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ALMOST RICCI SOLITONS
AND K-CONTACT GEOMETRY

Ramesh Sharma
University Of New Haven, West Haven, CT 06516, USA
E-mail: rsharma@newhaven.edu

Abstract: We give a short Lie-derivative theoretic proof of the following re-
cent result of Barros et al. “A compact non-trivial almost Ricci soliton with
constant scalar curvature is gradient, and isometric to a Euclidean sphere”.
Next, we obtain the result: A complete almost Ricci soliton whose metric g
is K-contact and flow vector field X is contact becomes Ricci soliton with
constant scalar curvature. In particular, for X strict, g becomes compact
Sasakian Einstein. Finally, we show that the Lie-bracket of two distinct
Ricci soliton vector fields with the same metric generates a steady Ricci soli-
ton.
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1 Introduction

Modifying the Ricci soliton equation by allowing the dilation constant A to
become a variable function, Pigola et al. [8] defined an almost Ricci soliton
as a Riemannian manifold (M, g) satisfying the condition:

Lxgij + 2R;; = 2045 (1)

where X is a vector field on M, ¢;; and R;; are the components of the metric
tensor g and its Ricci tensor in local coordinates (x?), £x is the Lie-derivative
operator along X, and A is a smooth function on M. A simple example
is the canonical metric ¢ on a Euclidean sphere with X a non-homothetic
conformal vector field. For A\ constant, (1) becomes the Ricci soliton. The
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almost Ricci soliton is said to be shrinking, steady, and expanding according
as A is positive, zero, and negative respectively; otherwise is indefinite. If the
vector field X is the gradient of a smooth function f, upto the addition of a
Killing vector field, (M, g, X, \) is called a gradient almost Ricci soliton, in
which case the equation (1) assumes the form:

For an almost Ricci soliton with X homothetic, ¢ is Einstein and hence
A becomes constant and it becomes the trivial Ricci soliton. For X non-
homothetic, g is a non-trivial almost Ricci soliton. We also note for an
almost Ricci soliton that X is conformal if and only if ¢ is Einstein.

Ricci solitons are special solutions of the Ricci flow equation

%gij(t) = —2R;;(1), (3)

of the form g;;(t) = o(t)y;¢;; with initial condition g,;;(0) = g,;, where 1,
are diffeomorphisms of M and o(t) is the scaling function. In the same
vein, we can view almost Ricci soliton as a special solution of Ricci flow, by
considering the ansatz:

9i5(t) = o (t, 2°)¢7 gij, (4)

where ¢, are diffeomorphisms of M generated by the family of vector fields
Y (t), and o (¢, 2*) can be viewed as a pointwise scaling function that depends
not only on time ¢, but also on the coordinates z* of points. The initial
conditions: ¢;;(0) = g,;, Yo = identity, imply (0, 2%) = 1. Differentiating
(4) with respect to t, using the Ricci flow equation (3), and substituting ¢ = 0
shows

0
—2R;; = (aU(t#Bk))h:ogzj + Ly(0)9ij

Labelling Y'(0) as X and the time-independent function (Zo(t,2*))|i=o as
—2\, we obtain the almost Ricci soliton equation (1).

2 Compact Almost Ricci Soliton

It is well known that a compact Ricci soliton is gradient. This need not be
true for almost Ricci soliton. In [3], Barros and Ribeiro Jr. showed that a
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compact gradient almost Ricci soliton with non-trivial conformal vector field
is isometric to a Euclidean sphere. Intrigued by the fact that a compact
Ricci soliton with constant scalar curvature is trivial (i.e. X is Killing and ¢
is Einstein), Barros, Batista and Ribeiro Jr. [2] proved the following result.

Theorem 1 (B-B-R) Let (M", g, X,\) be a compact oriented almost Ricci
soliton. If Ric, S and dv, denote respectively the Ricci tensor, scalar curva-
ture and the volume form with respect to g, then

S 9
/ |Ric — 2 g|2dv, = = / g(VS, X)dv,. (5)
M n M

2n

If, in addition; n > 2, the almost Ricci soliton is non-trivial and the scalar
curvature is constant, then (M, g) is isometric to a Euclidean sphere and the
almost Ricci soliton is gradient.

