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ALMOST RICCI SOLITONS
AND K-CONTACT GEOMETRY

Ramesh Sharma
University Of New Haven, West Haven, CT 06516, USA
E-mail: rsharma@newhaven.edu

Abstract: We give a short Lie-derivative theoretic proof of the following re-
cent result of Barros et al. “A compact non-trivial almost Ricci soliton with
constant scalar curvature is gradient, and isometric to a Euclidean sphere”.
Next, we obtain the result: A complete almost Ricci soliton whose metric g
is K-contact and flow vector field X is contact becomes Ricci soliton with
constant scalar curvature. In particular, for X strict, g becomes compact
Sasakian Einstein. Finally, we show that the Lie-bracket of two distinct
Ricci soliton vector fields with the same metric generates a steady Ricci soli-
ton.
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1 Introduction

Modifying the Ricci soliton equation by allowing the dilation constant λ to
become a variable function, Pigola et al. [8] defined an almost Ricci soliton
as a Riemannian manifold (M, g) satisfying the condition:

£Xgij + 2Rij = 2λgij. (1)

where X is a vector field on M , gij and Rij are the components of the metric
tensor g and its Ricci tensor in local coordinates (xi), £X is the Lie-derivative
operator along X, and λ is a smooth function on M . A simple example
is the canonical metric g on a Euclidean sphere with X a non-homothetic
conformal vector field. For λ constant, (1) becomes the Ricci soliton. The
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almost Ricci soliton is said to be shrinking, steady, and expanding according
as λ is positive, zero, and negative respectively; otherwise is indefinite. If the
vector field X is the gradient of a smooth function f , upto the addition of a
Killing vector field, (M, g,X, λ) is called a gradient almost Ricci soliton, in
which case the equation (1) assumes the form:

∇i∇jf +Rij = λgij. (2)

For an almost Ricci soliton with X homothetic, g is Einstein and hence
λ becomes constant and it becomes the trivial Ricci soliton. For X non-
homothetic, g is a non-trivial almost Ricci soliton. We also note for an
almost Ricci soliton that X is conformal if and only if g is Einstein.

Ricci solitons are special solutions of the Ricci flow equation

∂

∂t
gij(t) = −2Rij(t), (3)

of the form gij(t) = σ(t)ψ∗t gij with initial condition gij(0) = gij, where ψt
are diffeomorphisms of M and σ(t) is the scaling function. In the same
vein, we can view almost Ricci soliton as a special solution of Ricci flow, by
considering the ansatz:

gij(t) = σ(t, xk)ψ∗t gij, (4)

where ψt are diffeomorphisms of M generated by the family of vector fields
Y (t), and σ(t, xk) can be viewed as a pointwise scaling function that depends
not only on time t, but also on the coordinates xk of points. The initial
conditions: gij(0) = gij, ψ0 = identity, imply σ(0, xk) = 1. Differentiating
(4) with respect to t, using the Ricci flow equation (3), and substituting t = 0
shows

−2Rij = (
∂

∂t
σ(t, xk))|t=0gij + £Y (0)gij,

Labelling Y (0) as X and the time-independent function ( ∂
∂t
σ(t, xk))|t=0 as

−2λ, we obtain the almost Ricci soliton equation (1).

2 Compact Almost Ricci Soliton

It is well known that a compact Ricci soliton is gradient. This need not be
true for almost Ricci soliton. In [3], Barros and Ribeiro Jr. showed that a
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compact gradient almost Ricci soliton with non-trivial conformal vector field
is isometric to a Euclidean sphere. Intrigued by the fact that a compact
Ricci soliton with constant scalar curvature is trivial (i.e. X is Killing and g
is Einstein), Barros, Batista and Ribeiro Jr. [2] proved the following result.

Theorem 1 (B-B-R) Let (Mn, g,X, λ) be a compact oriented almost Ricci
soliton. If Ric, S and dvg denote respectively the Ricci tensor, scalar curva-
ture and the volume form with respect to g, then∫

M

|Ric− S

n
g|2dvg =

n− 2

2n

∫
M

g(∇S,X)dvg. (5)

If, in addition; n > 2, the almost Ricci soliton is non-trivial and the scalar
curvature is constant, then (M, g) is isometric to a Euclidean sphere and the
almost Ricci soliton is gradient.

