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Almost sure central limit theorem for exceedance point
processes of stationary sequences

Zhongquan Tan
Jiaxing University

Abstract. In this paper, we proved an almost sure central limit theorem for
the exceedance point processes of a stationary sequence which satisfy some
long range dependence conditions. As a by-product, we obtained the almost
sure central limit theorem for the order statistics of the stationary sequence.
The obtained results are also extended to the vector of point processes for
some strong mixing random sequences.

1 Introduction

The almost sure central limit theorem (ASCLT) has been first introduced inde-
pendently by Brosamler (1988) and Schatte (1988) for partial sum, and then it
became an intensively studied subject. In its simplest form the ASCLT states that
if X1,X2, . . . is a i.i.d. sequence of random variables with mean 0 and variance 1,
then

lim
n→∞

1

logn

n∑
t=1

1

t
1
(
t−1/2St ≤ x

) = �(x) a.s.

for any x ∈ R, where Sn = ∑n
t=1 Xt , 1 is indicator function and �(·) stands for the

standard normal distribution function.
Later on, Fahrner and Stadtmüller (1998) and independently Cheng et al. (1998)

obtained the ASCLT for the maxima Mt = maxk≤t Xk of independent random vari-
ables. They proved that

lim
n→∞

1

logn

n∑
t=1

1

t
1
(
at (Mt − bt ) ≤ x

) = G(x) a.s. (1)

for any x ∈ R under the conditions that

lim
t→∞P

(
at (Mt − bt ) ≤ x

) = G(x) (2)

with real sequences at > 0, bt ∈ R, t ≥ 1 and a non-degenerate distribution G(x).
One interesting direction is to extend (1) to dependent case. In this field, the

first result was provided by Csáki and Gonchigdanzan (2002). Let X1,X2, . . . be
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a stationary Gaussian random variable sequence with covariance function rt =
EX1Xt+1 satisfying

rt log t (log log t)1+ε = O(1) (3)

for some ε > 0 or other conditions related to the convergence rate of the covariance
function. Csáki and Gonchigdanzan (2002) and Chen and Lin (2007) proved that
(1) still holds with some special constants at , bt . We refer to Peng and Nadara-
jah (2011) for the non-stationary Gaussian case, Tan and Peng (2009) for more
general dependent case and Tan (2013) for stationary Gaussian process. Recently,
Choi (2010) and Tan and Wang (2014) have extended (1) to a stationary and non-
stationary Gaussian random field. Other related results can be found in Tan and
Wang (2012) and Hashorva and Weng (2013).

Another interesting direction is to extend (1) to order statistics. The pioneers in
this field are Stadtmüller (2002) and Peng and Qi (2003) who studied the ASCLT
for central order statistics of i.i.d. random variables. Especially for some fixed
k ∈ Z+ they showed that

lim
n→∞

1

logn

n∑
t=1

1

t
1
(
at

(
M

(k)
t − bt

) ≤ x
) = G(x)

k−1∑
s=0

(− logG(x))s

s! a.s. (4)

for any x ∈ R provided that (2) held, where M
(k)
t is the kth maximum among

X1,X2, . . . ,Xt . For a more general result, we refer to Hörmann (2005). Dudz-
iński (2009) extended (4) to some stationary Gaussian sequences provided that the
covariance function of the sequence satisfies some very stronger conditions.

In this paper, we are interested in the similar questions for some stationary se-
quences. We prove the ASCLTs for exceedance point processes of some stationary
sequences. As a by-product, we obtain the ASCLTs for order statistics of the sta-
tionary sequence. The above results are also extended to the vector of point pro-
cesses for strong mixing random sequences. Now, let us introduce the dependence
structure.