In this paper we provide a short Lie-derivative theoretic proof of this result,
based on equations of evolution of Christoffel symbols and curvature quan-
tities along the flow vector field X. We denote the Levi-Civita connection,
connection coefficients, and components of curvature tensor of g by V, F;k,
and RZﬂ respectively.

Another Proof Of Theorem 1 (B-B-R). Let us denote the inverse of
gi; by g¥. Taking the Lie-derivative of the relation g;;¢’* = ¥ along X,
using equation (1) and subsequently operating the resulting equation by g

we immediately get
£xg" = 2RM — 2\gM. (6)

Next, the use of equation (1) in the formula (page 23, Yano [9]):

1
£xTy = §9ht[vj(fxgzt) + Vi(£xg) — Vi(£x9i5)],

yields the evolution equation
£xTl = V"R — VRl = VRl — (V")) g
+ (VA)08 4 (ViA)sr. (7)

Let us follow the notational convention: V,V; Zh — VijZh = RZJHZZ‘, where

(2
Z* are components of an arbitrary vector field, and Riji = Rj;. Using equa-

tion (7) in the following commutation formula (page 23, [9]):
Vi(£xT}) = Vi(£xTh) = £x R}

kji»
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we obtain the evolution equation:

£xRl; = V;ViR! =V, V,R! +V,;V;R} — V,V;R}
+ VthRij — VthRik + (vkvm)éy

Contracting this equation with ¢"* and using the twice contracted Bianchi
identity: V;R} = $V;S, we have

£xRj; = V;ViS =V, VRl = V,V;R!
-+ ARU — (A)\>92] — (n — 2)V2VJ/\

Lie-differentiating S = R;;¢” along X, and using the above equation and
equation (6) provides the evolution equation for the scalar curvature:

£xS =2R;R7 + AS —2)\S — 2(n — 1)A. (8)

Writing £x.5S as g(VS, X), integrating the above equation over the compact
M and using the Gauss divergence theorem we get

g 1
/ [Ri;R7 — \S — ég(VS,X)]dvg =0. (9)
M

At this point, we note
div(SX) = Vi(SX") = g(VS, X) + SdivX,

and integrate it over M in order to get
/ (VS X) + SdivX]dv, = 0. (10)
M

Now we contract equation (1) with ¢ in order to get divX = n\ — S, and
use it in (10) to obtain

/M(n/\S — 5%+ ¢g(VS, X))dv, = 0.

Eliminating [,,(AS)dv, between the above equation and (9) and noting
|Ric — 2g]* = R;;RY — ‘%2 we obtain equation (5), proving the first part
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of the theorem.

For the second part, we use the hypothesis that S is constant in equation
(5) to conclude that g is Einstein. Thus, equation (1) reduces to £xg;; =
2(A — 2)g;;, i.e. X is a non-homothetic conformal vector field on M. With
the setting A\ — % = p, the foregoing conformal equation assumes the form

£x9i5 = 2pgij- (11)
Using the conformal integrability condition (p. 26, [9])
LxRij = (2—-n)V;Vip— (Ap)gy;

and the Einstein condition R;; = %gij we get

25
Contracting it with ¢" gives Ap = —-%-p. Using this in the identity:

Ap? = V'Vi(p?*) = 2[|Vp|* + pAp], and integrating over M gives [,,|Vp|* =
5 [, p*. This shows that S > 0. Consequently, equation (12) becomes

S
ViVj,O = —mpgij. (13)

This implies, by virtue of Obata’s theorem [7]: “A complete Riemannian
manifold (M, g) of dimension n > 2 admits a non-trivial solution p of the

system of partial differential equations V;V,;p = —c?pg;; (¢ a positive con-
stant) if and only if M is isometric to a Euclidean sphere of radius 1/¢” that
(M, g) is isometric to a Euclidean sphere of radius %

Equation (13) can also be expressed as £yv,gi; = n(f—fn)pglj. Combining
this with (11) we obtain

£X,"<"T*1>Vpgij =0.