In this paper we provide a short Lie-derivative theoretic proof of this result,
based on equations of evolution of Christoffel symbols and curvature quan-
tities along the flow vector field X. We denote the Levi-Civita connection,
connection coefficients, and components of curvature tensor of g by ∇, Γijk,

and Rh
kji respectively.

Another Proof Of Theorem 1 (B-B-R). Let us denote the inverse of
gij by gij. Taking the Lie-derivative of the relation gijg

jk = δki along X,
using equation (1) and subsequently operating the resulting equation by gil

we immediately get
£Xg

kl = 2Rkl − 2λgkl. (6)

Next, the use of equation (1) in the formula (page 23, Yano [9]):

£XΓhij =
1

2
ght[∇j(£Xgit) +∇i(£Xgjt)−∇t(£Xgij)],

yields the evolution equation

£XΓhij = ∇hRij −∇jR
h
i −∇iR

h
j − (∇hλ)gij

+ (∇jλ)δhi + (∇iλ)δhj . (7)

Let us follow the notational convention: ∇k∇jZ
h−∇j∇kZ

h = Rh
kjiZ

i, where

Zi are components of an arbitrary vector field, and Rk
kji = Rji. Using equa-

tion (7) in the following commutation formula (page 23, [9]):

∇k(£XΓhij)−∇j(£XΓhik) = £XR
h
kji,
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we obtain the evolution equation:

£XR
h
kji = ∇j∇kR

h
i −∇k∇jR

h
i +∇j∇iR

h
k −∇k∇iR

h
j

+ ∇k∇hRij −∇j∇hRik + (∇k∇iλ)δhj

− (∇k∇hλ)gij − (∇i∇jλ)δhk + (∇j∇hλ)gik.

Contracting this equation with ghk and using the twice contracted Bianchi
identity: ∇iR

i
j = 1

2
∇jS, we have

£XRji = ∇j∇iS −∇h∇jR
h
i −∇h∇iR

h
j

+ ∆Rij − (∆λ)gij − (n− 2)∇i∇jλ.

Lie-differentiating S = Rijg
ij along X, and using the above equation and

equation (6) provides the evolution equation for the scalar curvature:

£XS = 2RijR
ij + ∆S − 2λS − 2(n− 1)∆λ. (8)

Writing £XS as g(∇S,X), integrating the above equation over the compact
M and using the Gauss divergence theorem we get∫

M

[RijR
ij − λS − 1

2
g(∇S,X)]dvg = 0. (9)

At this point, we note

div(SX) = ∇i(SX
i) = g(∇S,X) + SdivX,

and integrate it over M in order to get∫
M

[g(∇S,X) + SdivX]dvg = 0. (10)

Now we contract equation (1) with gij in order to get divX = nλ − S, and
use it in (10) to obtain∫

M

(nλS − S2 + g(∇S,X))dvg = 0.

Eliminating
∫
M

(λS)dvg between the above equation and (9) and noting

|Ric − S
n
g|2 = RijR

ij − S2

n
we obtain equation (5), proving the first part
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of the theorem.

For the second part, we use the hypothesis that S is constant in equation
(5) to conclude that g is Einstein. Thus, equation (1) reduces to £Xgij =
2(λ − S

n
)gij, i.e. X is a non-homothetic conformal vector field on M . With

the setting λ− S
n

= ρ, the foregoing conformal equation assumes the form

£Xgij = 2ρgij. (11)

Using the conformal integrability condition (p. 26, [9])

£XRij = (2− n)∇i∇jρ− (∆ρ)gij

and the Einstein condition Rij = S
n
gij we get

(∆ρ+
2S

n
ρ)gij = (2− n)∇i∇jρ. (12)

Contracting it with gij gives ∆ρ = − S
n−1ρ. Using this in the identity:

∆ρ2 = ∇i∇i(ρ
2) = 2[|∇ρ|2 + ρ∆ρ], and integrating over M gives

∫
M
|∇ρ|2 =

S
n−1

∫
M
ρ2. This shows that S > 0. Consequently, equation (12) becomes

∇i∇jρ = − S

n(n− 1)
ρgij. (13)

This implies, by virtue of Obata’s theorem [7]: “A complete Riemannian
manifold (M, g) of dimension n ≥ 2 admits a non-trivial solution ρ of the
system of partial differential equations ∇i∇jρ = −c2ρgij (c a positive con-
stant) if and only if M is isometric to a Euclidean sphere of radius 1/c” that

(M, g) is isometric to a Euclidean sphere of radius
√

n(n−1)
S

.