Let {Xn}n≥1 be a sequence of stationary random variables with common distri-
bution function F and {un}n≥1 be a sequence of constants. For dealing with the
limit properties of exceedance point processes, Hsing et al. (1988) introduced the
following long range dependence condition �(un). Condition �(un) is said to be
satisfied by {Xn}n≥1 if

αn,l = sup
{∣∣P(A ∩ B) − P(A)P (B)

∣∣ : A ∈ βk
1 (un),

B ∈ βn
k+l(un), k = 1,2, . . . , n − l

}
is such that αn,l → 0, as n → ∞, for some sequence ln = o(n). β

j
i (un) denotes

the σ -field generated by the events {Xs ≤ un}, i ≤ s ≤ j . Note that the condition
�(un) is stronger than the distributional mixing condition D(un) (see Leadbetter
et al., 1983), but weaker than strong mixing.
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Let Nn be the exceedance point process on (0,1] with points (i/n: 1 ≤ i ≤
n for which Xi > un), that is,

Nn(B) = ∑
i/n∈B

1(Xi > un),

for Borel set B on (0,1], which is a random measure on all Borel sets on (0,1]. Un-
der the condition �(un), Hsing et al. (1988) studied the limit of exceedance point
process and showed that any limiting point process for exceedances is necessarily
compound Poisson. More precisely, they proved the following result.

Theorem 1.1. For every τ ∈ (0,∞), let the constants {uτ
n}n≥1 be such that

n[1 − F(uτ
n)] → τ as n → ∞. Suppose that for each τ > 0 the stationary se-

quence {Xn}n≥1 satisfies the condition �(uτ
n) and for some τ1 > 0, N

τ1
n converges

in distribution to a point process Nτ1 . Then Nτ
n converges to a compound Poisson

process Nτ for all τ > 0, with Laplace transform given by

LNτ (f ) = exp
{
−θτ

∫ 1

0

[
1 − φ

(
f (t)

)]
dt

}
, (5)

where θ ∈ (0,1) and φ(s) = ∑∞
j=1 e−sjπ(j) is the Laplace transform of a prob-

ability distribution π on {1,2, . . .}, θ and π are independent of τ . Note that π is
the limiting distribution of the cluster sizes. We also cited the definition of π from
Hsing et al. (1988).

Definition 1.1. Let {Xn}n≥1 be a stationary sequence satisfying the assump-
tions of Theorem 1.1. Separate {Xn}n≥1 into successive groups (X1, . . . ,Xrn),
(Xrn+1, . . . ,X2rn), . . . of rn consecutive terms (for appropriately chosen rn). Then
all exceedances of un, within a group are regarded as forming a cluster. Define the
distribution πn of cluster sizes on {1,2,3, . . .} by

πn(j) = P

{
rn∑

i=1

1(Xi > un) = j

∣∣∣∣∣
rn∑

i=1

1(Xi > un) > 0

}
, j = 1,2, . . . .

Then

π(j) = lim
n→∞πn(j), j = 1,2, . . . .

For other related results on point processes of i.i.d. and stationary random se-
quences, we refer to Chapters 2 and 5 of Leadbetter et al. (1983).

In this paper, we will consider the almost sure central limit theorem related
Theorem 1.1. We will give main results in Section 2, and then give their proofs in
Section 3.
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2 Main results

In order to deal with the almost sure limit case, we need to strength the condition
�(un) to slightly stronger case.

Definition 2.1. The sequence {Xn}n≥1 satisfies condition ∇(un) for a given se-
quence {un}n≥1, if

βn,l = sup
{∣∣P(A ∩ B) − P(A)P (B)

∣∣ : A ∈ βk
1 (uk) ∪ βk

1 (un),

B ∈ βn
k+l(un), k = 1,2, . . . , n − l

}
is such that βn,l → 0, as n → ∞, for some sequence ln = o(n).

The condition ∇(un) has been introduced by Ferreira (1995) for dealing with
the extremes with a random number of variables from periodic sequences.

Now, we state our main results. As usual, an � bn means lim supn→∞ |an/bn| <
+∞.

Theorem 2.1. Suppose that the constants {uτ
n}n≥1 be such that for τ ∈ (0,∞),

n[1 − F(uτ
n)] → τ as n → ∞. Assume that for each τ > 0 the stationary se-

quence {Xn}n≥1 satisfies the condition ∇(uτ
n) with βn,l � (log logn)−(1+ε) for

some ε > 0, and for some τ1 > 0, N
τ1
n converges in distribution to a point pro-

cess Nτ1 . Then for all τ > 0, each r = 1,2, . . . , and every Borel subset B of (0,1]
lim

n→∞
1

logn

n∑
i=1

1

i
1
(
Nτ

i (B) ≤ r
) = P

(
Nτ (B) ≤ r

)
a.s., (6)

where Nτ is a compound Poisson process with Laplace transform given by (5).