Hence X = V(@p) + a Killing vector field, i.e. the almost Ricci soliton
is gradient, completing the proof.



3 K-Contact Metric As Almost Ricci Soliton

A (2m + 1)-dimensional smooth manifold M is called a contact manifold if
it carries a global 1-form 7 such that n A (dn)™ # 0 everywhere on M. For
a given contact 1-form 7 there exists a unique vector field £ (Reeb vector
field) such that (dn)(&,.) = 0 and n(§) = 1. Polarizing dn on the contact
subbundle 7 = 0, one obtains a Riemannian metric g and a (1,1)-tensor field
@ such that

(dn)(Y, Z) = g(Y,0Z),0(Z) = g(§, Z), 9" = =] +n @, (14)

for arbitrary vector fields Y, Z on M. We call g an associated metric of n
and (gp,n,f, g) a contact metric structure. A K-contact metric is a contact
metric for which ¢ is Killing, equivalently:

Ric(€,Y) = 2mg(&,Y), (15)
for an arbitrary vector field Y on M. This condition is also equivalent to:
Ric(&,€) = 2m. (16)

For details we refer to [4]. A contact metric g on M?*™*! is called Sasakian
if the almost Kaehler structure induced on the cone (R™ x M) with metric
dr? 4+ r?g, is Kaehler (see Boyer and Galicki [5]). A Sasakian metric is K-
contact, but the converse need not be true, except in dimension 3.

We would like to consider an almost Ricci soliton (M, g, X, A) such that g
is a K-contact metric and X is a contact vector field. Let us recall that a
vector field X on a contact manifold is said to be a contact vector field if

for a smooth function f on M. The contact vector field X is called strict
when f = 0.

Using Cartan’s magic formula, we find that £en = dign + igdn = d(1) +
dn(&,.) =0, i.e. £ is a strict contact vector field. We note from equation (1)
that, if we take g as a K-contact metric and X as &, then (as ¢ is Killing), the
K-contact metric g reduces to an Einstein metric and A becomes constant,
equal to the Einstein constant 2m, as seen from equation (16). We generalize
this special situation in the form of the following result.
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Theorem 2 Let (M, g, X, \) be a complete almost Ricci soliton with g a K-
contact metric and X a contact vector field. Then it becomes Ricci soliton
and g has constant scalar curvature. In particular, if X is strict, then g is
Sasakian Einstein.

Proof. First of all, we have, by definition of the contact structure, w =
n A (dn)™ # 0 and thus is a volume element. Denote it by w. Using the
hypothesis (17) we compute £xdn = d£xn = (df) An+ f(dn). Consequently,
the formula: £xw = (divX)w yields the relation divX = (m + 1)f. On the
other hand, the trace of equation (1) is divX = (2m + 1)\ — S. Comparing
the two values of div X we have

S = (2m+ 1A — (m+1)J. (18)

Next, we Lie-differentiate the second equation in (14) along X, and then use
equations (1), (15) and (17) in order to get

£x&=(f —2X+ 4m)¢. (19)

The Lie-derivative of g(£,&) = 1 (as £ is unit) along X, and the use of
equations (1) and (16) provides g(£x&,€) = 2m — A. The inner product of
(19) with £ and the foregoing equation lead us to the relation: f = X\ — 2m.
Consequently, we have

£xn=(A=2m)n, £x{=(2m— )¢ (20)

At this point, we take the Lie-derivative of the first equation in (14), along
X and use equations (1) and (17) in order to obtain

N2V = (ZF)E+2(f —2M)pZ = —4QuZ + 2(£x0)Z, (21)

where Z is an arbitrary vector field on M, and @) is the Ricci tensor of type
(1,1), defined by ¢(Q.,.) = Ric(.,.). Substituting £ for Z in equation (21)
and using the property ¢ = 0 and equation (20) we find Vf = (£f)&, i.e.
df = (£f)n. Taking its exterior derivative, using Poincare lemma: d? = 0,
and then wedge product with n we have ({f)n Adn = 0. As n A dn cannot
vanish anywhere, otherwise the definition of the contact structure would be
violated, we conclude that £f = 0, and hence df = 0, i.e. f is constant on
M. Consequently, equation (21) reduces to the following evolution equation
for ¢:

