :

(*) For any partial recursive function <p which is injective on its domain, either
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(i) \/n [a(n) t 8(9)] or
(ii) V»V»[«<™A <p(a(m)) i <p(a(n))\
We first outline the basic strategy of the construction, which proceeds by stages.

At the nth stage we define a(n) although we reserve the right to change its value at
later stages. We always pick a(n) to be an element of the nth set of the disjoint
array fam}} where

wnn) = {Pr(«+1), Pr(«+1)2, Pr(« +1)3,...}.

This ensures that a(n) will be an a.r. function. We also want a(n) to have property
(*). To produce this, let <p0, <px, <p2, ■ ■ ■ be a list without repetitions of all partial
recursive functions which are injective on their domains. We denote by a"(0),
a"(l),..., an(n) the values of a (for the arguments 0, 1,..., n) which are determined
at the end of the nth stage.

Definition. We say that a number k destroys <pr at the nth stage if kin and
q>r(an(k)) is undefined (i.e., an(k) $ 8fa)). We say that a number pair (k, m) destroys
tpr at the «th stage if k<min and cpr(an(m))icpr(an(k)). Note that this notation
means that both the numbers an(m) and an(k) belong to 8 fa) and that the inequality
holds.

Our strategy is to ensure that <pn is destroyed by our actions at stage n +1, while
taking care that <p0,<Pi,.-.,<pn-i, which have been destroyed at earlier stages,
should remain destroyed after our operations at stage n +1. Our construction is
set up so that each function value a(x) is changed at most twice, i.e. for each fixed
x, the function a(ri)=an(x) changes its value at most twice. So a(x) is well defined
as the final value of an(x) or as lim,,..» an(x).

We use systems of markers as an accounting procedure to keep track of the
number or number pair which has been used to destroy each <pr. If at any stage we
have explicitly used the number k to destroy <pr, then at that stage k will bear the
marker rB. If at any stage we have explicitly used the number pair (k, m) to destroy
<pr, with k<m, then k will bear the marker rb and m the marker ra at that stage. At
a given stage a number may bear more than one marker ; however at the beginning
of stage n4-1 it will be evident that the following situation holds: For each
r = 0,l,.. .,n—l, either the single marker ru or the marker pair rb, ra but not both,
is attached to numbers in the list 0, 1,..., n. If the marker pair r„, ra is attached,
then *■„ is always attached to a number strictly less than the number to which ra is
attached. If y < x i n are such that rb is attached to y and ra to x then the only other
markers that x and y can bear are of type su or else one other pair sb and sa with sb
attached to y and sa to x. No more than two such marker pairs can be attached
at any given stage to any fixed pair of numbers. We now give explicit instructions
for the construction.

Stage 0. Put a°(0) = 2 and proceed to Stage 1.
Stage n + l. Our instructions involve a number of cases. They are to be followed

in order, and the conditions for each case to occur implicitly include the negations
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of the conditions for the previous cases, since such an instruction is only reached if
the conditions for the previous cases have not been fulfilled. At the beginning of
the stage we have an(0), an(l),.. .,an(n) given, and ¡p0,..., <pn_! destroyed. Our
objective is to destroy <pn while keeping <p0, <px,..., <pn-i destroyed.

Case A. \/k[0^k^n A cpn(an(k)) is undefined].
Then put an+1(«+l) = Pr(«+2); an+1(j) = an(j) for all O^jún. Place nu beside
p.k(k-¿n/\cpn(an(k)) is undefined). Proceed to stage « + 2.

Case Bj. \/y [jea>/(n+1) A <pn(y) is undefined].
Then put an+1(« + l) = the smallest such y; an+1(j)=an(j) for 0^j¿n. Place nu
be side « +1 and proceed to stage n + 2.

Case B2.

V S y e o)Hn+i) A  V fr bears no marker at the end of stage «
y    I. ran

A ?n(y) < 9n(an(r))]j.

Then put an+1("+l) = the smallest such y; an+1(j) = an(j) for O^j^n. Let r' =
P-r [r bears no marker at the end of stage « A<pn(an+1(n + l))<cpn{an(r))]. Place nb
beside r' and na beside « + 1. Proceed to stage « + 2.