Applying Theorem 2.1, we can derive the almost sure limit theorem for the
order statistics of dependent sequences. Let M

(k)
n be the kth maximum among

X1,X2, . . . ,Xn.

Corollary 2.1. Suppose that for each τ > 0 the stationary sequence {Xn}n≥1 sat-
isfies the condition ∇(uτ

n) with βn,l � (log logn)−(1+ε) for some ε > 0 and for
some τ > 0, Nτ

n converges in distribution to a point process Nτ . Assume that
an > 0, bn are constants such that

P
(
an

(
M(1)

n − bn

) ≤ x
) → G(x) (7)

for some non-degenerate distribution function G (necessarily of extreme value
type). Then for each k = 1,2, . . . ,

lim
n→∞

1

logn

n∑
i=1

1

i
1
(
ai

(
M

(k)
i − bi

) ≤ x
)

(8)

= G(x)

[
1 +

k−1∑
j=1

k−1∑
i=j

(− logG(x))j

j ! π∗j (i)

]
a.s.,
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where for each j , π∗j is the j -fold convolution of the probability distribution π

defined in Definition 1.1.

In the following corollary, we impose a local dependence condition D′(un) from
Leadbetter et al. (1983), which is to limit the possibility of clustering of more than
one exceedance in a small interval and to obtain a simple Poisson limit for an
exceedance point process formed by exceedances of high levels.

Corollary 2.2. Suppose that the assumptions of Corollary 2.1 are satisfied. In
addition, assume that condition D′(un) holds with un = a−1

n x + bn, that is,

lim sup
n→∞

n

[n/l]∑
j=1

P(X1 > un,Xj > un) → 0 as l → ∞. (9)

Then for each k = 1,2, . . . ,

lim
n→∞

1

logn

n∑
i=1

1

i
1
(
ai

(
M

(k)
i − bi

) ≤ x
)

(10)

= G(x)

k−1∑
j=0

(− logG(x))j

j ! a.s.

Especially, for i.i.d. case, we have the following result.

Corollary 2.3. Suppose that {Xn}n≥1 is an i.i.d. random sequence and that the
constants {uτ

n}n≥1 be such that for τ ∈ (0,∞), n[1 − F(uτ
n)] → τ as n → ∞.

Then for all τ > 0, each r = 1,2, . . . , and for every Borel subset B of (0,1]

lim
n→∞

1

logn

n∑
i=1

1

i
1
(
Nτ

i (B) ≤ r
) = P

(
Nτ(B) ≤ r

)
a.s., (11)

and for each k = 1,2, . . . ,

lim
n→∞

1

logn

n∑
i=1

1

i
1
(
M

(k)
i ≤ uτ

i

) = e−τ
k−1∑
j=0

τ j

j ! a.s., (12)

where Nτ is a Poisson process with parameter τ .

Next, we deal with the almost sure limit theorem for vector of point processes.

Theorem 2.2. Suppose that {Xn}n≥1 is a strong mixing random sequence with
mixing rate α(n) � (log logn)−(1+ε) and satisfies condition D′(uτi

n ) and that the
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constants u
τ1
n > · · · > uτr

n be such that n[1 − F(u
τi
n )] → τi as n → ∞, where 0 <

τ1 ≤ τ2 ≤ · · · ≤ τr < ∞. Then, for k1 > 0, . . . , kr > 0 and for every Borel subset B

of (0,1]

lim
n→∞

1

logn

n∑
i=1

1

i
1
(
N

τ1
i (B) = k1,N

τ2
i (B) = k1 + k2, . . . ,

N
τr

i (B) = k1 + k2 + · · · + kr

)
(13)

= τ
k1
1

k1!
(τ2 − τ1)

k2

k2! · · · (τr − τr−1)
kr

kr ! e−τr a.s.

As a corollary, we obtain the following result which is an extension of the main
result of Peng et al. (2009).