Equation (13) can also be expressed as £∇ρgij = 2S
n(1−n)ρgij. Combining

this with (11) we obtain

£
X−n(n−1)

S
∇ρgij = 0.

Hence X = ∇(n(1−n)
S

ρ) + a Killing vector field, i.e. the almost Ricci soliton
is gradient, completing the proof.
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3 K-Contact Metric As Almost Ricci Soliton

A (2m + 1)-dimensional smooth manifold M is called a contact manifold if
it carries a global 1-form η such that η ∧ (dη)m 6= 0 everywhere on M . For
a given contact 1-form η there exists a unique vector field ξ (Reeb vector
field) such that (dη)(ξ, .) = 0 and η(ξ) = 1. Polarizing dη on the contact
subbundle η = 0, one obtains a Riemannian metric g and a (1,1)-tensor field
ϕ such that

(dη)(Y, Z) = g(Y, ϕZ), η(Z) = g(ξ, Z), ϕ2 = −I + η ⊗ ξ, (14)

for arbitrary vector fields Y, Z on M . We call g an associated metric of η
and (ϕ, η, ξ, g) a contact metric structure. A K-contact metric is a contact
metric for which ξ is Killing, equivalently:

Ric(ξ, Y ) = 2mg(ξ, Y ), (15)

for an arbitrary vector field Y on M . This condition is also equivalent to:

Ric(ξ, ξ) = 2m. (16)

For details we refer to [4]. A contact metric g on M2m+1 is called Sasakian
if the almost Kaehler structure induced on the cone (R+ ×M) with metric
dr2 + r2g, is Kaehler (see Boyer and Galicki [5]). A Sasakian metric is K-
contact, but the converse need not be true, except in dimension 3.

We would like to consider an almost Ricci soliton (M, g,X, λ) such that g
is a K-contact metric and X is a contact vector field. Let us recall that a
vector field X on a contact manifold is said to be a contact vector field if

£Xη = fη, (17)

for a smooth function f on M . The contact vector field X is called strict
when f = 0.

Using Cartan’s magic formula, we find that £ξη = diξη + iξdη = d(1) +
dη(ξ, .) = 0, i.e. ξ is a strict contact vector field. We note from equation (1)
that, if we take g as a K-contact metric and X as ξ, then (as ξ is Killing), the
K-contact metric g reduces to an Einstein metric and λ becomes constant,
equal to the Einstein constant 2m, as seen from equation (16). We generalize
this special situation in the form of the following result.
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Theorem 2 Let (M, g,X, λ) be a complete almost Ricci soliton with g a K-
contact metric and X a contact vector field. Then it becomes Ricci soliton
and g has constant scalar curvature. In particular, if X is strict, then g is
Sasakian Einstein.

Proof. First of all, we have, by definition of the contact structure, ω =
η ∧ (dη)m 6= 0 and thus is a volume element. Denote it by ω. Using the
hypothesis (17) we compute £Xdη = d£Xη = (df)∧η+f(dη). Consequently,
the formula: £Xω = (divX)ω yields the relation divX = (m + 1)f . On the
other hand, the trace of equation (1) is divX = (2m + 1)λ− S. Comparing
the two values of divX we have

S = (2m+ 1)λ− (m+ 1)f. (18)

Next, we Lie-differentiate the second equation in (14) along X, and then use
equations (1), (15) and (17) in order to get

£Xξ = (f − 2λ+ 4m)ξ. (19)

The Lie-derivative of g(ξ, ξ) = 1 (as ξ is unit) along X, and the use of
equations (1) and (16) provides g(£Xξ, ξ) = 2m − λ. The inner product of
(19) with ξ and the foregoing equation lead us to the relation: f = λ− 2m.
Consequently, we have

£Xη = (λ− 2m)η, £Xξ = (2m− λ)ξ. (20)

At this point, we take the Lie-derivative of the first equation in (14), along
X and use equations (1) and (17) in order to obtain