Case C. Set an+1(n+ l) = Pr(« + 2).
Subcase Cx. Vrsn [r bears no marker at the end of stage «]. Fix the smallest

such r. Then one of two things must happen.
Case Cltl- Vv LV E "Vw A <pn(y) is undefined]. Then put an+1(r) = the smallest

suchj; and an+1(j)=a"(j) for y'/r, O^j^n. Place nu beside rand proceed to stage
n+2.

Case C1>2. Vv [yewf(r) A<pn(y)>rpn(an + 1(n + 1))]. Then put a"+1(r) = the small-
est such y; and an+1(j)=an(j) for j^r, O^j^n. Place nb beside r and na beside
« + 1. Proceed to stage «+2.

Subcase C2. This case occurs within Case C when every r, 0 ̂  r ^ «, has at least
one marker beside it at the end of stage «. Then by Lemma 1 (to follow) there is
an r such that O^r^n— 1, which satisfies the following conditions: rb is beside y,
and ra beside x for some y < x ^ «, and y bears no other marker. Fix the smallest
such r. Note that the corresponding arguments x and y have already been used to
destroy <pr by having q>r(an(x)) < <p,(an(y)). We use the same two arguments to
destroy <pn while keeping <pr destroyed, by changing the value of an(y). Four cases
are possible.

Case C2ji. \/z[zeaifiy)A(pT(z) is undefined A<pn(z) is undefined]. Then put
an+1(y) = the smallest such z; and an+1(j)=an(j) for j^y, O^j^n. Erase ra and rb.
Place ru and nu beside y, and proceed to stage « + 2.

Case C2t2. Vz tz 6 "Vci/) A <pr(z) is undefined Aip,(fl*(x))<ipn(z)]. Then put
a«+1(j>)=the smallest such z; an+1(j)=an(j) for j^y, O^j^n. Erase »•„ and ra.
Place ru beside y, and place «& beside y and n0 beside x. Then proceed to stage
n+2.
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Case C2,3. Vz tz 6 ^Hy) A 9rianfa)) < <pr(z) A <pn(z) is undefined]. Then put a"+x(y)
= the smallest such z; an+1(7)=an(j) for j^y, Oijin. Place «u beside y, and
proceed to stage n4-2.

CaseC2A. \fz[zewny)hcpr(a\x))<<pr(z)h<pn(a\x))<cpn(z)\. Then put an+1(y)
= the smallest such z; an+1(j) = an(j) for j^y, Oijin. Place H(, beside .y and na
beside x. Then proceed to stage «4-2.

This completes the description of the construction.
Lemma I. If at the beginning of stage n + l, every number in the list 0, 1,..., n

bears at least one marker, then there are numbers x and y with 0iy<xin such that
y bears a marker rb, x a marker rafor some rin—l, and y bears no other marker.

Proof. By examination of the procedures followed at stage n+l we note that
a marker pair nb, na can only be introduced in the following ways :

(a) Beside blank numbers, via Case B2 or Case C1>2, in which case, na is placed
beside n+l.

(h) Beside a pair y < x which already bears a marker pair rb, ra and y bears no
other marker, via Case C2>4.

(c) Beside a pair y < x such that y bears only a marker of the type ru for some
ran—1, via Case C2>2.
Now consider the numbers 0, 1,..., n and the markers they bear at the beginning
of stage «4-1. For each r, Oirin-l, either the single marker ru, or the marker
pair rb, ra is attached in the list 0, 1,..., «. We prove the lemma by induction on «.
It is clearly true at the beginning of stage 2. As inductive hypothesis assume that it
is true for such systems of at most n — 1 markers or marker pairs attached in the
list 0, 1,...,«-1 (as at the beginning of stage n). We divide the situation at the
beginning of stage « 4-1 into two cases.

Case 1. n bears the marker (n—l)u. Then if we delete this marker, the remaining
n— 1 markers or marker pairs cover the numbers 0, 1,..., n— 1. By the inductive
hypothesis there is a number y < n — 1 which bears a single marker of the type rb for
some rin—2.