Corollary 2.4. Suppose that {Xn}n≥1 is a strong mixing random sequence with
mixing rate α(n) � (log logn)−(1+ε) and satisfies condition D′(un(xi)) with
un(xi) = a−1

n xi + bn, i = 1,2, . . . , r and an > 0, bn are constants such that (7)
holds. Let x1 > x2 > · · · > xr . Then, for 1 ≤ k ≤ r ,

lim
n→∞

1

logn

n∑
i=1

1

i
1
(
ai

(
M

(1)
i − bi

) ≤ x1, . . . , ai

(
M

(k)
i − bi

) ≤ xk

)

=
{

H(x1, x2, . . . , xk), x1 > x2 > · · · > xk;
0, otherwise,

a.s., (14)

where H(x1, x2, . . . , xk) is defined by the marginal distribution as Hj(x) =
G(x)

∑k−1
j=0

(− logG(x))j

j ! .

We end this section with several examples which illustrate our main results.

Example 2.1. The m-dependent stationary random sequences satisfy the condi-
tion ∇(un) with βn,l = 0 for l > m. Thus, Theorem 2.1 holds for m-dependent
stationary random sequences.

Example 2.2. The strong mixing condition implies the condition ∇(un). Thus,
Theorem 2.1 holds for strong mixing random sequences with mixing rate α(n) �
(log logn)−(1+ε).

(1) The first example is from Matuła (1999).
Let {Xn}n≥1 be a sequence of square-integrable associated random variables.

Let u(n) denote the coefficient

u(n) = sup
k∈N

∑
j :|j−k|≥n

Cov(Xj ,Xk), n ∈ N ∪ {0}.
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If u(n) = O(n−λ), for some λ > 1, then {Xn}n≥1 is strongly mixing with α(n) =
O(n−λ+1).

(2) The second example is for stationary Gaussian sequence, which can be found
in Doukhan (1994).

Assume that {Xn}n≥1 is a stationary Gaussian sequence such that r(n) =
EX0Xn = O(n−(1+ε)) with some ε > 0 and the spectral of {Xn}n≥1 is bounded
below, then {Xn}n≥1 is a strong mixing random sequences with mixing rate
α(n) = O(n−ε). Thus, the assertion of Theorem 2.1 holds.

The following example is from Hsing et al. (1988).

Example 2.3. Let Xn = max{Yn,Yn+1}, where {Yn}n≥1 is an i.i.d. random se-
quence. Then for each k = 1,2, . . . ,

lim
n→∞

1

logn

n∑
i=1

1

i
1
(
ai

(
M

(k)
i − bi

) ≤ x
)

(15)

= G(x)

[
1 +

[k−1]/2∑
j=1

(− logG(x))j

j !
]

a.s.,

where an, bn are as in (7).

3 Proofs

Before proving the main results, we state a lemma which will be used in the proofs
of our main results.

Lemma 3.1. Let (ξk)
∞
k=1 be a sequence of uniformly bounded random variables,

that is, there exists some M ∈ (0,∞) such that |ξk| ≤ M a.s. for all k ∈ N. If

Var

(
n∑

k=1

1

k
ξk

)
� log2 n(log logn)−(1+ε)

for some ε > 0, then

lim
n→∞

1

logn

n∑
k=1

1

k
(ξk − Eξk) = 0 a.s.

Proof. See Lemma 3.1 of Csáki and Gonchigdanzan (2002). �

Proof of Theorem 2.1. Let ηi = 1(Nτ
i (B) ≤ r) − P(Nτ

i (B) ≤ r). Notice that
(ηi)

∞
i=1 is a sequence of bounded random variables with Var(ηi) ≤ 1. We first show

that

lim
n→∞

1

logn

n∑
i=1

1

i
ηi = 0 a.s. (16)
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Using Lemma 3.1, we only need to show that

Var

(
n∑

i=1

1

i
ηi

)
� log2 n(log logn)−(1+ε). (17)

Now, we have

Var

(
n∑

i=1

1

i
ηi

)
= E

(
n∑

i=1

1

i
ηi

)2

=
n∑

i=1

Eη2
i

i2 + 2
∑

1≤i<j≤n

E(ηiηj )

ij

=: Ln,1 + 2Ln,2.

Clearly,

Ln,1 =
n∑

i=1

1

i2 Eη2
i ≤

n∑
i=1

1

i2 = O(1).