£xp =200 — (2m + N, (22)
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As shown earlier, f = A — 2m, and f is constant, we conclude that A is con-
stant and hence the almost Ricci soliton becomes Ricci soliton. Appealing
to equation (18), we find that S is constant. This proves first part. For the
second part, the hypothesis f = 0 immediately implies A = 2m and thus we
get from (18) that S = 2m(2m + 1). Plugging these findings in equation
(8) and carrying out a straightforward computation shows | Ric — 2mgl|? = 0.
Hence Ric = 2mg, i.e. g is Einstein with Einstein constant 2m.

As (M, g) is complete, thanks to Myers’ theorem, (M, g) becomes compact.
In order to turn g into Sasakian, we recall the following result of Morimoto [6]:
“Let (M,n,g) be a compact K-contact manifold such that ¢ is n-Einstein,
i.e. its Ricci tensor satisfies Ric = ag + bn ® n for real constants a,b. If
a > —2, then ¢ is Sasakian”. This result was also proved independently by
Boyer and Galicki [5], and Apostolov et al. [1]. In our case, a = 2m and
b = 0, and hence the aforementioned result holds. Thus, we conclude that g
is Sasakian, and complete the proof.

4 Commutation Of Ricci Soliton Vector Fields

We consider two distinct Ricci solitons with the same Riemannian metric
and show that the Lie-bracket of their flow vector fields give rise to a steady
Ricci soliton. More precisely, we prove

Proposition 1 Let (M, g, X1, 1) and (M, g, X3, \s) be two distinct non-
trivial Ricci solitons. Then, [X1, Xs] determines a steady Ricci soliton on M
with a metric homothetic to g.

Proof By hypothesis, we have
£x,9+ 2Ric =2\1g, £x,9+ 2Ric =2\, (23)

where A\; and Ay are constants. As these are two distinct Ricci solitons, we
may assume without any loss of generality, that A\; < Ay. The two equations
in (23) show that X; = Xy,+ H where H is a homothetic vector field satisfying
Lg = 2(A1 — A\2)g. The following computation:

Lix,x09 = Lxornxe)9=Lux9=~Lutx,9— L£x,£nyg
£H(—2RZC + 2)\29) — £X2(2()\1 — )\g)g) = 4()\1 — )\Q)Ric,
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shows that

[Xl,Xg]g + 2RZC = O

1
2(Ag—A1)

Taking into account the fact that the Ricci tensor is invariant under a homo-
thetic transformation and noticing that [X7, X5] cannot be conformal (oth-
erwise g would become Einstein) we conclude that (M, m g, [X1, X5],0)
is a Ricci soliton which is steady. This completes the proof.

5 Concluding Remarks

1. In the proof of Theorem 1, Barros, Batista and Ribiero Jr. used a result
of Yano and Nagano and the Hodge-de Rham decomposition. Our proof uses
a theorem of Obata and does not need Hodge-de Rham decomposition.

2. The hypotheses of Theorem 2 can be interpreted in terms of contact
Hamiltonians as follows. The contact Hamiltonian associated to a contact
vector field X defined by equation (17) is a function #H defined as n(X),
and the function f turns out to be equal to £H. The vector field X is the
Hamiltonian vector field associated to H. Computing £xH = £x(n(X)) =
(£xn)X = fn(X) = fH = (§H)H shows that the contact vector field X is
strict, i.e. f =¢&H = 0 if and only if the associated Hamiltonian H is a first
integral of X, i.e. is preserved along the flow of the Hamiltonian vector field
X.

3. For the second part of Theorem 2, we found that A = 2m, Ric = 2mg and
hence ) = 2mlI. Using these and the hypothesis f = 0 in equations (20) and
(22) we infer that X preserves all structure tensors 7, &, g, ¢, and hence is an
infinitesimal automorphism of the Sasakian structure on M.
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