Case 2. n bears the marker (n — \)a. Then let (n— l)b be attached to the number
yin—I. If y bears no other marker we are finished. Otherwise, delete the marker
pair (n-l)i, and (it—l)a. The remaining n— 1 markers or marker pairs cover the
numbers 0, 1,..., n -1 so we can apply the inductive hypothesis.

Lemma 2. For each x, as n increases, an(x) changes its value at most twice.

Proof. We note that an+1(x)^an(x) only via the procedures of Case C, when x
(at the beginning of stage n 4-1) either bears no marker at all or else a single marker
of type r„. A straightforward examination of the way markers are assigned in Case
C reveals the lemma, since after two changes in the value of a(x), x cannot bear
either of these configurations of markers.

We now complete the proof of the theorem. By Lemma 2, a(x) = the final value
of an(x) is well defined for every x. Our construction was set up so that, for every x,
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a(x) e wax), and {cu/(x)} is a disjoint array. Then by Theorem 4.2, a is an almost
recursive function. Let b be any function such that a is recursively equivalent to b.
Then for some / e N, we have b(n) = <p¡(a(«)) for every «. But our construction
ensures that whenever 8(<p¡)^> p(a) (i.e., <p¡ ° a is total) then <p¡ ° a is not strictly in-
creasing. Hence a is not recursively equivalent to any strictly increasing function,
and our theorem is proved.

Theorem 6.3 does not in itself enable us to conclude that there is an ARE set
which is not recursively equivalent to any AR set. The missing step is the theorem
that if a and b are a.r. functions, with p(a)~p(b) then a~b. This is true for regres-
sive functions [2, Proposition 3], but the following construction, suggested by the
referee, shows that it fails to hold for almost recursive functions.

Theorem 6.4. (Suggested by the referee.) There exist a.r. functions ax and a2
such that p(ax) = p(a2) but axjia2. Moreover A = p(ox) is SFARE.

Proof. Let {<p„} be the list of one-to-one partial recursive functions as in 6.3. Let
{D(g(x))} be a discrete array such that every set D(g(x)) contains exactly three
elements. Define ax and a2 by stages so that

(1) A = p(ax) = p(a2)^ Ux=0D(g(x)),
(2) /\x A n D(g(x))   is a singleton,
(3) A, \ai(2x) e D(g(2x)) A a2(2x+1) e D(g(2x))],
(4) A, [ai(2x+1) e D(g{2x+1)) A a2(2x) e D(g(2x+1))],
(5) ax£a2, i.e. An Mc%>„) => V* [fÁai(x))^a2(x)]l
Then ax and a2 clearly satisfy the conditions of the theorem. The procedure at the

«th stage is as follows. Order D(g(2n)) x D(g(2n+1)) lexicographically. Let <«j, k}
be the least pair in D(g(2x))x D(g{2x+l)) such that <pn n {(m, k}, ik, m}} = 0.
Since <pn is one-to-one and there are nine pairs to choose from, such a pair im, k}
clearly exists. Put ax(2n) = m = a2(2n +1) and ax(2n +1)=k = a2(2n). Then conditions
(1) to (5) are clearly satisfied.

Finally, we note that Proposition 5(b) of [2] does fail in the almost recursive case.

Theorem 6.5. There is an almost recursively enumerable set which is not recur-
sively equivalent to any almost recursive set.

Proof. Let A he any nonimmune set which is almost recursively enumerable, but
not finitely almost recursively enumerable. (For example, let B he a hyperhyper-
immune retraceable set and let A = B join N.) Then A satisfies the conditions of the
theorem. For suppose A~C and C is almost recursive. By Theorem 5.2, C $ FARE,
but C is not hyperimmune and hence, by Theorem 4.7, Ce FARE. Thus A~C
implies C is not almost recursive.

We may note that any a.r. function with range A gives another example of a
function satisfying the conditions of Theorem 6.3. Nevertheless the explicit con-
struction technique described in that theorem appears to be of independent interest.
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