In the following part, we will use the following notation. Let Z denote the set of
all integers. For any Borel set B on (0,1] and any positive integer i, let

iB = {xi :x ∈ B,xi ∈ Z} and xi
0 = max{x :x ∈ B,xi ∈ Z} ∈ (0,1].

For the set iB , let

iMB = max{x :x ∈ iB}.
Let l = ljM

B
be such that ljM

B
≤ log jM

B and ljM
B

↑ ∞ as jM
B → ∞. For iMB + ljM

B
+

1 < jM
B , let

Q = {
x :x ∈ B, jx > ljM

B
+ iMB

}
,

consequently,

jB \ jQ = {
x :x ∈ jB,x ≤ ljM

B
+ iMB

}
.

Now, for iMB + ljM
B

+ 1 < jM
B , we have

∣∣E(ηiηj )
∣∣ = ∣∣Cov

(
1
(
Nτ

i (B) ≤ r
)
,1

(
Nτ

j (B) ≤ r
))∣∣

=
∣∣∣∣Cov

(
1
( ∑

k∈iB

1
(
Xk > uτ

i

) ≤ r

)
,1

( ∑
k∈jB

1
(
Xk > uτ

j

) ≤ r

))∣∣∣∣
≤

∣∣∣∣Cov
(

1
( ∑

k∈iB

1
(
Xk > uτ

i

) ≤ r

)
,
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1
( ∑

k∈jB

1
(
Xk > uτ

j

) ≤ r

)
− 1

( ∑
k∈jQ

1
(
Xk > uτ

j

) ≤ r

))∣∣∣∣
+

∣∣∣∣Cov
(

1
( ∑

k∈iB

1
(
Xk > uτ

i

) ≤ r

)
,1

( ∑
k∈jQ

1
(
Xk > uτ

j

) ≤ r

))∣∣∣∣
≤ E

∣∣∣∣1
( ∑

k∈jB

1
(
Xk > uτ

j

) ≤ r

)
− 1

( ∑
k∈jQ

1
(
Xk > uτ

j

) ≤ r

)∣∣∣∣
+

∣∣∣∣Cov
(

1
( ∑

k∈iB

1
(
Xk > uτ

i

) ≤ r

)
,1

( ∑
k∈jQ

1
(
Xk > uτ

j

) ≤ r

))∣∣∣∣
=: T1 + T2.

Since {Xn}n≥1 satisfies the condition ∇(un) with βn,l � (log logn)−(1+ε) for some
ε > 0, we have

T2 � (log log j)−(1+ε).

For the first term, we have

T1 = E

∣∣∣∣1
( ∑

k∈jB

1
(
Xk > uτ

j

) ≤ r

)
− 1

( ∑
k∈jQ

1
(
Xk > uτ

j

) ≤ r

)∣∣∣∣
= P

( ∑
k∈jQ

1
(
Xk > uτ

j

) ≤ r

)
− P

( ∑
k∈jB

1
(
Xk > uτ

j

) ≤ r

)

≤ P

( ∑
k∈jB\jQ

1
(
Xk > uτ

j

)
> 0

)

≤ ∑
k∈jB\jQ

P
(
Xk > uτ

j

)

≤ (
iMB + ljM

B

)(
1 − F

(
uτ

j

))

=
iMB + ljM

B

j
j
(
1 − F

(
uτ

j

))
.

It follows from the fact B ⊂ (0,1] that

iMB ≤ i and ljM
B

≤ log j.

Since the constants {uτ
n}n≥1 satisfy that n[1 −F(uτ

n)] → τ for τ ∈ (0,∞), as n →
∞, we have that n[1 − F(uτ

n)] is bounded. Thus,

T1 � i + log j

j
.
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Now, for Ln,2, let C denote some constant, we have

Ln,2 = ∑
1≤i<j≤n

E(ηiηj )

ij

= ∑
1≤i<j≤n,iMB +l

jM
B

+1<jM
B

E(ηiηj )

ij
+ ∑

1≤i<j≤n,iMB +l
jM
B

+1≥jM
B

E(ηiηj )

ij

� ∑
1≤i<j≤n,iMB +l

jM
B

+1<jM
B

1

ij

[
i + log j

j
+ 1

(log log j)1+ε

]