η(Z)∇f − (Zf)ξ + 2(f − 2λ)ϕZ = −4QϕZ + 2(£Xϕ)Z, (21)

where Z is an arbitrary vector field on M , and Q is the Ricci tensor of type
(1,1), defined by g(Q., .) = Ric(., .). Substituting ξ for Z in equation (21)
and using the property ϕξ = 0 and equation (20) we find ∇f = (ξf)ξ, i.e.
df = (ξf)η. Taking its exterior derivative, using Poincare lemma: d2 = 0,
and then wedge product with η we have (ξf)η ∧ dη = 0. As η ∧ dη cannot
vanish anywhere, otherwise the definition of the contact structure would be
violated, we conclude that ξf = 0, and hence df = 0, i.e. f is constant on
M . Consequently, equation (21) reduces to the following evolution equation
for ϕ:

£Xϕ = 2Qϕ− (2m+ λ)ϕ. (22)
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As shown earlier, f = λ− 2m, and f is constant, we conclude that λ is con-
stant and hence the almost Ricci soliton becomes Ricci soliton. Appealing
to equation (18), we find that S is constant. This proves first part. For the
second part, the hypothesis f = 0 immediately implies λ = 2m and thus we
get from (18) that S = 2m(2m + 1). Plugging these findings in equation
(8) and carrying out a straightforward computation shows |Ric− 2mg|2 = 0.
Hence Ric = 2mg, i.e. g is Einstein with Einstein constant 2m.

As (M, g) is complete, thanks to Myers’ theorem, (M, g) becomes compact.
In order to turn g into Sasakian, we recall the following result of Morimoto [6]:
“Let (M, η, g) be a compact K-contact manifold such that g is η-Einstein,
i.e. its Ricci tensor satisfies Ric = ag + bη ⊗ η for real constants a, b. If
a > −2, then g is Sasakian”. This result was also proved independently by
Boyer and Galicki [5], and Apostolov et al. [1]. In our case, a = 2m and
b = 0, and hence the aforementioned result holds. Thus, we conclude that g
is Sasakian, and complete the proof.

4 Commutation Of Ricci Soliton Vector Fields

We consider two distinct Ricci solitons with the same Riemannian metric
and show that the Lie-bracket of their flow vector fields give rise to a steady
Ricci soliton. More precisely, we prove

Proposition 1 Let (M, g,X1, λ1) and (M, g,X2, λ2) be two distinct non-
trivial Ricci solitons. Then, [X1, X2] determines a steady Ricci soliton on M
with a metric homothetic to g.

Proof By hypothesis, we have

£X1g + 2Ric = 2λ1g, £X2g + 2Ric = 2λ2g, (23)

where λ1 and λ2 are constants. As these are two distinct Ricci solitons, we
may assume without any loss of generality, that λ1 < λ2. The two equations
in (23) show that X1 = X2+H where H is a homothetic vector field satisfying
£Hg = 2(λ1 − λ2)g. The following computation:

£[X1,X2]g = £[X2+H,X2]g = £[H,X2]g = £H£X2g −£X2£Hg

= £H(−2Ric+ 2λ2g)−£X2(2(λ1 − λ2)g) = 4(λ1 − λ2)Ric,
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shows that
£ 1

2(λ2−λ1)
[X1,X2]

g + 2Ric = 0.

Taking into account the fact that the Ricci tensor is invariant under a homo-
thetic transformation and noticing that [X1, X2] cannot be conformal (oth-
erwise g would become Einstein) we conclude that (M, 1

2(λ2−λ1)g, [X1, X2], 0)
is a Ricci soliton which is steady. This completes the proof.

5 Concluding Remarks

1. In the proof of Theorem 1, Barros, Batista and Ribiero Jr. used a result
of Yano and Nagano and the Hodge-de Rham decomposition. Our proof uses
a theorem of Obata and does not need Hodge-de Rham decomposition.

2. The hypotheses of Theorem 2 can be interpreted in terms of contact
Hamiltonians as follows. The contact Hamiltonian associated to a contact
vector field X defined by equation (17) is a function H defined as η(X),
and the function f turns out to be equal to ξH. The vector field X is the
Hamiltonian vector field associated to H. Computing £XH = £X(η(X)) =
(£Xη)X = fη(X) = fH = (ξH)H shows that the contact vector field X is
strict, i.e. f = ξH = 0 if and only if the associated Hamiltonian H is a first
integral of X, i.e. is preserved along the flow of the Hamiltonian vector field
X.

3. For the second part of Theorem 2, we found that λ = 2m, Ric = 2mg and
hence Q = 2mI. Using these and the hypothesis f = 0 in equations (20) and
(22) we infer that X preserves all structure tensors η, ξ, g, ϕ, and hence is an
infinitesimal automorphism of the Sasakian structure on M .
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