+ ∑
1≤i<j≤n,iMB +l

jM
B

+1≥jM
B

1

ij

≤ ∑
1≤i<j≤n

1

ij

(i + log j)

j
+ ∑

1≤i<j≤n

1

ij

1

(log log j)1+ε

+ ∑
1≤i<j≤n,log(jM

B )+1≥(j−i)MB

1

ij

�
n∑

j=1

1

j
+

n∑
j=1

log j

j2

j∑
i=1

1

i
+

n∑
j=1

1

j (log log j)1+ε

j∑
i=1

1

i

+ ∑
1≤i<j≤n,(log j)+1≥(j−i)x

j−i
0

1

ij

� logn +
n∑

j=1

(log j)2

j2 +
n∑

j=1

log j

j (log log j)1+ε
+

n∑
j=1

1

j

j∑
i=j−C log j

1

i

� logn + logn + logn

n∑
j=1

1

j (log log j)1+ε
+ logn

� (logn)2(log logn)−(1+ε).

Thus, we have obtained (17). Note that Theorem 1.1 implies

lim
n→∞

1

logn

n∑
i=1

1

i
P

(
Nτ

i (B) ≤ r
) = P

(
Nτ (B) ≤ r

)
a.s., (18)

and then the assertion of Theorem 2.1 follows from (16) and (18). �
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Proof of Corollary 2.1. Let τ(x) = − logG1/θ (x), where θ is defined in Theo-
rem 1.1. From the proof of Theorem 6.1 of Hsing (1988), we have

P
(
N(τ(x)) ≤ k − 1

) = e−θτ(x)

[
1 +

k−1∑
j=1

k−1∑
i=j

(θτ (x))j

j ! π∗j (i)

]
.

Now, using Theorem 2.1, we have

lim
n→∞

1

logn

n∑
i=1

1

i
1
(
ai

(
M

(k)
i − bi

) ≤ x
)

= lim
n→∞

1

logn

n∑
i=1

1

i
1
(
M

(k)
i ≤ uτ(x)

n

)

= lim
n→∞

1

logn

n∑
i=1

1

i
1
(
N

(τ(x))
i ≤ k − 1

)

= P
(
N(τ(x)) ≤ k − 1

)
a.s.

= e−θτ(x)

[
1 +

k−1∑
j=1

k−1∑
i=j

(θτ (x))j

j ! π∗j (i)

]
.

This completes the proof of Corollary 2.1. �

Proof of Corollary 2.2. Note that condition ∇(un) implies Condition D(un), by
Theorem 5.2.1 of Leadbetter et al. (1983), we have with τ(x) = − logG(x)

P
(
N(τ(x)) ≤ k − 1

) = G(x)

k−1∑
j=0

(− logG(x))j

j ! .

The remaining part of the proof is the same as that of Corollary 2.1. �

Proof of Corollary 2.3. Since the independence of {Xn}n≥1 implies that {Xn}n≥1

satisfies Conditions D(un) and D′(un), by Theorem 5.2.1 of Leadbetter et al.
(1983), we have

P
(
N(τ) ≤ k − 1

) = e−τ
k−1∑
j=0

τ j

j ! .

The remaining part of the proof is the same as that of Corollary 2.1. �

Proof of Theorem 2.2. Let s1 = k1, s2 = k1 + k2, . . . , sr = k1 + k2 + · · · +
kr and ξi = 1(N

τ1
i (B) = s1,N

τ2
i (B) = s1, . . . ,N

τr

i (B) = sr) − P(N
τ1
i (B) =
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s1,N
τ2
i (B) = s2, . . . ,N

τr

i (B) = sr). Notice that (ξi)
∞
i=1 is a sequence of bounded

random variables with Var(ξi) ≤ 1. We first show that

lim
n→∞

1

logn

n∑
i=1

1

i
ξi = 0 a.s. (19)

Using Lemma 3.1, we only need to show that

Var

(
n∑

i=1

1

i
ξi

)
� log2 n(log logn)−(1+ε). (20)

Now, we have

Var

(
n∑

i=1

1

i
ξi

)
= E

(
n∑

i=1

1

i
ξi

)2

=
n∑

i=1

Eξ2
i

i2 + 2
∑

1≤i<j≤n

E(ξiξj )

ij

=: Tn,1 + 2Tn,2.

Clearly,

Tn,1 =
n∑

i=1

1

i2 Eξ2
i ≤

n∑
i=1

1

i2 = O(1).

In the following part, we will use the notation introduced in the proof of The-
orem 2.1. Let N

τm

j (Q) = ∑
k∈jQ 1(Xk > u

τm

j ) for m = 1,2, . . . , r . Note that for

iMB + ljM
B

+ 1 < jM
B , we have∣∣E(ξiξj )

∣∣ = ∣∣Cov
(
1
(
N

τ1
i (B) = s1, . . . ,N

τr

i (B) = sr
)
,

1
(
N

τ1
j (B) = s1, . . . ,N

τr

j (B) = sr
))∣∣

≤ ∣∣Cov
(
1
(
N

τ1
i (B) = s1, . . . ,N

τr

i (B) = sr
)
,

1
(
N

τ1
j (B) = s1, . . . ,N

τr

j (B) = sr
)

− 1
(
N

τ1
j (Q) = s1, . . . ,N

τr

j (Q) = sr
))∣∣

+ ∣∣Cov
(
1
(
N

τ1
i (B) = s1, . . . ,N

τr

i (B) = sr
)
,

1
(
N

τ1
j (Q) = s1, . . . ,N

τr

j (Q) = sr
))∣∣

≤ E
∣∣1(

N
τ1
j (B) = s1, . . . ,N

τr

j (B) = sr
)

− 1
(
N

τ1
j (Q) = s1, . . . ,N

τr

j (Q) = sr
)∣∣

+ ∣∣Cov
(
1
(
N

τ1
i (B) = s1, . . . ,N

τr

i (B) = sr
)
,



Almost sure central limit theorem for point processes 729

1
(
N

τ1
j (Q) = s1, . . . ,N

τr

j (Q) = sr
))∣∣

=: R1 + R2.

Using the strong mixing of {Xn}n≥1, we have

R2 � (log log j)−(1+ε).

For the first term, we have

R1 = P
(
N

τ1
j (Q) = s1, . . . ,N

τr

j (Q) = sr
) − P

(
N

τ1
j (B) = s1, . . . ,N

τr

j (B) = sr
)

≤
r∑

m=1

[
P

(
N

τm

j (Q) = sm
) − P

(
N

τm

j (B) = sm
)]

≤
r∑

m=1

P

( ∑
k∈jB\jQ

1
(
Xk > u

τm

j

)
> 0

)

≤
r∑

m=1

∑
k∈jB\jQ

P
(
Xk > u

τm

j

)

≤ (
iMB + ljM

B

) r∑
m=1

(
1 − F

(
u

τm

j

))

=
iMB + ljM

B

j

r∑
m=1

j
(
1 − F

(
u

τm

j

))
.

Since the constants {uτm
n }n≥1 satisfy that n[1 − F(u

τm
n )] → τm for τm ∈ (0,∞), as

n → ∞, we have that n[1 − F(u
τm
n )] is bounded uniformly for m = 1,2, . . . , r .

Thus, for some constant C

R1 ≤ Cr
iMB + ljM

B

j
�

iMB + ljM
B

j
.

Now, similarly to the proof of Theorem 2.1, we conclude that

Tn,2 � (logn)2(log logn)−(1+ε).

Thus, we have obtained (20). Note that strong mixing implies condition Dr(un)

from Leadbetter et al. (1983). So by Theorem 5.6.1 of Leadbetter et al. (1983), we
have

lim
n→∞

1

logn

n∑
i=1

1

i
P

(
N

τ1
i (B) = s1,N

τ2
i (B) = s1, . . . ,N

τr

i (B) = sr
)

= τ
k1
1

k1!
(τ2 − τ1)

k2

k2! · · · (τr − τr−1)
kr

kr ! e−τr a.s., (21)

and then the assertion of Theorem 2.2 follows from (19) and (21). �
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Proof of Corollary 2.4. Corollary 2.4 is a special case of Theorem 2.2. �
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